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Abstract

The kth-power of a given graph G “ pV,Eq is obtained from G by adding an edge between
every two distinct vertices at a distance ď k in G. We call G a k-Steiner power if it is an induced
subgraph of the kth-power of some tree. Our main contribution is a polynomial-time recognition
algorithm of 4-Steiner powers, thereby extending the decade-year-old results of (Lin, Kearney
and Jiang, ISAAC’00) for k “ 1, 2 and (Chang and Ko, WG’07) for k “ 3.

A graph G is termed k-leaf power if there is some tree T such that: all vertices in V pGq are
leaf-nodes of T , and G is an induced subgraph of the kth-power of T . As a byproduct of our
main result, we give the first known polynomial-time recognition algorithm for 6-leaf powers.

1 Introduction

A basic problem in computational biology is, given some set of species and a dissimilarity measure
in order to compare them, find a phylogenetic tree that explains their respective evolution. Namely,
such a rooted tree starts from a common ancestor and branches every time there is a separation
between at least two of the species we consider. In the end, the leaves of the phylogenetic tree
should exactly represent our given set of species. This problem was brought to Graph theory under
several disguises but, unfortunately, there are several of these formulations that are NP-hard to
solve [BFW92, Ste92]. We here study a related problem whose complexity status remains open.
Specifically, a common assumption in the literature is that our dissimilarity measure can only tell
us whether the separation between two given species has occurred quite recently. Let G “ pV,Eq
be a graph whose vertices are the species we consider and such that an edge represents two species
with a quite “close” common ancestor according to the dissimilarity measure. Given some fixed
k ě 1, we ask whether there exists some tree T whose leaf-nodes are exactly V and such that there
is an edge uv in E if and only if the two corresponding nodes in T are at a distance ď k. This is
called the k-Leaf Power problem [NRT02].

The structural properties of k-leaf powers (i.e., graphs for which a tree as above exists) have been
intensively studied [BPP10, BH08, BHMW10, BL06, BLS08, BLR09, WB09, CFM11, DGHN06,
DGHN08, DGN05, KLY06, KKLY10, Laf17, NR16, Rau06]. From the algorithmic point of view,
k-leaf powers are a subclass of bounded clique-width graphs, and many NP-hard problems can be
solved efficiently for these graphs [FMR`08, GW07]. However, the computational complexity of
recognizing k-leaf powers is an open problem. Very recently, parameterized algorithms were pro-
posed for every fixed k on the graphs with bounded degeneracy [EH18]. Without this additional
restriction on the degeneracy of the graphs, polynomial-time recognition algorithms are known
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only for k ď 5 [BL06, BLS08, CK07]. It is noteworthy that every algorithmic improvement for this
problem has been incredibly hard to generalize to larger values of k. We contribute to this frus-
trating chain of improvements by providing the first known polynomial-time recognition algorithm
for 6-leaf powers.

Theorem 1. There is a polynomial-time algorithm that given a graph G “ pV,Eq, correctly decides
whether G is a 6-leaf power (and if so, outputs a corresponding tree T ).

Several variations of k-leaf powers were introduced in the literature [BLR10, BW10, CK07,
HT10, JKL00]. In this work, we also consider k-Steiner powers: a natural relaxation of k-leaf
powers where the vertices in the graph may also be internal nodes in the tree T . Interestingly,
for every k ě 3, the notions of k-leaf powers and pk ´ 2q-Steiner powers are equivalent for a twin-
free graph. The latter implies a linear-time reduction from k-Leaf Power to pk ´ 2q-Steiner
Power [BLS08]. Furthermore, there exist polynomial-time recognition algorithms for k-Steiner
powers, for every k ď 3 [CK07, JKL00]. As our main contribution in the paper we obtain the first
improvement on the recognition of k-Steiner powers in a decade. Specifically we prove that there
is a polynomial-time recognition algorithm for the 4-Steiner powers.

Theorem 2. There is a polynomial-time algorithm that given a graph G “ pV,Eq, correctly decides
whether G is a 4-Steiner power (and if so, outputs a corresponding tree T ).

Note that Theorem 1 follows from the combination of Theorem 2 with the aforementioned
reduction from k-Leaf Power to pk ´ 2q-Steiner Power [BLS08]. We think that our general
approach (presented next) could be generalized to larger values of k, although this would first
require stronger structure theorems than the ones we use in this paper.

Overview of the techniques. In order to prove our results we use various properties of chordal
graphs and strongly chordal graphs, that are two well-known classes in algorithmic graph theory of
which k-Steiner powers form a particular subclass [ABNT16]. We refer to Sec. 2 for any undefined
graph-theoretic terminology in this introduction. Our starting point is that every maximal clique,
minimal separator and, more generally, any intersection of maximal cliques in a k-Steiner power
must induce a subtree with very specific properties of the tree T we aim at computing. The latter
extends to any k the structural results that were presented in [CK07] for k ď 3. – We note by passing
that clique-intersections have already been used for (partly) characterizing k-leaf powers under the
names of clique arrangement [NR16] or “clique graph” [NRT02]. – Furthermore, only if k ď 4, we
prove that there always exists a “well-structured” k-Steiner root with additional properties that
are also based on clique-intersections. We exploit these nice structural results in the design of a
dynamic programming algorithm on a clique-tree [BP93] in order to prove Theorem 2.

