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The first part of this paper is devoted to a wavenumber-explicit stability analysis of a planar Helmholtz problem with a perfectly matched layer. We prove that, for a model scattering problem, the H 1 norm of the solution is bounded by the righthand side, uniformly in the wavenumber k in the highly oscillatory regime. The second part proposes two numerical discretizations: an hp finite element method and a multiscale method based on local subspace correction. The stability result is used to relate the choice of parameters in the numerical methods to the wavenumber. A priori error estimates are shown and their sharpness is assessed in numerical experiments.

Introduction

Time harmonic acoustic scattering problems are often modelled through the Helmholtz equation in full space subject to the Sommerfeld radiation condition [START_REF] Colton | Inverse acoustic and electromagnetic scattering theory[END_REF]. The simulation with finite elements requires truncation to a finite domain. An alternative to absorbing boundary conditions, that classically replace the radiation condition in this case, is to introduce a so-called Perfectly Matched Layer (PML) near the boundary, in which a fictitious absorption coefficient avoids artificial reflections. This procedure was introduced in [START_REF] Berenger | A perfectly matched layer for the absorption of electromagnetic waves[END_REF] and thereafter studied in many contributions (see, e.g., [START_REF] Collino | The perfectly matched layer in curvilinear coordinates[END_REF] and the references therein).

The governing elliptic differential operator, the Helmholtz operator (∆+k 2 ), depends on the wavenumber k. We are interested in the highly oscillatory regime, which corresponds to large values of k. It is known that the finite element method (FEM) is not robust with respect to that parameter [START_REF] Babuška | Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers[END_REF]. This phenomenon is usually referred to as pollution effect. It essentially states that a fixed number of grid points per wavelength is insufficient for numerical stability, although it would provide a reasonable approximation. The design and the analysis of numerical methods avoiding pollution has been an active area of numerical analysis. The stability of the underlying partial differential equation (PDE) with respect to k is crucial for the analysis of numerical methods. While there are extreme cases [START_REF] Betcke | Condition number estimates for combined potential integral operators in acoustics and their boundary element discretisation[END_REF], in which the stability constant depends exponentially on k, for a couple of relevant settings there are results on polynomial stability [START_REF] Cummings | Sharp regularity coefficient estimates for complex-valued acoustic and elastic Helmholtz equations[END_REF][START_REF] Esterhazy | On stability of discretizations of the Helmholtz equation[END_REF][START_REF] Hetmaniuk | Stability estimates for a class of Helmholtz problems[END_REF][START_REF] Melenk | On generalized finite element methods[END_REF][START_REF] Melenk | Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation[END_REF][START_REF] Melenk | Mapping properties of combined field Helmholtz boundary integral operators[END_REF][START_REF] Spence | Wavenumber-explicit bounds in time-harmonic acoustic scattering[END_REF] We mention two numerical methods that overcome the pollution effect and are relevant to our work. In [START_REF] Melenk | Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions[END_REF] it is shown that hp finite elements are pollution-free if the polynomial degree is adequately coupled with k. A different approach based on fine-scale correction techniques was proposed by [START_REF] Peterseim | Eliminating the pollution effect in Helmholtz problems by local subscale correction[END_REF]. It is based on low-order polynomials, but the diameter of the support of the fine-scale corrections must grow logarithmically with k.

In this work we study hp finite elements and a multiscale method for a two-dimensional Helmholtz setting with PML. We derive a stability result that shows that the solution (measured in a scaled H 1 norm) is robustly bounded by the L 2 norm of the right-hand side. The proof is based on the combination of a direct estimate obtained in the PML region with a multiplier method (in the case of absorbing boundary conditions this last procedure corresponds to the choice of an appropriate test function, see [START_REF] Melenk | On generalized finite element methods[END_REF]).

The remaining parts of this paper are organized as follows. Section 2 states the PML setting in polar coordinates. The main stability estimate is proven in Section 3. In Section 4 we study the comparison with a sponge layer, which leads to an appropriate expansion of the solution. The numerical proposed discretizations are described in Section 5 and computational experiments are given Section 6. We conclude with some remarks in Section 7. Appendix A lists a couple of elementary but important properties of the PML functions that we often refer to.

We finish this section with some notations used in the remainder of the paper. For a bounded domain D, the usual norm and semi-norm of H s (D) (s ≥ 0) are denoted by

• s,D and | • | s,D , respectively. For s = 0, we drop the index 0 for shortness. The space of smooth functions with compact support in D is denoted by D(D). Furthermore, the notation A B (resp. A B) means the existence of a positive constant C 1 (resp. C 2 ), which is independent of A, B as well as on the wavenumber k and the mesh size h. such that A ≤ C 1 B (resp. A ≥ C 2 B). The notation A ∼ B means that A B and A B hold simultaneously.

The scattering problem with a polar PML

We consider the Helmholtz equation set in the outside of a smooth, star-shaped soundsoft obstacle O ⊂ R 2 . In order to approximate this problem with finite elements, it is required to truncate the computational domain. Here, we propose to analyze the Helmholtz equation when a Perfectly Matched Layer (PML) is employed.

Without losing generality, we select the coordinate system so that O is star-shaped with respect to the origin. We introduce two positive numbers a < b such that O is contained in B(0, a), the ball of R 2 centered at 0 with radius a, and we employ the notation Ω 0 = B(0, a) \ O. In addition, we assume that the computational domain Ω is convex and contains B(0, b). We also introduce the notation Γ = {|x| = a} = ∂B(0, a). The geometric setting is displayed in Figure 1. The relevant definitions and properties of the involved functions are listed in Appendix A. As usual we denote by (ρ, θ) the polar coordinates centred at 0. According to [9, §3] and using the notations from Appendix A, for an arbitrary real number k, we consider the boundary value problem

O Ω 0 Ω a b Γ ε 2 Ω P M L Ω + P M L
k 2 d du + 1 ρ ∂ ∂ρ qρ ∂u ∂ρ + 1 qρ 2 ∂ 2 u ∂θ 2 = d df in Ω, (2.1) u = 0 on ∂Ω, (2.2)
where the datum f is supposed to be in L 2 (Ω). As d = d = 1 in Ω 0 , the problem reduces to the Helmholtz equation in Ω 0 , the PML being situated in Ω \ Ω 0 . Multiplying the partial differential equation by q, we obtain the equivalent problem

k 2 d2 u + q ρ ∂ ∂ρ qρ ∂u ∂ρ + 1 ρ 2 ∂ 2 u ∂θ 2 = d2 f in Ω, (2.3) u = 0 on ∂Ω. (2.4)
The variational formulation of this problem is obtained by multiplying the partial differential equation by a test-function v ∈ H 1 0 (Ω) and by using formal integration by parts. Hence we look for u ∈ H 1 0 (Ω) solution of

- Ω q ∂u ∂ρ ∂ ∂ρ (qv) + 1 ρ 2 ∂u ∂θ ∂v ∂θ dx + k 2 Ω d2 uvdx = Ω d2 f vdx, ∀v ∈ H 1 0 (Ω). (2.5) By Leibniz's rule, this formulation is equivalent to b k (u, v) = - Ω d2 f vdx, ∀v ∈ H 1 0 (Ω), (2.6)
where the sesquilinear form b is defined by

b k (u, v) = Ω q 2 ∂u ∂ρ ∂v ∂ρ + 1 ρ 2 ∂u ∂θ ∂v ∂θ + q ∂q ∂ρ ∂u ∂ρ v -k 2 d2 uv dx, ∀u, v ∈ H 1 0 (Ω).
By Theorem 2 of [START_REF] Collino | The perfectly matched layer in curvilinear coordinates[END_REF], this problem has a unique solution for all real numbers k except possibly a discrete set. For this exceptional discrete set, as we are in a Fredholm setting, uniqueness of a solution is equivalent to existence and uniqueness.

The stability estimate

Let us start with the following definition. Definition 3.1. We will say that system (2.6) satisfies the k-stability property if there exists k 0 > 0 large enough such that for all k ≥ k 0 and all f ∈ L 2 (Ω) any solution

u ∈ H 1 0 (Ω) of (2.6) satisfies (3.1) k u Ω + |u| 1,Ω f Ω , for all k ≥ k 0 .
According to this definition, the k-stability property directly implies that for k ≥ k 0 , problem (2.6) is well-posed since the only solution u of problem (2.6) with f = 0 is zero.

Let us further remark that once we assume that the k-stability property holds, then the best constant in the right-hand side of (3.1) is equivalent to 1. More precisely, we can prove the next result. Lemma 3.2. Assume that (3.1) holds for all k ≥ k 0 > 0 and introduce

C opt (k) := sup f ∈L 2 (Ω):f =0 k u f Ω + |u f | 1,Ω f Ω ,
where u f ∈ H 1 0 (Ω) is the unique solution of (2.6). Then one has

(3.2) C opt (k) ∼ 1, ∀k ≥ k 0 .
Proof. The bound C opt (k) 1 being trivial since (3.1) is assumed, we only concentrate on the converse estimate. For that purpose, fix a non zero real valued function χ ∈ D(Ω) that vanishes in the PML region Ω P M L . Then for all k ≥ k 0 , define

u(x) = e ikx 1 χ(x), ∀x ∈ Ω,
where x 1 is the first component of x, that is considered as solution of (2.6) with f = ∆u + k 2 u (as u is zero in the PML). Then direct calculations yield

f Ω ∼ ∆χ Ω + k ∂ 1 χ Ω , and 
k u Ω + |u| 1,Ω ∼ k χ Ω + |χ| 1,Ω . Consequently as χ Ω > 0, we find k u Ω + |u| 1,Ω f Ω 1, which proves that C opt (k) 1, for all k ≥ k 0 .
Let us also notice that any solution u ∈ H 1 0 (Ω) of (2.6) satisfies

(3.3) k 2 d2 u + 1 ρ ∂ ∂ρ q 2 ρ ∂u ∂ρ + 1 ρ 2 ∂ 2 u ∂θ 2 = d2 f + q ∂q ∂ρ ∂u ∂ρ in D (Ω),
which is equivalent to (2.3) in the distributional sense. As q tends to 1 as k goes to infinity (cf. Lemma A.2), we deduce that the system

1 ρ ∂ ∂ρ q 2 ρ ∂u ∂ρ + 1 ρ 2 ∂ 2 u ∂θ 2
is strongly elliptic (uniformly in k) for k large enough. By elliptic regularity, we deduce that, for k large enough, any solution u ∈ H 1 0 (Ω) of (2.6) belongs to H 2 (Ω) with the estimate

(3.4) u 2,Ω f Ω + k 2 u Ω .
Combined with (3.1), we obviously deduce that

(3.5) u 2,Ω k f Ω ,
for k large enough. Note finally that in such a case (3.3) holds strongly, i.e., as an equality in L 2 (Ω). The goal of this section is to prove the k-stability property. This will be made in different steps.

Lemma 3.3. For k large enough, we have (3.6)

Ω + P M L ∂u ∂ρ 2 dx + Ω P M L σk 2 |u| 2 dx k f Ω u Ω + ∂u ∂ρ Ω P M L u Ω P M L .
Proof. In (2.6), we take v = u and the imaginary part to obtain

Ω -Im q 2 ∂u ∂ρ 2 + k 2 Im d2 |u| 2 dx = Im Ω d2 f ūdx + Im Ω q ∂q ∂ρ ∂u ∂ρ ūdx.
By Cauchy-Schwarz's inequality, the fact that q = d = 1 in Ω 0 and Lemma A.3, we find

Ω P M L -Im q 2 ∂u ∂ρ 2 + k 2 Im d2 |u| 2 dx f Ω u Ω + 1 k ∂u ∂ρ Ω P M L u Ω P M L .
By the identities (A.10) to (A.12), the previous estimate can be equivalently written (3. 7)

Ω P M L 2γkρσ (ρ) k 2 + σ 2 (ρ) ∂u ∂ρ 2 + 2kσ|u| 2 dx f Ω u Ω + 1 k ∂u ∂ρ Ω P M L u Ω P M L .
Since σ and σ are positive in Ω P M L , in the left-hand side of this estimate, we can reduce the integral over the first summand to Ω + P M L , namely

Ω + P M L 2γkρσ (ρ) k 2 + σ 2 (ρ) ∂u ∂ρ 2 dx + Ω P M L 2kσ|u| 2 dx f Ω u Ω + 1 k ∂u ∂ρ Ω P M L u Ω P M L .
By (A.6) and the fact that γ tends to 1 as k tends to infinity, we conclude that (3.6) holds for k large enough.

Lemma 3.4. For k large enough, we have

(3.8) Ω |∇u| 2 dx k 2 u 2 Ω + f Ω u Ω k 2 u 2 Ω + f 2 Ω .
Proof. In (2.6), we take v = u and the real part to obtain

Ω Re q 2 ∂u ∂ρ 2 + 1 ρ 2 ∂u ∂θ 2 dx = k 2 Ω Re d2 |u| 2 dx -Re Ω d2 f ūdx -Re Ω q ∂q ∂ρ ∂u ∂ρ ūdx.
By Cauchy-Schwarz's inequality, the boundedness of d and q for k large (see Lemma A.2) and Lemma A.3, we obtain

Ω Re q 2 ∂u ∂ρ 2 + 1 ρ 2 ∂u ∂θ 2 dx k 2 u 2 Ω + f Ω u Ω + 1 k ∂u ∂ρ Ω P M L u Ω P M L .
As q tends to 1 as k tends to infinity (see Lemma A.2), for k large enough, we get

Ω ∂u ∂ρ 2 + 1 ρ 2 ∂u ∂θ 2 dx k 2 u 2 Ω + f Ω u Ω + 1 k ∂u ∂ρ Ω P M L u Ω P M L .
By Young's inequality, we can absorb the last term of this right-hand side, namely

Ω ∂u ∂ρ 2 + 1 ρ 2 ∂u ∂θ 2 dx ≤ Ck 2 u 2 Ω + C f Ω u Ω + 1 2k 2 ∂u ∂ρ 2 Ω + C 2 u 2 Ω .
for some C > 0 independent of k. Consequently we get

(1 - 1 2k 2 ) Ω ∂u ∂ρ 2 + 1 ρ 2 ∂u ∂θ 2 dx ≤ Ck 2 u 2 Ω + C f Ω u Ω + C 2 u 2 Ω , which yields (3.8) for k large enough since |∇u| 2 = ∂u ∂ρ 2 + 1 ρ 2 ∂u ∂θ 2 .
In view of this Lemma, we see that the k-stability property will be proved if we can estimate k u Ω . Since Lemma 3.3 gives an estimate of this quantity in Ω + P M L , it remains to estimate it in Ω \ Ω + P M L . This is made via a multiplier method. For the cut-off function η fixed in the Appendix A, let us introduce the multiplier m(x) = xη(ρ), ∀x ∈ Ω, the functions (depending only on the radial variable ρ) α = η (q 2 -2 Re q 2 ) + 2η q ∂ q ∂ρ , (3.9)

β = 2 d2 η + ρ ∂ ∂ρ d2 η , (3.10)
as well as the expressions

Σ = Ω (q 2 -q2 )η(ρ) ∂u ∂ρ ∂ ∂ρ ρ ∂ ū ∂ρ dx, (3.11) Σ 1 = Ω ( d2 -d2 )η(ρ)ρ ∂u ∂ρ ū dx. (3.12)
With these notations, we can prove the following identity with multiplier: Lemma 3.5. The next identity holds

(3.13) Ω -k 2 β|u| 2 + ρη 1 ρ ∂u ∂θ 2 -αρ ∂u ∂ρ 2 dx + ∂O |∇u • n| 2 x • n dσ(x) = Σ -k 2 Σ 1 + 2 Re Ω ( d2 f + q ∂q ∂ρ ∂u ∂ρ )ηρ ∂ ū ∂ρ dx.
Proof. For shortness, let us set f 1 = d2 f + q ∂q ∂ρ ∂u ∂ρ , then as already said before u satisfies (3.3) or equivalently

k 2 d2 u + 1 ρ ∂ ∂ρ q 2 ρ ∂u ∂ρ + 1 ρ 2 ∂ 2 u ∂θ 2 = f 1 .
Multiplying this identity by m•∇ū = ηρ ∂ ū ∂ρ and integrating in Ω (meaningful as u ∈ H 2 (Ω)), we find

(3.14) k 2 I a + k 2 I + J a + J rad + J ang = Ω f 1 ηρ ∂ ū ∂ρ dx,
where we have set

J rad = Ω\Ω 0 ∂ ∂ρ q 2 ρ ∂u ∂ρ η ∂ ū ∂ρ dx, J ang = Ω\Ω 0 1 ρ ∂ 2 u ∂θ 2 η ∂ ū ∂ρ dx, I = Ω\Ω 0 d2 uηρ ∂ ū ∂ρ dx, I a = Ω 0 u(m • ∇ū) dx, J a = Ω 0 ∆u(m • ∇ū) dx.
We now transform these expressions by using some integrations by parts. a) Transformation of I: As η is zero outside B(0, b), we have