We want to stress that although the general construction of our algorithm is quite standard,
and unsurprisingly close to what has been done in previous works for the recognition of k-Steiner
powers [CK07, JKL00], sometimes the devil is in the detail. Specifically, there are several difficulties
arising in order to keep the running time polynomial as the value of k increases. Our proposed
solutions for k “ 4 are already quite intricate and they result in an embarrassingly long proof, that
may come as a surprise.

To give a flavour of the difficulties we met, we consider the following common situation in a
dynamic programming algorithm on chordal graphs. Given a graph G “ pV,Eq, let S be a minimal
separator of G and C be a full component of GzS (i.e., such that every vertex in S has a neighbour
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in C). We sketch in what follows the two main obstacles we met in the design of a “naive” dynamic
programming algorithm for our problem:

• If G is a k-Steiner power then, so must be the induced subgraph GrC Y Ss, and we aim at
storing the k-Steiner roots of GrC Y Ss for further use. There may be exponentially many
such solutions already when GrC Y Ss is a clique and k ě 3. Therefore, we cannot afford
to store all possible solutions explicitly. However it seems at the minimum we need to keep
the part of the Steiner root that contains S: in order to be able to check later whether the
solutions found for GrC Y Ss can be extended to all of G. We will prove in this paper that
such a part of the Steiner root is a subtree of diameter at most k ´ 1, and so, there may be
exponentially many possibilities to store whenever k ě 4.

• An additional difficulty is that, in any k-Steiner root of G, one needs to ensure that all vertices
in C stay at a distance ě k ` 1 from all vertices in V zpS Y Cq. So, we also need a way to
retrieve, for any partial solution found for GrC YSs, the distances between vertices in C and
those in S. Storing this information would further increase the number of partial roots we
need to keep. Chang and Ko proposed two nice “heuristic rules” in order to overcome this
distance issue for k “ 3 [CK07]. Unfortunately, these rules do not easily generalize to larger
values of k.

In order to derive a polynomial-time algorithm, we further restrict the structural properties of the
“useful” partial solutions we need to store. This is done by carefully analysing the relationships
between the structure of these Steiner roots and clique-intersections in the graph. Furthermore, in
order to bound the number of partial solutions we need to store by a polynomial we combine these
stronger properties on the 4-Steiner roots with several tricks (e.g., we also impose local properties
on the clique-tree we use, and we introduce a new greedy selection procedure based on graph
matchings).

Organization of the paper. We give the required graph-theoretic terminology for this paper
in Section 2. We emphasize on Section 2.3: where we also provide a high-level overview of our
algorithm, as a guideline for all the other sections.

In Sections 3 and 4 we present new results on the structure of k-Steiner roots that we use
in the analysis of our algorithm. Specifically, we show in Section 3 any intersection of maximal
cliques in a graph G must induce a particular subtree in any of its k-Steiner roots T where no
other vertex of G can be present. Furthermore, the inclusion relationships between these “clique-
intersections” in G are somewhat reflected by the diameter of their corresponding subtrees in T .
An intriguing consequence of our results is that, in any k-Steiner power, there can be no chain
of more than k minimal separators ordered by inclusion. This slightly generalizes a similar result
obtained in [NRT02] for k-leaf powers.

Then, we partly complete this above picture in Section 4 for the case k “ 4. For every clique-
intersection X in a chordal graph G, we classify the vertices in X into two categories: “free” and
”constrained”, that depend on the other clique-intersections these vertices are contained into. Our
main finding is that “free” vertices are mostly responsible for the combinatorial explosion of partial
solutions we should store in a naive dynamic programming algorithm for the 4-Steiner Root
problem. We prove that there always exists a 4-Steiner root where such free vertices are leaves with
very special properties, that essentially rules out one of the main difficulties we met in the design
of our algorithm.
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Sections 5, 6, 7 and 8 are devoted to the main steps of the algorithm. We start presenting a
constructive proof of a clique-tree with quite constrained properties in Section 5. Roughly after some
preprocessing, we root our clique-tree in such a way that smaller minimal separators should label
the edges closer to the root. Our construction ensures that several complications that could occur
by using our approach with an arbitrary clique-tree will never occur. Our technical construction is
partly motivated by the results in Section 3.

It is well known that the nodes and edges of a clique-tree somewhat represent the maximal
cliques and the minimal separators of the graph. In Section 6 we continue using the results in
Sections 3 and 4 in order to precompute, for every node and edge in the clique-tree TG, a family
of all the potential subtrees to which the corresponding clique-intersection of G could be mapped
in some “well-structured” 4-Steiner root of G. Of particular importance is Section 6.1, where
we give a polynomial-time algorithm in order to generate all the candidate subtrees any minimal
separator of the graph can induce in its 4-Steiner roots. The result is then easily extended to the
maximal cliques that appear as leaves in our clique-tree (Section 6.2). In Section 6.3 we construct
in polynomial-time a family of potential subtrees T xXiy for all the other maximal cliques Xi –
based on a careful analysis of clique-intersections in Xi and several additional tricks.

In Section 7 we introduce an intermediate problem where the goal is to compute a 4-Steiner
root with additional constraints on its structure and the distances between some sets of nodes. We
then explain how we can use this new problem in order to bound the number of partial solutions
that we will need to store for our dynamic programming. Finally, we detail in Section 8 the
resolution of our intermediate problem, thereby completing the presentation of our algorithm. An
all new contribution in this part is a greedy procedure, based on Maximum-Weight Matching,
in order to ensure some distances’ constraints are satisfied by the solutions we generate during
the algorithm. Interestingly, this procedure is very close in spirit to the implementation of the
alldifferent constraint in constraint programming [Rég94].

Due to the intricacy of our proofs we gave up optimizing the runtime of our algorithm. We will
only provide enough arguments in order to show it is polynomial.

We end up this paper in Section 9 with some ideas for future work.

2 Preliminaries

We refer to [BM08] for any undefined graph terminology. All graphs in this study are finite, simple
(hence, with neither loops nor multiple edges), unweighted and connected – unless stated otherwise.
Given a graph G “ pV,Eq, let n :“ |V | and m :“ |E|. The neighbourhood of a vertex v P V is
defined as NGpvq :“ tu P V | uv P Eu. By extension, we define the neighbourhood of a set S Ď V
as NGpSq :“ p

Ť

vPS NGpvqq zS. The subgraph induced by any subset U Ď V is denoted by GrU s.
For every u, v P V , we denote by distGpu, vq the minimum length (number of edges) of a

uv-path. The eccentricity of vertex v is defined as eccGpvq :“ maxuPV distGpu, vq. The radius
and the diameter of G are defined, respectively, as radpGq :“ minvPV eccGpvq and diampGq :“
maxvPV eccGpvq. We denote by CpGq the center of G, a.k.a. the vertices with minimum eccentricity.

2.1 Problems considered

The kth-power of G, denoted Gk has same vertex-set V as G and edge-set Ek :“ tuv | 0 ă

distGpu, vq ď ku. Furthermore, G is a k-Steiner power if there is some tree T such that G is an
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Figure 1: Two Steiner-equivalent trees. Cycles and rectangles represent real and Steiner nodes,
respectively.

induced subgraph of T k. Conversely, T is called a k-Steiner root of G. If in addition, G has a
k-Steiner root where all vertices in V are leaves (degree-one nodes) then, we call G a k-leaf power.

Problem 1 (k-Steiner root).

Input: A graph G “ pV,Eq.

Output: A k-Steiner root of G (if any).

Problem 2 (k-leaf power).

Input: A graph G “ pV,Eq.

Question: Is G a k-leaf power?

Theorem 3 ( [BLS08]). There is a linear-time reduction from k-leaf power to pk´ 2q-Steiner
root for every k ě 3.

If T is any k-Steiner root of G then, nodes in V pGq are called real, whereas nodes in V pT qzV pGq
are called Steiner. We so define, for any S Ď V pT q (for any subtree T 1 Ď T , resp.):

RealpSq :“ S X V pGq and SteinerpSq :“ SzV pGq

(we define RealpT 1q :“ RealpV pT 1qq and SteinerpT 1q “ SteinerpV pT 1qq, resp.).
Note that throughout all this paper we consider two (sub)trees being equivalent if they are

equal up to an appropriate identification of their Steiner nodes, namely (see also Fig. 1)):

Definition 1. Given G “ pV,Eq, we call any two trees T, T 1 Steiner-equivalent, denoted T ”G T 1,
if and only if RealpT q “ RealpT 1q “ S and there exists an isomorphism ι : V pT q Ñ V pT 1q such
that ιpvq “ v for any v P S.

Finally, given a node-subset X Ď V pT q, T xXy is the smallest subtree of T such that X Ď

V pT xXyq. Note that in particular for a vertex-subset X Ď V , this is the smallest subtree of T such
that X Ď RealpT xXyq. Furthermore we observe T rXs Ď T xXy, with equality if and only if T rXs
is connected.
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2.2 Algorithmic tool-kit: (Strongly) Chordal graphs

Given G “ pV,Eq, we call it a chordal graph if every induced cycle in G is a triangle. If in addition,
for every cycle of even length in G, there exists a chord between two vertices at an odd distance (ą 1)
apart from each other in the cycle then, G is termed strongly chordal. Chordal graphs and strongly
chordal graphs can be recognized in Opmq-time and Opm log nq-time, respectively [PT87, RTL76].

The following property is well-known:

Theorem 4 ( [ABNT16]). For every k ě 1, every k-Steiner power is a strongly chordal graph.

Minimal separators and Clique-tree. Our main algorithmic tool in this paper is a clique-tree
of G, defined as a tree TG whose nodes are the maximal cliques of G and such that for every v P V ,
the maximal cliques containing v induce a subtree of TG.

Theorem 5 ( [BP93]). A graph G “ pV,Eq is chordal if and only if it has a clique-tree. Moreover
if G is chordal then, we can construct a clique-tree for G in Opmq-time.

An uv-separator is a subset S Ď V ztu, vu such that u and v are disconnected in GzS. If in
addition, no strict subset of S is an uv-separator then, S is a minimal uv-separator. A minimal
separator of G is a minimal uv-separator for some u, v P V . It is known that any minimal separator
in a chordal graph G is the intersection of two distinct maximal cliques of G. Specifically, the
following stronger relationship holds between minimal separators and clique-trees:

Theorem 6 ( [BP93]). Given G “ pV,Eq chordal, any of its clique-trees TG satisfies the following
properties:

• For every edge XY P EpTGq, X X Y is a minimal separator;

• Conversely, for every minimal separator S of G, there exist two maximal cliques X,Y such
that XY P EpTGq and X X Y “ S.

Based on the above theorem, we can define ESpTGq :“ tXY P EpTGq | X X Y “ Su. The
cardinality |ESpTGq| of this subset does not depend on TG [BP93]. We sometimes say that edges
in ESpTGq are labeled by S.