I = 2π 0 b a d2 uηρ 2 ∂ ū ∂ρ dρdθ.
By integration by parts in ρ, we have The second term of this right-hand side would be equal to -Ī if d2 would be real, hence by introducing Σ 1 , we find that

I = -
(3.15) 2 Re I = - Ω\Ω 0 β|u| 2 dx + Σ 1 - Γ a|u| 2 dσ(x).
b) Transformation of I a : By the Green formula, we have

2 Re I a = 2 Re Ω 0 u(m • ∇ū) dx = Ω 0 m • ∇|u| 2 dx = - Ω 0 2|u| 2 dx + ∂Ω 0 m • n|u| 2 dσ(x).
Since u = 0 on ∂O, we have

(3.16) 2 Re I a = - Ω 0 β|u| 2 dx + Γ a|u| 2 dσ(x).
c) Transformation of J ang : As before we have

J ang = 2π 0 b a ∂ 2 u ∂θ 2 η ∂ ū ∂ρ dρdθ,
and by integration by parts in θ, we find

J ang = - 2π 0 b a ∂u ∂θ η ∂ 2 ū ∂θ∂ρ dρdθ. Since ∂ ∂ρ ∂u ∂θ 2 = 2 Re ∂u ∂θ ∂ 2 ū ∂θ∂ρ ,
we then have

2 Re J ang = - 2π 0 b a η ∂ ∂ρ ∂u ∂θ 2 dρdθ.
By integration by parts in ρ, we deduce that

(3.17) 2 Re J ang = Ω 0 ρη 1 ρ ∂u ∂θ 2 dx + Γ a 1 ρ ∂u ∂θ 2 dσ(x).
d) Transformation of J rad : As before we have

J rad = 2π 0 b a ∂ ∂ρ q 2 ρ ∂u ∂ρ ηρ ∂ ū ∂ρ dρdθ,
and an integration by parts in ρ yields

J rad = - 2π 0 b a q 2 ρ ∂u ∂ρ ∂ ∂ρ ηρ ∂ ū ∂ρ dρdθ - Γ a ∂u ∂ρ 2 dσ(x) = - 2π 0 b a q 2 η ρ ∂u ∂ρ 2 dρdθ - 2π 0 b a q 2 ηρ ∂u ∂ρ ∂ ∂ρ ρ ∂ ū ∂ρ dρdθ - Γ a ∂u ∂ρ 2 dσ(x).
This can be equivalently written as

(3.18) J rad = -K - 2π 0 b 0 q 2 η ρ ∂u ∂ρ 2 dρdθ - Γ a ∂u ∂ρ 2 dσ(x),
where we have set

K := 2π 0 b 0 q 2 ηw ∂ w ∂ρ dρdθ and w := ρ ∂u ∂ρ .
Introducing Σ, we see that

K = Σ + 2π 0 b 0 q2 ηw ∂ w ∂ρ dρdθ,
hence integrating by parts in ρ in the second term of this right-hand side, we get

K = Σ - 2π 0 b 0 ∂ ∂ρ q2 ηw w dρdθ - Γ a ∂u ∂ρ 2 dσ(x) = Σ -K - 2π 0 b 0 ∂ ∂ρ q2 η |w| 2 dρdθ - Γ a ∂u ∂ρ 2 dσ(x).
This yields

2 Re K = Σ - 2π 0 b 0 ∂ ∂ρ q2 η |w| 2 dρdθ - Γ a ∂u ∂ρ 2 dσ(x).
Taking the real part of the identity (3.18), we conclude that

(3.19) 2 Re J rad = -Σ - Ω αρ ∂u ∂ρ 2 dx - Γ a ∂u ∂ρ 2 dσ(x).
e) Transformation of J a : By integration by parts, we have

J a = Ω 0 ∆u(m • ∇ū) dx = - Ω 0 ∇u • ∇(m • ∇ū) dx + Γ ∇u • n(m • ∇ū) dσ(x) + ∂O ∇u • n(m • ∇ū) dσ(x),
We recall that m = x in Ω 0 . In addition, since u = 0 on ∂O, we also have ∇u • t = 0 on ∂O for the unit tangent vector t. It follows that

m • ∇ū = m • n∇ū • n + m • t∇ū • t = ∇ū • nx • n,
and ∇u • n(m • ∇ū) = |∇u • n| 2 x • n, on ∂O. On the other hand, Rellich's identity yields that 2 Re Ω 0 ∇u • ∇(m • ∇ū) = ∂Ω 0 |∇u| 2 x • n = Γ |∇u| 2 x • n + ∂O |∇u • n| 2 x • n.
Recalling that m = x in Ω 0 and ∇u • t = 0 on ∂O, and using Rellich's identity, we find that

2 Re J a = ∂O |∇u • n| 2 x • n - Γ |∇u| 2 x • n + 2 Γ ∇u • n(m • ∇ū) (3.20) = ∂O |∇u • n| 2 x • n + Γ a ∂u ∂ρ 2 - Γ a 1 ρ ∂u ∂θ 2 .
Coming back to (3.14), taking the real part and using (3.15), (3.16), (3.17), (3.19) and (3.20), we arrive at (3.13).

The previous Lemmas allow to conclude the Theorem 3.6. System (2.6) satisfies the k-stability property.

Proof. We first look at the behavior of β as k is large. By Leibniz's rule, we have

β = β 0 + ρ d2 η , with β 0 = 2( d2 + ρ d∂ d ∂ρ )η.
With this splitting, (3.13) implies that

Ω k 2 β 0 |u| 2 -ρη 1 ρ ∂u ∂θ 2 dx (3.21) ≤ -Σ + k 2 Σ 1 -2 Re Ω f 1 ηρ ∂ ū ∂ρ dx - Ω αρ ∂u ∂ρ 2 dx -k 2 Ω + P M L ρ d2 η |u| 2 dx.
Since d2 tends to 1 as k goes to infinity and ∂ d ∂ρ = iσ k tends to 0 as k goes to infinity, we directly see that (3.22) Re β 0 ≥ η, for k large enough.

Using this property, the boundedness of d and the fact that η ≤ 0 in (3.21), we find that

k 2 Ω η|u| 2 dx |Σ| + k 2 |Σ 1 | + f 1 Ω ∇u Ω (3.23) + Ω |α|ρ ∂u ∂ρ 2 dx + k 2 Ω + P M L |u| 2 dx,
for k large enough. Now by the definition of α and Lemmas A.2 and A.3, we have

Ω |α|ρ ∂u ∂ρ 2 dx + k 2 Ω + P M L |u| 2 dx Ω + P M L ∂u ∂ρ 2 + k 2 |u| 2 dx + 1 k Ω P M L ∂u ∂ρ 2 dx.
With the help of (3.6), we then obtain

Ω |α|ρ ∂u ∂ρ 2 dx + k 2 Ω + P M L |u| 2 dx k f Ω u Ω + ∂u ∂ρ Ω P M L u Ω P M L + 1 k ∂u ∂ρ 2 Ω P M L .
This estimate in (3.23) leads to

k 2 Ω η|u| 2 dx |Σ| + k 2 |Σ 1 | + f 1 Ω ∇u Ω (3.24) +k f Ω u Ω + ∂u ∂ρ Ω P M L u Ω P M L + 1 k ∂u ∂ρ 2 Ω P M L ,
for k large enough. It then remains to estimate |Σ| and k 2 |Σ 1 |. i) By the definition (3.12) and (A. [START_REF] Gallistl | Stable multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering[END_REF]), it holds

k 2 |Σ 1 | ≤ 4 Ω P M L σ1/2 ∂u ∂ρ kσ 1/2 |u| dx.
Cauchy-Schwarz's inequality and the boundedness of σ1/2 then lead to

k 2 |Σ 1 | ∂u ∂ρ Ω P M L kσ 1/2 u Ω P M L .
Using Young's inequality (with an arbitrary λ > 0) and (3.6) we infer

k 2 |Σ 1 | λ ∂u ∂ρ 2 Ω P M L + 1 λ Ω P M L σk 2 |u| 2 dx λ ∂u ∂ρ 2 Ω P M L + 1 λ k f Ω u Ω + ∂u ∂ρ Ω P M L u Ω P M L . (3.25)
For the second term of this right-hand side using Young's inequality we find