A rooted clique-tree of G is obtained from any clique-tree TG by identifying an arbitrary maximal
clique X0 as its root. Let pXq, Xq´1, . . . , X1, X0q be a postordering of TG (obtained by depth-first
search). For any i ą 0, we define Xppiq as the father node of Xi. The common intersection of Xi

with its father node is the minimal separator Si :“ XiXXppiq. By convention, we set S0 :“ H. We
refer to Fig. 2 for an illustration.

We define T i
G as the subtree rooted at Xi, and let Gi be the subgraph induced by all the maximal

cliques in V pT i
Gq. In particular, we have T 0

G “ TG and G0 “ G. Furthermore, we define Vi :“ V pGiq

and Wi :“ VizSi as shorthands. We will use these above notations for rooted clique-trees throughout
the remaining of our paper.

Clique arrangement. We introduce a common generalization of both maximal cliques and min-
imal separators, that will play a key role in our analysis. Specifically, a clique-intersection in G is
the intersection of some family of maximal cliques in G. The family of all clique-intersections in G
is denoted by X pGq. For strongly chordal graphs, it is known [NR15] that every clique-intersection
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Figure 2: A chordal graph G (left) and a rooted clique-tree TG (right).

is the intersection of at most two maximal cliques. In particular, a (nonempty) clique-intersection
of a given strongly chordal G is either: a maximal clique; or a minimal separator; or a weak minimal
separator – i.e., whose removal strictly increases the distance between two vertices that remain in
the graph (see [McK11]). We denote by KpGq,SpGq and WpGq the subfamilies of all the maximal
cliques, minimal separators and weak minimal separators of G, respectively.

The clique arrangement of G is the inclusion (directed) graph of the clique-intersections of G.
That is, there is a node for every clique-intersection, and there is an arc from X to Y if and only
if we have X Ď Y .

Theorem 7 ( [NR15]). Given G “ pV,Eq strongly chordal, the clique arrangement of G can be
constructed in Opm log nq-time.

2.3 Highlights of the algorithm

The remaining of the paper is devoted to the proof of Theorem 2. By Theorem 3, this will also
imply Theorem 1. We start sketching our algorithm below in order to guide the readers throughout
the next sections. Its analysis is based on the structure theorems in Sections 3 and 4. Perhaps
surprisingly, we need several tricks in order to keep the running time of this algorithm polynomial.

• Initialization Step. Given G “ pV,Eq, we check whether G is strongly chordal. If this
is not the case then, by Theorem 4 G cannot be a k-Steiner power for any k ě 1, and we
stop. Otherwise by Theorem 7 we can compute the clique-arrangement of G in polynomial-
time. Throughout all the remaining sections, we implicitly use the fact that we can access in
polynomial-time to the clique-arrangement of G. We will also assume in what follows that G
is not a complete graph (otherwise, G is trivially a k-Steiner power for any k, and so we also
stop in this case).

• Step 1. We construct a clique-tree TG of G that we root in some X0 P KpGq. This clique tree
must satisfy very specific properties of which we postpone the precise statement in Section 5.
Roughly, we want to ensure that a minimal separator S can occur as en edge XiXppiq P EpTGq,
between a maximal clique Xi and its father node, if and only if there is no minimal separator
contained into S that appears as an edge in the subtree rooted at Xi. However, we cannot do
that exactly due to some recursive complications in our algorithm. The technical motivations
behind this additional structure will be further explained in Sections 7 and 8.
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• Step 2. For every minimal separator S we compute a polynomial-size family TS of subtrees
whose real nodes are exactly S (Section 6.1). The collection pTSqSPSpGq is constructed in
such a way that assuming G has a 4-Steiner root, there must be one such a root T such that
T xSy P TS for every minimal separator S. We then proceed similarly for the maximal cliques
Xi that are either leaf-nodes (Section 6.2) or internal nodes of TG (Section 6.3). Correctness
of this part follows from our structure theorem of Section 4.

• Step 3. Let pXq, Xq´1, . . . , X0q be a post-ordering of the maximal cliques (i.e., obtained by
depth-first-search traversal of TG). Here again this post-ordering is not arbitrary. Specifically,
if Xi P KpGq has children nodes Xi1 , Xi2 , . . . , Xip , where i ă i1 ă i2 ă . . . ă ip then, we
impose that Si1 , Si2 , . . . , Sip are ordered by decreasing size. We consider the maximal cliques
Xi P KpGq sequentially, from i “ q downto i “ 0. If Xi is internal then, let Xi1 , Xi2 , . . . , Xip

be its children nodes. For every 1 ď j ď p we have if G is a 4-Steiner power then (by
hereditarity), so is the subgraph Gij “ pVij , Eij q that is induced by all the maximal cliques

in the subtree T
ij
G rooted at Xij . Our objective in the next Step will be to compute a set

Tij of 4-Steiner roots for Gij . As a way to avoid a combinatorial explosion of the number of
partial solutions we will need to store, we sketch in Section 7 how to define – using pTSqSPSpGq
– a polynomial-size subset of “encodings” for these solutions. By combining some local
optimization rules with properties of our clique-tree TG, we show that at most one solution
per possibility for the encoding needs to be stored. In particular, we will explain how our
above restrictions on the post-ordering can help us to derive additional distances’ constraints
from the siblings of a node before we can process it.

• Step 4. We end up considering one more time the maximal cliques Xi P KpGq sequentially,
from i “ q downto i “ 0. After Step 3 is completed, Xi received from its parent node a
polynomial-size subset of constraints for the 4-Steiner roots of Gi we want to compute. For
every such constraints, we are left to decide whether there exists a 4-Steiner root of Gi which
satisfies all of them.