|Σ| 1 k ∂u ∂ρ 2 Ω P M L + 1 δk √ k Ω P M L σ ∂u ∂ρ 2 dx + δ √ k Ω P M L ∂ 2 u ∂ρ 2 2 dx,
for all δ > 0. Using (3.7), the fact that γ tends to 1 as k goes to infinity and the property

k k 2 +σ 2 ≥ 1 k valid for k large enough, we find |Σ| 1 k ∂u ∂ρ 2 Ω P M L + 1 δ √ k ( f Ω u Ω + 1 k ∂u ∂ρ Ω P M L u Ω P M L ) + δ √ k Ω P M L ∂ 2 u ∂ρ 2 2 dx,
for all δ > 0 and for k large enough. For the last term of this right-hand side, using the estimate (3.4), we arrive at

|Σ| 1 k ∂u ∂ρ 2 Ω P M L + 1 δ √ k ( f Ω u Ω + 1 k ∂u ∂ρ Ω P M L u Ω P M L ) + δ √ k ( f 2 Ω + k 4 u 2 Ω ).
This estimate and (3.25) in (3.24)

k 2 Ω η|u| 2 dx f 1 Ω ∇u Ω + k f Ω u Ω + ∂u ∂ρ Ω P M L u Ω P M L + (λ + 1 k ) ∇u 2 Ω P M L + ( k λ + 1 δ √ k ) f Ω u Ω + ( 1 λ + 1 δk 3 2 
) ∂u ∂ρ

Ω P M L u Ω P M L + δ √ k f 2 Ω + δk 7 2 u 2 Ω ,
for k large enough.

Comparing this estimate with (3.6) and recalling that η = 1 in Ω \ Ω + P M L and (A.6) for large k, we have shown that

k 2 Ω |u| 2 dx ≤ C f 1 Ω ∇u Ω + k f Ω u Ω + ∂u ∂ρ Ω P M L u Ω P M L + (λ + 1 k ) ∇u 2 Ω P M L + ( k λ + 1 δ √ k ) f Ω u Ω + ( 1 λ + 1 δk 3 2 
) ∂u ∂ρ

Ω P M L u Ω P M L + δ √ k f 2 Ω + δk 7 2 u 2 Ω ,
for k large enough and some positive constant C independent of k. We now chose δ > 0 so that

Cδk 7 2 = k 2 2 ,
or equivalently

δ = k -3 2 2C .
With this choice we find

k 2 Ω |u| 2 dx f 1 Ω ∇u Ω + k(1 + 1 λ ) f Ω u Ω + (1 + 1 λ ) ∂u ∂ρ Ω P M L u Ω P M L + (λ + 1 k ) ∇u 2 Ω P M L + ∂u ∂ρ Ω P M L u Ω P M L + 1 k 2 f 2 Ω ,
for k large enough. Recalling the definition of f 1 and Lemma A.3, we get

f 1 Ω f Ω + 1 k ∇u Ω ,
and consequently

k 2 Ω |u| 2 dx f Ω ∇u Ω + (λ + 1 k ) ∇u 2 Ω + k(1 + 1 λ ) f Ω u Ω + (1 + 1 λ ) ∇u Ω u Ω + f 2 Ω .
for k large enough. By Young's inequality, this estimate implies that

k 2 Ω |u| 2 dx ≤ C µ f 2 Ω + µ ∇u 2 Ω + C(λ + 1 k ) ∇u 2 Ω + C µ 1 (1 + 1 λ ) f 2 Ω + µ 1 (1 + 1 λ )k 2 u 2 Ω + C µ 2 k 2 (1 + 1 λ ) ∇u 2 Ω + µ 2 (1 + 1 λ )k 2 u 2 Ω + C f 2 Ω ,
for k large enough, for any positive real numbers µ, µ 1 and µ 2 and a positive constant C independent of k (and µ, µ 1 and µ 2 ). Choosing µ 1 = µ 2 = (4(1 + 1/λ)) -1 , we find that

k 2 Ω |u| 2 dx ≤ C(1 + 1 µ (1 + 1 λ ) 2 ) f 2 Ω + µ + Cλ + C k (1 + 1 λ ) 2 ∇u 2 Ω ,
for k large enough, for any positive real numbers µ, λ and a positive constant C independent of k, µ, λ. At this stage we take advantage of (3.8) to obtain

k 2 Ω |u| 2 dx ≤ C (1 + 1 µ (1 + 1 λ ) 2 + µ + Cλ + C k (1 + 1 λ ) 2 f 2 Ω + (µ + Cλ)k 2 u 2 Ω + kC(1 + 1 λ ) 2 u 2 Ω .
Choosing µ = 1 4 and λ = 1 4C , we find that

k 2 Ω |u| 2 dx ≤ C f 2 Ω + Ck u 2 Ω ,
for k large enough and a positive constant C independent of k. As for k large enough

Ck ≤ k 2 2 , we have proved that k u Ω f Ω ,
for k large enough. Coming back to (3.8), we conclude that

Ω |∇u| 2 dx f 2 Ω ,
for k large enough.

Comparison with a sponge layer

The boundary value problem corresponding to a sponge layer consists in looking at u sponge solution of

L sponge u sponge = f in Ω, (4.1) u sponge = 0 on ∂Ω, (4.2)
where the operator L sponge is defined by

L sponge v = ∆v + (k 2 + 2iσk)v = 1 ρ ∂ ∂ρ ρ ∂v ∂ρ + 1 ρ 2 ∂ 2 v ∂θ 2 + (k 2 + 2iσk)v.
This problem (4.1) enters in the framework developed recently in [START_REF] Chaumont-Frelet | Wavenumber explicit convergence analysis for finite element discretizations of general wave propagation problems[END_REF] if the boundary of Ω is C 1,1 or if it is a convex polygon, since it satisfies the assumption of Section 2 of that paper [START_REF] Chaumont-Frelet | Wavenumber explicit convergence analysis for finite element discretizations of general wave propagation problems[END_REF] (with the choices L 0 = -Id, L 1 = -2σId, and L 2 = -∆), and since its variational formulation is given by

(4.3) a sponge (u sponge , v) = - Ω f v dx, ∀v ∈ H 1 0 (Ω),
where the sesquilinear form a sponge (•, •) is defined by

a sponge (v, w) = Ω ∇v • ∇ w -(k 2 + 2iσk)v w dx, ∀v, w ∈ H 1 0 (Ω).
This sesquilinear form trivially satisfies

|a sponge (v, w)| |||v||| |||w|||, ∀v, w ∈ H 1 0 (Ω), where |||v||| = k 2 v 2 Ω + |v| 2 1,Ω 1 2 , and Re a sponge (v, v) ≥ |v| 2 1,Ω -k 2 v 2 Ω , ∀v ∈ H 1 0 (Ω).
Consequently the associated operator A sponge is a Fredholm operator from H 1 0 (Ω) into H -1 (Ω), therefore it is an isomorphism if and only if it is injective. But the injectivity is not difficult to show because u ∈ H 1 0 (Ω) solution of (4.3) with f = 0 satisfies in particular a sponge (u, u) = 0, and taking the imaginary part we get u = 0 on Ω P M L .

Since u also satisfies ∆u + (k 2 + 2iσk)u = 0 in Ω, by Holmgrem's theorem we deduce that u = 0. In order to compare (4.1) with (3.3), we rewrite (3.3) as

L PML u = d2 f, with L PML v = k 2 d2 v + q 2 ρ ∂ ∂ρ ρ ∂v ∂ρ + 1 ρ 2 ∂ 2 v ∂θ 2 + q ∂q ∂ρ ∂v ∂ρ ,
We can look at u as solution of

L sponge u = f (k) in Ω, (4.4) u = 0 on ∂Ω, (4.5)
where f (k) = L sponge u -L PML u + d2 f and consequently

f (k) = d2 f + (1 -q 2 ) 1 ρ ∂ ∂ρ ρ ∂u ∂ρ + (k 2 + 2iσk) -k 2 d2 u -q ∂q ∂ρ ∂u ∂ρ . (4.6)
Let us now estimate the L 2 -norm of f (k) . Lemma 4.1. For k large enough, it holds

(4.7) f (k) Ω f Ω .
Proof. As d is uniformly bounded in Ω, it suffices to estimate the L 2 -norm of the three other terms of the right-hand side of (4.6). For the second term of (4.6), by (A. [START_REF] Lassas | Analysis of the PML equations in general convex geometry[END_REF]), we have

(1 -q 2 ) 1 ρ ∂ ∂ρ ρ ∂u ∂ρ Ω 1 k 1 ρ ∂ ∂ρ ρ ∂u ∂ρ Ω P M L 1 k u 2,Ω P M L .
By (3.5), we conclude that

(4.8) (1 -q 2 ) 1 ρ ∂ ∂ρ ρ ∂u ∂ρ Ω f Ω , for k large enough. The definition of d shows (k 2 + 2iσk) -k 2 d2 = σ2 .
This identity and the bound (3.1) show that the the third term of (4.6) satisfies

(4.9) (k 2 + 2iσk) -k 2 d2 u Ω u Ω f Ω ,
for k large enough.

For the last term of (4.6), using Lemma A.3 and again (3.1), we directly conclude that q ∂q ∂ρ ∂u ∂ρ

Ω 1 k |u| 1,Ω f Ω ,
for k large enough. This estimate, (4.8), and (4.9) lead to the asserted estimate.

At this stage, we can look at u ∈ H 1 0 (Ω) as the unique solution of (4.1) with a datum f (k) instead of f . The L 2 norm of f (k) is uniformly bounded in k. Consequently applying Theorem 1 of [START_REF] Chaumont-Frelet | Wavenumber explicit convergence analysis for finite element discretizations of general wave propagation problems[END_REF], we directly get the next result. Theorem 4.2. Let γ be a natural number and assume that the boundary of Ω is of class C γ+1,1 . Then for k large enough, for all ∈ {0, • • • , γ}, the unique solution u ∈ H 1 0 (Ω) of (2.6) admits the splitting

(4.10) u = -1 j=0 k j u (k) j + r (k) ,
where u

(k) j ∈ H j+2 (Ω) with (4.11) u (k) j j+2,Ω f Ω , for 0 ≤ j ≤ -1 and r (k) ∈ H +2 (Ω) with (4.12) r (k) +2,Ω k +1 f Ω .
Remark 4.3. This result remains valid for a convex polygon with γ = 0.

Finite element discretizations

5.1. hp-FEM. Here we want to take advantage of the splitting from Theorem 4.2 to derive stability conditions and error estimates for hp finite element discretizations of (2.6).

We look for a finite element approximation u h,p to u. To this end, we consider a family of regular (in Ciarlet's sense) meshes {T h } h of Ω, where each mesh is made of triangular elements K. To simplify the analysis, we assume that the boundary of Ω is exactly triangulated, and therefore, we consider curved Lagrange finite elements [START_REF] Bernardi | Optimal finite-element interpolation on curved domains[END_REF]. Also, for each element K, we denote by F K the mapping taking the reference element K to K.

Then, for all p ≤ γ + 1, the finite element approximation space V h,p is defined as

V h,p = v h,p ∈ H 1 0 (Ω) | v h,p | K • F -1 K ∈ P p ( K) ∀K ∈ T h ,
where P p ( K) stands for the set of polynomials of total degree less than or equal to p.

As the family of meshes is regular,

for each v ∈ H l+1 (Ω) ∩ H 1 0 (Ω) S (0 ≤ l ≤ p), there exists an element I h,p v ∈ V h,p such that (5.1) |v -I h,p v| j,Ω h l+1-j v l+1,Ω , (0 ≤ j ≤ l).
We refer the reader to [3, Corollary 5.2] (see also [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF]). Then a finite element approximation of u is obtained by looking for u h,p ∈ V h,p such that

(5.2) b k (u h,p , v h,p ) = - Ω d2 f vh,p dx, ∀v h,p ∈ V h,p .
5.1.1. Asymptotic error estimate. Now we are ready to prove a convergence result in an appropriate asymptotic range.

Theorem 5.1. Assume that the boundary of Ω is of class C γ+1,1 for some natural number γ (or a convex polygon) and let f ∈ L 2 (Ω). Then there exists k 0 large enough and δ > 0 small enough such that if k ≥ k 0 , kh ≤ δ and k p+1 h p ≤ δ with p ≤ γ + 1 (p = 1 if Ω is a convex polygon), there exists a unique finite element solution u h,p ∈ V h,p to (5.2), and the estimate

(5.3) |||u -u h,p ||| inf φ h,p ∈V h,p |||u -φ h,p |||
holds. Furthermore, we have

(5.4) |||u -u h,p ||| kh f Ω .
Proof. The proof of this Theorem is exactly the same as the one of Theorem 2 from [START_REF] Chaumont-Frelet | Wavenumber explicit convergence analysis for finite element discretizations of general wave propagation problems[END_REF], by using Theorem 4.2 and the fact that the sesquilinear form b k satisfies Assumption 1 from [START_REF] Chaumont-Frelet | Wavenumber explicit convergence analysis for finite element discretizations of general wave propagation problems[END_REF]. Indeed the continuity property

|b k (v, w)| |||v||| |||w|||, ∀v, w ∈ H 1 0 (Ω)
, is a direct consequence of Cauchy-Schwarz's inequality. Let us now prove the Gårding inequality

(5.5) Re b k (u, u)| |u| 2 1,Ω -k 2 u 2 Ω , ∀u ∈ H 1 0 (Ω). Fix an arbitrary u ∈ H 1 0 (Ω).
First by the properties (A.13), (A.15) and (A.17), for k large enough we have

Re b k (u, u)| ≥ 1 2 |u| 2 1,Ω -2k 2 u 2 Ω - C k Ω P M L |∇u||u| dx,
for some C > 0 independent of k. Cauchy-Schwarz's inequality and Young's inequality then lead to

Re b k (u, u) ≥ 1 4 |u| 2 1,Ω -(2k 2 + C 2 k 2 ) u 2
Ω . This proves (5.5).

5.1.2.

Pre-asymptotic error estimate. In this part, we aim at giving a pre-asymptotic error estimate for the problem (2.5). As in [START_REF] Feng | hp-discontinuous Galerkin methods for the Helmholtz equation with large wave number[END_REF], we use an appropriate elliptic projection, in order to obtain the existence of a solution u h,p to (5.2) under a weaker condition than in the asymptotic range.

First, we define:

L q (u) := q 2 ∂ 2 u ∂ρ 2 + 1 ρ 2 ∂ 2 u ∂θ 2 + q 2 ρ ∂u ∂ρ + q ∂q ∂ρ ∂u ∂ρ = q ρ ∂ ∂ρ qρ ∂u ∂ρ + 1 ρ 2 ∂ 2 u ∂θ 2 = ∆u + (1 -q 2 ) ∂ 2 u ∂ρ 2 + (1 -q 2 ) 1 ρ ∂u ∂ρ + q ∂q ∂ρ ∂u ∂ρ .
Then, we look at the following problem:

find u ∈ H 1 0 (Ω) ∩ H 2 (Ω) solution of L q (u) = f in Ω, u = 0 on ∂Ω.
The variational form of this problem is: Find u ∈ H 1 0 (Ω) such that Proof. We first prove that a k is continuous and coercive. Indeed one trivially has

(5.6) a k (u, v) = (f, v) L 2 (Ω) ∀v ∈ H 1 0 (Ω), with f ∈ L 2 (Ω)
|a k (u, v)| ( q 2 ∞ + 1) u 1,Ω v 1,Ω + q ∂q ∂ρ ∞ ∇u Ω v Ω , ∀u, v ∈ H 1 0 (Ω).
Hence, with Lemma A.2, A.3, we have the existence of a constant independent from k such that

|a k (u, v)| u 1,Ω v 1,Ω , ∀u, v ∈ H 1 0 (Ω). On the other hand, if k is large enough, we have Re a k (u, u) ≥ min(Re q, 1) ∇u 2 Ω -q ∂q ∂ρ ∞ ∇u Ω v Ω ≥ C 1 ∇u 2 Ω - C 2 k u 2 1,Ω ≥ C 1 - C 2 k u 2 1,Ω u 2 1,Ω .
Then, since a k is continuous and coercive, by Lax-Milgram Lemma, we have the existence and uniqueness of a solution u ∈ H 1 0 (Ω) to (5.6). The strong ellipticity of L q gives us the H 2 (Ω) regularity of u. So, u ∈ H 2 (Ω) ∩ H 1 0 (Ω), and we have

u 2,Ω ∆u Ω L q (u) Ω + 1 -q 2 ∞ u 2,Ω + 1 -q 2 ∞ u 1,Ω + q ∂q ∂ρ ∞ u 1,Ω f Ω + 1 k u 2,Ω + u 1,Ω ,
hence for k large enough, we obtain (5.7).