– Case Xi is a leaf-node. After Step 2 is completed, we are given a family of all possible
subtrees T xXiy. We are left verifying whether there exists a solution in this family which
satisfies all of the constraints.

– Case Xi is an internal node. Let Xi1 , Xi2 , . . . , Xip be the children nodes of Xi

in TG. We will construct Ti from the partial solutions in Ti1 , Ti2 , . . . , Tip . For that,
we try to combine all the possible subtrees T xXiy (computed during Step 2) with the
partial solutions stored in the sets Tij by using a series of tests based on a maximum-
weight matching algorithm (Section 8). We stress the intriguing relationship between
our approach and the implementation of the alldifferent constraint in constraint
programming [Rég94].

• Overall since G0 “ G, we have G is a 4-Steiner power if and only if T0 ‰ H. Furthermore,
any tree T P T0 is a 4-Steiner root of G.

3 Playing with the root

Some general relationships between Steiner roots and clique-intersections are proved in Section 3.2.
These structural results will be the cornerstone of our algorithm and its analysis. Before presenting
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all these properties, we establish several useful facts on trees in Section 3.1 (most of them being
likely to be known).

3.1 General results on trees

We first recall the unimodality property for the eccentricity function on trees, as well as some other
related properties:

Lemma 1 (folklore). The following hold for any tree T :

• For every node v P V pT q we have eccT pvq “ distT pv, CpT qq ` radpT q;

• Every diametral path in T contains all the vertices in CpT q (as its middle nodes);

• CpT q is reduced to a node if diampT q is even, and to an edge if diampT q is odd;

• radpT q “ rdiampT q{2s.

Based on the above, the following properties on subtree intersections can be derived:

Lemma 2. Given a tree T let T1, T2 be two subtrees such that diampT1 X T2q “ diampT1q. Then,
we have diampT1 Y T2q “ diampT2q.

Proof. We start the proof with the claim that CpT1 X T2q “ CpT1q. Indeed, since T1 X T2 and T1
are trees with equal diameter, and we have T1 X T2 Ď T1, every diametral path for T1 X T2 is also
a diametral path for T1. Furthermore, since on every diametral path in a tree, the middle vertices
are exactly the center nodes (Lemma 1), we obtain as claimed that CpT1 X T2q “ CpT1q.

v

c

x

y

1

T

T

1

2

Figure 3: To the proof of Lemma 2.

Then, let x, y P V pT1 X T2q be the two ends of a diametral path in the subtree T1 X T2. We set
z P tx, yu maximizing distT ps, CpT2qq and we claim that, for every v1 P V pT1q, distT pv1, CpT2qq ď
distT pz, CpT2qq. Before we prove this claim, let us explain why this proves the lemma. Every vertex
of V pT1q is at a distance ď distT pz, CpT2qq ` radpT2q from any node in V pT2q. By unimodality
(Lemma 1), eccT2pzq “ distT pz, CpT2qq ` radpT2q ď diampT2q, and so, diampT1 Y T2q “ diampT2q.

Finally, in order to prove the above claim there are two cases.
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• First assume CpT1q Ď CpT2q. We recall that since the unique xy-path in T must contain
all of CpT1q (Lemma 1), there can be no component of T zCpT1q that contains both x, y. In
particular, there exists z P tx, yu such that no component of T zCpT1q can both contain z and
intersects CpT2qzCpT1q. Then, distT pz, CpT2qq “ distT pz, CpT1qq. Furthermore by unimodality
(Lemma 1) every node v1 P V pT1q has eccentricity distT pv1, CpT1qq ` radpT1q. Since z is an
end in a diametral path of T1 it maximizes distT pz, CpT1q, and so, for every v1 P V pT1q we
have distT pv1, CpT2qq ď distT pv1, CpT1qq ď distT pz, CpT1qq “ distT pz, CpT2qq.

• Otherwise, let c P CpT1q minimize distT pc, CpT2qq. Note that since we have CpT1q Ę CpT2q,
there is a unique possible choice for c. Furthermore, every v1 P V pT1q satisfies distT pv1, CpT2qq ď
distT pv1, cq ` distT pc, CpT2qq ď radpT1q ` distT pc, CpT2qq, and we will show this upper-bound
is reached for at least one of x or y. Specifically, we can refine one observation from the
previous case as follows: there exists z P tx, yu such that no component of T zCpT1q can both
contain z and intersects CpT2qzCpT1q; and in the special case where CpT1q is an edge, c is not
the closest central node to z. In this situation, distT pz, cq “ radpT1q and the path between z
and CpT2q goes by c. See Fig. 3 for an illustration.

In both cases we obtain, as claimed, distT pv1, CpT2qq ď distT pz, CpT2qq for every v1 P V pT1q.

Lemma 3. Given a tree T let T1, T2 be two subtrees such that CpT1q Ď CpT2q. Then, we have that
diampT1 Y T2q “ maxtdiampT1q, diampT2qu.

Proof. Since CpT1q Ď CpT2q we have:

eccT1YT2pv1q ď distT pv1, CpT1qq `maxtradpT1q, radpT2qu

for every v1 P V pT1q. By the unimodality property (Lemma 1):

distT pv1, CpT1qq ď tdiampT1q{2u ď maxttdiampT1q{2u , tdiampT2q{2uu

and also:
maxtradpT1q, radpT2qu “ maxtrdiampT1q{2s , rdiampT2q{2su.

We so obtain that eccT1YT2pv1q ď maxtdiampT1q, diampT2qu.