Lemma 5.3. We define the projections P h,p u ∈ V h,p and P * h,p u ∈ V h,p as unique solutions to

a k (P h,p u, v h,p ) = a k (u, v h,p ) ∀v h,p ∈ V h,p , a k (v h , P * h,p u) = a k (v h , u) ∀v h,p ∈ V h,p . If u φ ∈ H 1 0 (Ω) solves b k (u φ , v) = (φ, v) for all v ∈ H 1 0 (Ω) for some φ ∈ L 2 (Ω), then we have u φ -P * h,p u φ Ω (h 2 + k p h p+1 ) φ Ω and u φ -P * h,p u φ 1,Ω (h + (kh) p ) φ Ω . Proof.
The existence and uniqueness of P h,p u and of P * h,p u comes from the coercivity and continuity of a k . We recall that, by Theorem 4.2 (with = p -1), we have

u φ = p-2 j=0 k j u (j) φ + r φ with u (j) φ j+2,Ω
φ Ω (5.8) r φ p+1,Ω k p φ Ω .

(5.9) By Céa's lemma, we have

u φ -P * h,p u φ 1,Ω inf v h,p ∈V h,p u φ -v h,p 1,Ω u φ -I h,p u φ 1,Ω .
To estimate this right-hand side, we use (5.8) and (5.9) and (5.1) to obtain

u φ -I h,p u φ 1,Ω p-2 j=0 k j u (j) φ -I h,p u (j) φ 1,Ω + r φ -I h,p r φ 1,Ω p-2 j=0 k j h j+1 u (j) φ j+2,Ω + h p r φ p+1,Ω h p-2 j=0 k j h j u (j) φ j+2,Ω + (kh) p φ Ω .
This allows to estimate the energy norm of u -u h,p as follows:

|||u -u h,p ||| 2 k 2 u -u h,p 2 Ω + |u -u h,p | 2 1,Ω k 2 u -u h,p 2 Ω + |a k (u -u h,p , u -u h,p )| k 2 u -u h,p 2 Ω + |a k (u -u h,p , u -u h,p ) -k 2 ( d2 (u -u h,p ), u -u h,p )| k 2 u -u h,p 2 Ω + |b k (u -u h,p , u -u h,p )| k 2 u -u h,p 2 Ω + |b k (u -u h,p , u -I h,p u)| k 2 u -u h,p 2 Ω + |||u -u h,p ||| • |||u -I h,p u|||. Young's inequality gives us |||u -u h,p ||| k u -u h,p Ω + |||u -I h,p u|||.
By (5.13), (5.10) and (5.11), we deduce that

|||u -u h,p ||| (k(h 2 + (kh) 2p ) + h + (kh) p ) f Ω ,
which proves (5.12) as kh 2 kh and h + (kh) p kh.

5.2.

A multiscale approach. An alternative to high-order polynomials for achieving stability is the computation of subscale corrections in a multiscale fashion. The approach was first used for numerical homogenization problems [START_REF] Målqvist | Localization of elliptic multiscale problems[END_REF] and later applied to Helmholtz problems by [START_REF] Peterseim | Eliminating the pollution effect in Helmholtz problems by local subscale correction[END_REF]. A Petrov-Galerkin variant of this approach is studied in [START_REF] Gallistl | Stable multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering[END_REF], while [START_REF] Brown | Multiscale Petrov-Galerkin method for high-frequency heterogeneous Helmholtz equations[END_REF] discusses the case of variable coefficients, which is closely related to the present case of a PML. In order to state the PML setting in the framework of [START_REF] Brown | Multiscale Petrov-Galerkin method for high-frequency heterogeneous Helmholtz equations[END_REF], it is convenient to reformulate the original boundary-value problem (2.1) in Cartesian coordinates as follows

-∇ • A∇u -k 2 d du = -d df in Ω
and u = 0 on ∂Ω.

The resulting coefficient matrix A has been provided by [START_REF] Collino | The perfectly matched layer in curvilinear coordinates[END_REF] and reads A(ρ, θ) = q cos 2 θ + q -1 sin 2 θ (q -q -1 ) cos θ sin θ (q -q -1 ) cos θ sin θ q sin 2 θ + q -1 cos 2 θ where it is understood that q = q(ρ). This problem is equivalent to (2.1) (and thereby to (2.3)) in the sense that they have the same unique solution u. The reason why the multiscale method is stated for this version of the equation it has the structure of a standard Helmholtz equation with a nontrivial diffusion coefficient. For this case, stability and error estimates have been formulated in [START_REF] Brown | Multiscale Petrov-Galerkin method for high-frequency heterogeneous Helmholtz equations[END_REF][START_REF] Gallistl | Stable multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering[END_REF][START_REF] Peterseim | Eliminating the pollution effect in Helmholtz problems by local subscale correction[END_REF], and they immediately apply to the present situation. As the equations are equivalent on the PDE level, the stability results from Section 3 remain valid. The corresponding alternative variational formulation (equivalent to (2.1) or (2.3)) reads: find u ∈ H 1 0 (Ω) such that (5.14)

A k (u, v) = ( f , v) L 2 (Ω)
where f := -d df and the sesquilinear form A k is defined by

A k (v, w) := (A∇v, ∇w) L 2 (Ω) -k 2 (d du, v) L 2 (Ω) for any v, w ∈ H 1 0 (Ω).
With help of the results from Section 3 it can be shown that A k satisfies the following inf-sup condition.

Lemma 5.5. The sesquilinear form A k satisfies (5.15) γ(k) inf

v∈H 1 0 (Ω)\{0}
sup

w∈H 1 0 (Ω)\{0} Re A k (v, w) |||v||| |||w|||
where γ(k) > 0 satisfies γ(k) -1 ∼ k.

Proof. Let v ∈ H 1 0 (Ω) be given. We follow the approach of [START_REF] Melenk | On generalized finite element methods[END_REF] and denote by z ∈ H 1 0 (Ω) the solution to the following dual problem

A k (η, z) = 2k 2 (η, v) L 2 (Ω) for all η ∈ H 1 0 (Ω).
The form A k is symmetric (but not self-adjoint) and so the stability bound from Theorem 3.6 applies to z and reads

|||z||| k 2 v L 2 (Ω) k|||v|||.
After setting w := v + z one concludes Conversely, if we assume that (5.15) holds, then we have

A k (v, w) = A k (v, v) + A k (v, z) = A k (v, v) + 2k 2 v 2 L 2 (Ω) =
γ(k)|||u||| sup w∈H 1 0 (Ω)\{0}
Re A k (u, w) |||w||| for the solution u ∈ H 1 0 (Ω) of (5.14) with f ∈ L 2 (Ω). Consequently by Cauchy-Schwarz's inequality one gets

γ(k)|||u||| f 0,Ω k , or equivalently |||u||| 1 kγ(k) f 0,Ω .
According to the definition of C opt (k) from Lemma 3.2, we deduce that

1 kγ(k) C opt (k),
which proves the converse bound for γ(k) -1 due to the equivalence (3.2).

The numerical method is based on a coarse quasi-uniform finite element grid T H and first-order conforming finite elements V H,1 . The mesh size is indicated by the symbol H because h will refer to the fine-scale discretization parameter in the two-scale method. Let J H : H 1 0 (Ω) → V H,1 denote a quasi-interpolation operator satisfying the usual first-order approximation and stability property

H -1 v -J H v L 2 (T ) + ∇J H v L 2 (T )
∇v L 2 (N (T )) for all T ∈ T H and all v ∈ H 1 0 (Ω). Here, N (T ) = N 1 (T ) is the union of all elements from T H that have a nonempty intersection with T . More generally, we define N 0 (T ) := T and

N m (T ) := {K ∈ T H : K ∩ N m-1 (T ) = ∅}
for any positive integer m. On quasi-uniform meshes, the cardinality of N m (T ) grows polynomially with m.

Let h denote the fine-scale mesh parameter and consider the finite element space V h,1 related to the mesh T h . It is supposed that T h is sufficiently fine such that the finite element method over V h,1 is stable in the sense that (5.16)

γ(k) inf v h ∈V h,1 \{0} sup w h ∈V h,1 \{0} Re A k (v h , w h ) |||v h ||| |||w h |||
where γ(k) is the inf-sup constant of A k from Lemma 5.5. More precisely, if we assume that k 2 h is small enough, then (5.16) holds. Indeed let us introduce

η(V h,1 ) = sup f ∈L 2 (Ω)\{0} inf v h ∈V h,1 |||S * k f -v h ||| f 0,Ω ,
where S * k f ∈ H 1 0 (Ω) is the solution of the adjoint problem of (5.14) with a right-hand side f . Then by standard interpolation estimates and the H 2 regularity of S * k f , we can see that η(V h,1 ) kh.

Consequently by using the arguments of [START_REF] Melenk | Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions[END_REF]Thm 4.2] and the stability bound from Theorem 3.6, we deduce that (5.16) as soon as k 2 h is small enough.

Since global computations with T h are too costly, only certain functions from V h,1 with quasi-local support will be utilized to stabilize a scheme over T H . The stabilization is as follows. The kernel of J H reads

W h = {v h ∈ V h,1 : J H v h = 0}. Given T ∈ T H and v H ∈ V H,1 , its so-called element correction C T v h ∈ W h is
defined as the solution to the following variational problem (5.17)

A k (w h , C T v H ) = A k,T (w h , v H ) for all w h ∈ W h .
Here and throughout this section, the notation A k,ω indicates the spatial restriction of the form A k to a subdomain ω. Problem (5.17) is well-posed due to the next result.

Lemma 5.6. Provided Hk 1, we have the coercivity

∇w h 2 L 2 (Ω) Re A k (w h , w h ) for all w h ∈ W h .
The constants involved in " " only depend on the bounds of the coercivity and continuity constant of A as well as on the maximal modulus of d d.

Proof. The proof almost verbatim follows [START_REF] Brown | Multiscale Petrov-Galerkin method for high-frequency heterogeneous Helmholtz equations[END_REF]Lemma 1].

This result readily implies boundedness of C T ,

|||C T v H ||| |||v H ||| T for all v H ∈ V H .
By linearity, one can see that the "global corrector"

Cv H := T ∈T H C T v H solves A k (w h , Cv H ) = A k (w h , v H ) for all w h ∈ W h ,
and thus satisfies the continuity

|||Cv H ||| |||v H ||| for all v H ∈ V H .
As mentioned above, the correctors from (5.17) shall serve as an additive stabilizing component to the coarse finite element basis functions. But at this stage (5.17) defines a global fine-scale problem and, thus, C T v H is not computationally available. The key observation from [START_REF] Målqvist | Localization of elliptic multiscale problems[END_REF] is that such computations can be localized to certain neighbourhoods of T . Let ∈ N be a localization (or oversampling) parameter and define

Ω T := int N (T )
and W h (Ω T ) := {w h ∈ W h : w h = 0 outside Ω T }. These objects depend on the parameter , which will, however, be suppressed for convenient notation. Problem (5.17) is now approximated by seeking C T, v H ∈ W h (Ω T ) such that (5.18)

A k,Ω T (w h , C T, v H ) = A k,T (w h , v H ) for all w h ∈ W h .
Note that the numerical computation of each of the problems (5.18) is feasible (with O( H/h) 2 vertices in 2D) as long as is of moderate size. The global localized version of C is defined as

C v H := T ∈T H C T, v H .
The localized approximation is justified by the following exponential decay result.

Theorem 5.7. Provided kH 1, there exists 0 < β < 1 such that any v H ∈ V H , any T ∈ T H , and any ∈ N satisfy

∇(C T -C T, )v H L 2 (Ω) β ∇v H L 2 (T ) , ∇(C -C )v H L 2 (Ω) C( )β ∇v H L 2 (T ) ,
with a constant C( ) that grows not faster than polynomially with .

Proof. For a proof we refer to [START_REF] Gallistl | Stable multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering[END_REF]. See also [START_REF] Brown | Multiscale Petrov-Galerkin method for high-frequency heterogeneous Helmholtz equations[END_REF]Theorem 4].

The multiscale scheme is a Petrov-Galerkin method and referred to as multiscale Petrov-Galerkin scheme (MSPG). It seeks u ( )

H ∈ V H,1 such that (5.19) A k (u ( ) H , (1 -C )v H ) = ( f , (1 -C )v H ) L 2 (Ω) for all v H ∈ V H,1 .
Well-posedness of (5. [START_REF] Lassas | Analysis of the PML equations in general convex geometry[END_REF]) is ensured through an appropriate parameter choice that will be described in the following. Suppose the fine-scale mesh size h is small enough such that (5.16) is satisfied. The important property of the multiscale method is that it suffices to relate the oversampling lengths logarithmically to the wave number k. Then, the Petrov-Galerkin bilinear form from (5.19) satisfies

γ(k) inf v H ∈V H,1 \{0}
sup

w H ∈V H,1 \{0} Re A k (v H , (1 -C )w H ) |||v H ||| |||w H ||| .
Proof. For a proof we refer to [START_REF] Gallistl | Stable multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering[END_REF]. See also [START_REF] Brown | Multiscale Petrov-Galerkin method for high-frequency heterogeneous Helmholtz equations[END_REF]Theorem 5].

As in [START_REF] Gallistl | Stable multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering[END_REF]Thm 3], it can be shown that

|||u h -u ( ) H ||| inf v H ∈V H,1 |||u h -v H |||.
Thus, the triangle inequality and classical approximation properties together with the H 2 bound (3.5) show for h sufficiently small that |||u -u ( )

H ||| H u H 2 (Ω) Hk f L 2 (Ω) .
In particular, this means that the standard resolution condition kH 1 for approximation is also sufficient for stability of the multiscale scheme.

6. Some numerical examples 6.1. A first example. For the first test, we have taken Ω = [-6, 6] 2 \B(0, 1), the fictious absorption coefficient σ and the exact solution u ex as follows:

σ(ρ) = 0 if ρ ≤ 4 (ρ-4) 2 2
otherwise and u ex (x, y) = (x 2 -36)(y 2 -36)e ikx .

In Figure 2, we have depicted the rates of convergence for different values of h and k, for p = 1 and 2. We can see that, when h is small enough, the order of convergence is p, as expected from the theory. From these plots we can observe three states of convergence: no convergence range/ pre-asymptotic range / asymptotic range.

Theorem In both cases, we observe that h * (k) ∼ k -1-1/p , which means that the condition k p+1 h p 1 is optimal. Figure 4 displays the relative errors in the preasymptotic range dependent on the wavenumber k, while k and h are coupled (depending on p) as in Theorem 5.4. As predicted by the theory, the relative error stays constant, which means that the discretization is stable with that choice of h and p. Next, we report numerical results for the multiscale scheme. We consider Q 1 (bilinear) finite elements on a sequence of uniformly refined square meshes of mesh size H = 3/4, 3/8, . . . , 3/128. The reference mesh has the mesh size h = 3/256. The very regular structure of square meshes allows a quite efficient numerical implementation [START_REF] Gallistl | Stable multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering[END_REF] of the method in which the correctors C outside the PML are computed on a reference patch and re-used where the same configuration occurs. For simplicity, we disregard the possibility of resolving the curved boundary within the corrector problems, although this can be done in principle [START_REF] Elfverson | Multiscale methods for problems with complex geometry[END_REF][START_REF] Schissler | Multiscale Methods for Acousting Scattering[END_REF]. We do not further analyze the error caused by this geometric perturbation. For wave numbers k = 8, 12, 16, Figure 5 compares the relative errors in the energy norm ||| • |||, namely the nodal interpolation by Q 1 finite element functions, the Q 1 -FEM error, and the error of the MSPG method where the oversampling parameter varies from = 1 to = 3. For the FEM, pollution is clearly visible, while the MSPG scheme produces smaller errors that are close to the best approximation for appropriate . Especially in the case k = 16, the choice of = 1 seems to be insufficient, while = 2, 3 lead to better results. This indicates the necessity of the coupling ∼ log k. Since the accuracy of the MSPG method is limited by that of the FEM on the reference mesh, the last two mesh refinements for k = 16 do no provide a reasonable improvement. We finally mention that the mesh resolution condition "hk 2 small" is not fully satisfied for k = 16, but we empirically observe that this choice of h seems to be sufficient.

A scattering problem.