In the same way, for every v2 P V pT2q:

eccT1YT2pv2q ď distT pv2, CpT2qq `maxtradpT2q, diampCpT2qq ` radpT1qu
ď distT pv2, CpT2qq `maxtradpT2q, 1` radpT1qu.

We may assume radpT1q ě radpT2q since otherwise, eccT1YT2pv2q ď distT pv2, CpT2qq ` radpT2q “
eccT2pv2q ď diampT2q by unimodality. In particular since we also have CpT1q Ď CpT2q, diampT1q ě
diampT2q. There are two cases to consider:

• Case diampT1q “ diampT2q. Then, CpT1q “ CpT2q and we can strengthen the above inequality
as follows: eccT1YT2pv2q ď distT pv2, CpT2qq `maxtradpT2q, radpT1qu ď diampT2q.

• Case diampT1q ą diampT2q. Recall that distT pv2, CpT2qq ď tdiampT2q{2u. In particu-
lar, either diampT1q ě diampT2q ` 2, and so, distT pv2, CpT2qq ď tdiampT1q{2u ´ 1; or
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diampT1q “ diampT2q ` 1 but then, since we have CpT1q Ď CpT2q, diampT1q is even, and
so, distT pv2, CpT2qq ď tdiampT1q{2u´ 1 also in this case. Overall:

eccT1YT2pv2q ď distT pv2, CpT2qq `maxtradpT2q, diampCpT2qq ` radpT1qu
ď tdiampT1q{2u´ 1` radpT1q ` 1 “ diampT1q.

Therefore, in both cases we obtain diampT1 Y T2q ď maxtdiampT1q, diampT2qu.

3.2 A structure theorem

We are now ready to state the main result in this section:

Theorem 8. Given G “ pV,Eq and T any k-Steiner root of G, the following properties hold for
any clique-intersection X P X pGq:

1. We have RealpT xXyq “ X and diampT xXyq ď k;

2. There is no supertree T 1X Ą T xXy with X Ă RealpT 1Xq and diampT 1Xq “ diampT xXyq;

3. If X Ă X 1 P X pGq then, diampT xXyq ă diampT xX 1yq.

4. If CpT xXyq Ď CpT xX 1yq then, X YX 1 is a clique of G.

Proof. First assume X P KpGq to be a maximal clique. Since all leaves of T xXy are in X,
diampT xXyq “ maxu,vPX distT pu, vq. By the hypothesis T is a k-Steiner root of G, and so, since
X is a clique of G, maxu,vPX distT pu, vq ď k. In particular, diampT xXyq ď k, that implies in turn
the vertices of RealpT xXyq must induce a clique of G. We can conclude that RealpT xXyq “ X
by maximality of X. More generally, let X “

Ş`
i“1Xi, for some family X1, X2, . . . , X` P KpGq.

Clearly, T xXy Ď
Ş`

i“1 T xXiy, and so, X Ď RealpT xXyq Ď
Ş`

i“1RealpT xXiyq. As we proved before,

RealpT xXiyq “ Xi for every 1 ď i ď `, and so, RealpT xXyq Ď
Ş`

i“1Xi “ X. Altogether combined,
we obtain that RealpT xXyq “ X.

Second, let T 1X Ą T xXy be such that diampT 1Xq “ diampT xXyq. We claim RealpT 1Xq “ X, that
will prove the second part of the theorem. Indeed, for any maximal clique Xj that contains X, we
have diampT xXjyXT

1
Xq ě diampT xXyq “ diampT 1Xq, and so, diampT xXjyYT

1
Xq ď diampT xXjyq ď

k by Lemma 2. It implies RealpT 1Xq Ď Xj . Furthermore, since X P X pGq, it is exactly the intersec-
tion of all the maximal cliques that contains it, thereby proving the claim. In particular (Property
3), assume now X Ă X 1. Since T xX 1y Ą T xXy, we cannot have diampT xX 1yq “ diampT xXyq
(otherwise, X 1 “ X by Property 2). Therefore, diampT xX 1yq ą diampT xXyq.

Finally, assume CpT xXyq Ď CpT xX 1yq. By Lemma 3 we obtain that diampT xXy Y T xX 1yq “
maxtdiampT xXyq, diampT xX 1yqu ď k. In particular, X YX 1 is a clique of G.

Before ending this section, we slightly strenghten Property 4 of Theorem 8, as follows:

Lemma 4. Given G “ pV,Eq and T any 2k-Steiner root of G, we have CpT xXiyqXCpT xXjyq “ H

for any two different maximal cliques Xi, Xj P KpGq.

Proof. Suppose for the sake of contradiction CpT xXiyq X CpT xXjyq ‰ H, and let v P CpT xXiyq X

CpT xXjyq. By Theorem 8, maxtdiampT xXiyq, diampT xXjyq ď 2k, and so, any vertex of T xXiy Y

T xXjy is at a distance ď k from v in T . In particular, diampT xXiyYT xXjyq ď 2k, and so, XiYXj

is a clique of G. The latter contradicts the fact that Xi, Xj are maximal cliques.
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4 Well-structured 4-Steiner roots

We refine our results in the previous Section when k “ 4. Given G “ pV,Eq and a rooted clique-tree
TG of G, let Xi P KpGq be arbitrary. We recall that our goal will be eventually to construct, in
polynomial time, a set Ti of 4-Steiner roots for some subgraph Gi that can always be extended to
a 4-Steiner root for G if one exists. Ideally, one should store all the possible 4-Steiner roots for
Gi, however this leads to a combinatorial explosion. In order to (partly) overcome this issue, we
introduce the following important notion for the remaining of the paper:

Definition 2. Given G “ pV,Eq and X P X pGq, a vertex v P X is called X-free if for any other
X 1 P X pGq we have either v R X 1, X Ď X 1 or X XX 1 “ tvu. A vertex v P X that is not X-free is
called X-constrained.

Our study reveals on the one hand that X-constrained vertices have a very rigid structure. It
seems on the other hand that X-free vertices are completely unstructured and mostly responsible
for the combinatorial explosion of possibilities for T xXy. However, we prove that we can always
force them to be leaves of this subtree. Specifically:

Theorem 9. Let G “ pV,Eq be a 4-Steiner power. There always exists a 4-Steiner root T of
G where, for any clique-intersection X P X pGq, all the X-free vertices are leaves of T xXy with
maximum eccentricity diampT xXyq. Moreover:

1. all the X-free vertices, except maybe one, are closest to the same central node in CpT xXyq;

2. all the internal nodes on a path between CpT xXyq and a X-free vertex are Steiner;

3. and if X P KpGq and it has a X-free vertex then, diampT xXyq “ 4.

Theorem 9 is proved by carefully applying a set of operations on an arbitrary 4-Steiner root
until it satisfies all of the desired properties. We give two examples of such operations in Fig. 5
and 6. It is crucial for the proof that in any 4-Steiner root of G all minimal separators yield subtrees
of diameter at most three. In the remaining of the paper, we call a 4-Steiner root with the above
properties well-structured.

We first prove Theorem 9 for maximal cliques (Section 4.1). Then, we prove the result in its
full generality in Section 4.2.

4.1 The case of (Almost) Simplicial vertices

Let Xi P KpGq be fixed. We start giving a simple characterization of Xi-free vertices in terms of
simplicial vertices and cut-vertices. Then, we prove Theorem 9 in the special case when X is a
maximal clique.

Lemma 5. Given G “ pV,Eq and Xi P KpGq, a vertex v P Xi is Xi-free if and only if:

• either it is simplicial;

• or it is a cut-vertex, and there is no other minimal separator of G contained into Xi that can
also contain v.

12



Proof. A vertex v P Xi is not contained into any other maximal clique if and only if it is simplicial
(and in this case, this vertex is clearly Xi-free). From now on assume v is not simplicial. If
v P Xi XXj then, in any clique-tree TG of G, the vertex v and more generally, all of Xi XXj , is
contained into all the minimal separators that label an edge of the XiXj-path in TG. This implies
that there is always a largest clique-intersection X Ă Xi containing v that is a minimal separator.
Hence a non simplicial v P Xi is Xi-free if and only if it is a cut-vertex, and there is no other
minimal separator in Xi that contains this vertex.

Lemma 6. Let G “ pV,Eq be a 4-Steiner power. There exists a 4-Steiner root T of G such that
the following hold for any maximal clique Xi with at least one Xi-free vertex:

• diampT xXiyq “ 4;

• every Xi-free vertex v is a leaf of T xXiy such that distT pv, CpT xXiyqq “ 2, and the internal
node onto the unique vCpT xXiyq-path is Steiner.

Proof. We give an illustration of the proof in Fig. 4. First we pick an arbitrary 4-Steiner root T
of G, that exists by the hypothesis. Define S1 to be the set of all the cut-vertices in G that are
Xi-free for some Xi P KpGq. We now proceed by induction on |S1|.

Assume S1 “ H for the base case. While there exist Xi P KpGq and v P Xi simplicial that
falsify the properties of the lemma, we proceed as follows. Let ci P CpT xXiyq minimize distT pv, ciq
(possibly, v “ ci). We first replace v by a Steiner node α. In doing so, we get a 4-Steiner root T 1

for Gzv. Then, let c1i be either ci (if ci ‰ v) or α (if ci “ v). We connect v to c1i via a path of length
exactly 4´maxuPXiztvu distT 1pc1i, uq of which all internal nodes are Steiner. In doing so, we obtain
a tree T 2 such that RealpT 2q “ V . By construction, maxuPXiztvu distT 1pc1i, uq ď eccT xXiy

pciq ď 2
(since diampT xXiyq ď 4), hence:

distT pv, ciq ď eccT xXiy
pciq ď 4´ max

uPXiztvu
distT 1pc1i, uq “ distT 2pv, c1iq.

As a result, the distances between real nodes can only increase compared to T , and this new tree T 2

we get keeps the property of being a 4-Steiner root of G. Furthermore, diampT 2xXiyq “ 4 and the
unique central node in CpT 2xXiyq is onto the vc1i-path by construction. Here it is also important
to observe that, since v is only contained into Xi and our transformation can only increase the
distances between the real nodes, Xi and v cannot falsify the properties of the lemma at any
further loop. Overall, after this first phase is done we may assume that all the simplicial nodes
v are contained into some clique Xi such that: diampT xXiyq “ 4, v is a leaf of T xXiy such that
distT pv, CpT xXiyqq “ 2, and the internal node onto the vCpT xXiyq-path is Steiner.