Here we want to show the efficiency of our method by approaching a real scattering problem. Namely as obstacle O we take the unit disc and take

u scat (θ, ρ) = ∞ j=-∞ i j J j (k) J j (k) + iY j (k) (J j (kρ) + iY j (kρ)) e ijθ
as exact solution of the Helmholtz equation in R 2 \ O, which corresponds to the scattered solution of the incidence wave e ikx 1 (see [20, (3.3)] or [START_REF] Colton | Inverse acoustic and electromagnetic scattering theory[END_REF]). As fictitious absorption coefficient, we choose with β > 0. Now, consider the solution u b of (compare with (2.3))

σ(ρ) = 0 if ρ ≤ a β(ρ-a) 2 (b-a) 2 otherwise , 10 
-I H,1 u||| interpolation |||u -u H ||| Q 1 FEM |||u -u (1) H ||| MSPG = 1 |||u -u (2) H ||| MSPG = 2 |||u -u (3) H ||| MSPG = 3 (c) k = 16
     k 2 d2 u b + q ρ ∂ ∂ρ qρ ∂u b ∂ρ + 1 ρ 2 ∂ 2 u b ∂θ 2 = 0 in Ω, u b = e ikx 1 on ∂O, u b = 0 on ∂Ω \ ∂O, (6.1) 
where Ω = B(0, b) (see section 2) with 1 < a < b. It is well-known (see for instance) [START_REF] Lassas | On the existence and convergence of the solution of PML equations[END_REF][START_REF] Lassas | Analysis of the PML equations in general convex geometry[END_REF][START_REF] Bramble | Analysis of a finite PML approximation for the three dimensional time-harmonic Maxwell and acoustic scattering problems[END_REF]) that u b converges to u scat (even exponentially but the constant being dependent of the wave number k) in H 1 (B(0, a)) as b goes to infinity. For our tests, we take a = 3 and b = 6.

As an approximation we compute

u h,p ∈ Ṽh,p = v h,p ∈ H 1 (Ω) | v h,p | K • F -1 K ∈ P p ( K) ∀K ∈ T h ,
the FEM solution of (6.1). . The full error clearly satisfies

(6.2) |||u h,p -u scat ||| Ωa ≤ |||u h,p -u b ||| + |||u b -u scat ||| Ωa Figure 6
shows convergence curves for different values of k, given in the relative energy norm by using polynomials of degree 2. On the left, we have chosen β = 3 small enough so that the error |||u b -u scat ||| is not negligible. Accordingly, the error does not tend to 0 when h is small. On the right, with β = 6, the term |||u b -u scat ||| is negligible compared to the FEM error. As σ ∈ C 2 (Ω), we know that u b is at least H 3 (Ω), which is the reason why we have 2 for the convergence rate. Figure 7 shows for polynomials of degree 6 that the empirical convergence rate is not higher than 2.5, which indicates that the solution u b might not be smoother than H 7/2 . In comparison with the case p = 2, in the case β = 6, the term |||u b -u scat ||| seems here more dominant as the rate of convergence deteriorates more rapidly.

We also made a pre-asymptotic test (see Figure 8) with p = 2 and β = 3 or 6. We observe that when k 5 h 4 is constant, the relative error in energy norm is constant too, which is in accordance with the estimate (6.2) since in the pre-asymptotic range the second term of the right-hand side is negligible, while the first one is constant due to Theorem 5.4.

Figure 9 displays the real part of u scat and u h,p , for k = 20, p = 6 and β = 10, where we see a good agreement between the exact solution and its approximation in Ω a .

The computational results obtained by the MSPG method are displayed in Figure 10. The parameters H, h, , and k are chosen as in the first experiment, and β = 10. As in the first experiment, the FEM suffers from pollution, which is mitigated by the MSPG method. The precision increases with larger . 

Conclusion

We have shown that the PML model problem satisfies the k-stability property. This result enables is key to the numerical analysis of the two schemes presented in this work. The numerical results underline that the stability conditions for the numerical methods are sharp. Instead of comparing the two proposed schemes, we rather mention that they are are designed for different types of applications: the hp FEM is of high order for smooth domains, while the multiscale scheme is pollution-free without smoothness, but restricted to first order. From (A.1), (A.2) and (A.5) and the C 1 property of σ, for all ε > 0, there exists δ > 0 such that (A.6) σ(ρ) ≥ δ, σ(ρ) ≥ δ, σ (ρ) ≥ δ, ∀ρ ≥ a + ε 2 .

We then fix ε > 0 small enough such that a + ε < b and fix a cut-off function η ∈ D(R) with η ≤ 0 such that η(ρ) = 1, ∀ρ ≤ a + ε 2 , 0, ∀ρ ≥ a + ε.

For convenience, we denote by Ω P M L , the PML region, i. e., Ω P M L = {x ∈ Ω : |x| > a}.

We also set Consequently for ρ > a but close to a, we trivially have (A.7). On the other hand, for ρ ∈ [a + ε 1 , b], with ε 1 > 0 as small as we want, (A.6) and the continuity of σ directly yield (A.7). The proof is then complete.

As in [START_REF] Collino | The perfectly matched layer in curvilinear coordinates[END_REF], we set Let us also define (A.9) q = d d .
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d2 uηρ 2 ū dρdθ - Γ a|u| 2
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 3 Figure3displays the graph of h * (k) (in a log-log scale) for p = 1 and 2. In both cases, we observe that h * (k) ∼ k -1-1/p , which means that the condition k p+1 h p 1 is optimal. Figure4displays the relative errors in the preasymptotic range dependent on the wavenumber k, while k and h are coupled (depending on p) as in Theorem 5.4. As predicted by the theory, the relative error stays constant, which means that the discretization is stable with that choice of h and p.
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 3 Figure 3. First experiment with hp FEM: Asymptotic range of h * (k) for p = 1, 2 and 6.
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 4 Figure 4. First experiment with hp FEM: preasymptotic range.
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 5 Figure 5. First experiment. Relative error plots for the nodal interpolation I H,1 u, the Q 1 FEM, and the multiscale Petrov-Galerkin method ('MSPG') with oversampling parameter = 1, 2, 3.
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 66 Figure 6. Second experiment with hp FEM: Convergence curves for different values of k and β, with p = 2.
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 7 Figure 7. Second experiment with hp FEM: Convergence curves for different values of k and β, with p = 6.
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 68 Figure 8. The pre-asymptotic examples with p = 2.
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 9 Figure 9. Second experiment with hp FEM: Real part of the exact solution and the computed PML solution (p = 6 and β = 10) with k = 20.
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 10 Figure 10. Second experiment. Relative error plots for the nodal interpolation I H,1 u, the Q 1 FEM, and the multiscale Petrov-Galerkin method ('MSPG') with oversampling parameter = 1, 2, 3.

  Ω + P M L = {x ∈ Ω : |x| > a + ε 2 }.Lemma A.1. We always have(A.7) σ ≤ σ in Ω P M L .
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This proves that u φ -I h,p u φ 1,Ω (h + (kh) p ) φ Ω , (5.10) and hence u φ -P * h,p u φ 1,Ω (h + (kh) p ) φ Ω ,

Similarly we can show that u φ -I h,p u φ Ω h(h + (kh) p ) φ Ω . (5.11) This estimate cannot be used to bound the L 2 -norm of u φ -P * h,p u φ , hence we use an Aubin-Nitsche trick. For this, we introduce

The existence and uniqueness of ξ follow from the properties of a k and we have

Now, since we have introduced the elliptic projection and its approximation properties in Lemma 5.3, we can follow [START_REF] Feng | hp-discontinuous Galerkin methods for the Helmholtz equation with large wave number[END_REF] to produce a pre-asymptotic error estimate.

Theorem 5.4. Assume that k p+2 h p+1 is small enough, then there exists a unique solution u h,p ∈ V h,p of problem (5.2) and it holds

Proof. We use Aubin-Nitsche's trick, that is why we introduce

Hence we have, by the above lemma,

Then, if k p+2 h p+1 and kh are small enough, (5.13) u -u h,p Ω (h 2 + (kh) 2p ) f Ω .

Appendix A. Useful properties of the PML functions

We recall from [START_REF] Collino | The perfectly matched layer in curvilinear coordinates[END_REF] that the fictious absorption coefficient σ is supposed to be a non decreasing function in C 1 (0, ∞) such that

Then we define σ ∈ C[0, ∞) as follows By Leibniz's rule, we get

In addition, as σ is non decreasing, (A.2) directly implies

These two estimates directly lead to

and therefore σ is a also a non decreasing function. Furthermore σ ∈ C 1 [0, ∞) because from (A.3) and the continuity at a of σ and σ, one has

Lemma A.2. The next properties hold

that tends to 1 as k goes to infinity.

Proof. The properties (A.12) to (A.16) are direct. To prove (A.10) and (A.11), we notice that q admits the writing

which directly yields the results recalling (A.3).

Lemma A.3. We have

Proof. The second identity being immediate, let us concentrate on the two other ones. By direct calculations, we see that

The estimate (A.17) follows as |d| ≥ 1 as well as | d| ≥ 1 and since σ and σ are bounded.

Concerning the last one, we see that

Hence the estimate (A.19) holds because |1+ iσ k | ≥ 1 and because σ and σ are bounded.