From now on we assume S1 ‰ H. Let v P S1 and let C1, C2, . . . , C` be the connected components
of Gzv. For every i P t1, 2, . . . , `u, the graph Gi :“ GrCi Y tvus is a 4-Steiner power as this is a
hereditary property. Specifically, given a fixed 4-Steiner root T for G, we obtain a 4-Steiner root
T i for Gi by replacing every vertex in V pGqzV pGiq by a Steiner node. By induction, we can modify
all the subtrees T i into some new subtrees Ri that satisfy the properties of the lemma w.r.t. Gi.
Overall, by identifying all the Ri’s at v, one obtains a tree R. We claim that R satisfies the two
properties of the lemma. Indeed, it follows from the characterization of Lemma 5 that for any
Xj Ď Ci Y tvu, the Xj-free vertices in G are still Xj-free vertices in Gi. – Note that in particular,
if v is Xj-free in G then, v is simplicial in Gi. – Therefore, the claim is proved. It remains now to
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Figure 4: The transformation of Lemma 6 applied to an arbitrary 4-Steiner root.
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show that R is indeed a 4-Steiner root of G. This is not the case only if there exist x P Cp, y P Cq

such that p ‰ q and distRpx, vq`distRpv, yq ď 4. Our construction implies distRpx, vq ě distT px, vq
and distRpy, vq ě distT py, vq. But then, we should already have distT px, yq ď 4 in the original root
T . Thus, since T is a 4-Steiner root of G, this case cannot happen and R is also a 4-Steiner root
of the graph G.

4.2 The general case

We are now ready to prove Theorem 9 in its full generality:

Proof of Theorem 9. Let T be such that the result holds for maximal cliques (such a T exists by
Lemma 6). For any X P X pGqzKpGq with at most two elements, the properties of the theorem
always hold (for any T ). We so only consider the clique-intersections X P X pGqzKpGq with at least
three elements. The proof follows from different uses of a special operation on the tree T that we
now introduce:

Operation 1. Let X P X pGqzKpGq have size at least three and let v P X. We define Rv to be the
forest of all the subtrees in T zT xXy with one node adjacent to v. Let Qv be the subtree of T that
is induced by V pRvq Y tvu.

We construct a new tree T 1 from T in two steps:

1. We remove Rv and we replace v by a Steiner node αv. In doing so, we obtain an intermediate
tree denoted by Tv;

2. In order to obtain T 1 from Tv, we add a copy of Qv and an edge vc between v and a center
node of TvxXzvy (possibly, c “ αv).

We refer to Fig. 5 and 6 for some particular applications of Operation 1. Furthermore in
what follows we prove that under some conditions of use, this above Operation 1 always outputs a
4-Steiner root T 1 that is closer to satisfy all the properties of the theorem than T . Specifically:

Claim 1. Assume v is X-free and every center node of T xXy is adjacent to a real node in Xztvu.
Then, T 1 keeps the property of being a 4-Steiner root of G if and only if either distT pRealpRvq, vq ě 4
or c is Steiner. Moreover, for any X 1 P X pGqztXu and for any of the properties stated in the
theorem, if this property is satisfied for X 1 in T then, this stays so in T 1.

Proof. First we prove that all the real vertices in Rv are at a distance ą 4 from V pGqzV pQvq in
the original tree T . Indeed, if there exist x P V pRvq, y R V pQvq such that distT px, yq ď 4 then, v is
onto the unique xy-path in T . In particular, there must be a node z P V pT xXyqztvu such that the
xy-path in T goes by the edge vz (i.e., because y R V pQvq). But then, since diampT xXyq ď 3 by
Theorem 8 (i.e., because X is strictly contained into some maximal clique), one of v or z must be
in CpT xXyq. Thus, we can always assume w.l.o.g. y is a real node in Xztvu (possibly, y “ z) for
every node in CpT xXyq is adjacent to such a vertex by the hypothesis. This implies the existence of
a maximal clique containing x, y, v, and the latter cannot be X since we have x P V pRvq. However
the latter contradicts that v is X-free, and so, it proves that all the real vertices in Rv are at a
distance ą 4 from V pGqzV pQvq in the original tree T .

It follows from the above result that in order for T 1 to be a 4-Steiner root for G, one must
ensure distT 1pRealpRvq, V zV pQvqq ą 4. Note that this is always the case if distT pv,RealpRvqq ě 4.
Otherwise, by the hypothesis every center node of CpT xXyq is adjacent to a real node in Xztvu,
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thereby implying distT pv, V zV pQvqq ď distT pv,Xztvuq ď 2, and so, distT pv,RealpRvqq “ 3. Then,
a necessary and sufficient condition for having distT 1pRealpRvq, V zV pQvqq ą 4 is that c is Steiner.
However, the above does not prove that T 1 is a 4-Steiner root of G yet, as we also need to ensure
distT 1pu, vq ď 4 for every u P NGpvq. In order to prove this is the case, and to also prove the second
part of the claim, we now consider the clique-intersections X 1 P X pGqztXu such that v P X 1. (Note
that if v R X 1 then, T xX 1y “ T 1xX 1y and so, the result of our claim trivially holds for such a X 1).
Since we have distT pRealpRvq, V zV pQvqq ą 4, there are only two possibilities: either T xX 1y is fully
contained into Qv – in which case it is not modified –; or it does not intersect Rv and so, it must
intersect T xXyztvu. We then consider two different cases:

• Assume X Ă X 1. By the above observation, T xX 1y X Rv “ H. In particular, T 1xX 1y is
obtained from T xX 1y by replacing v by a Steiner node (only if it were an internal node of
T xX 1y) then, making of v a leaf. Note that in doing so, any X 1-free vertex that was a leaf
in T xX 1y is also a leaf of T 1xX 1y. Furthermore, the above transformation cannot add an
internal real node onto the path between such a leaf and the center nodes, that implies we
cannot break Property 2 of the theorem. We cannot break Property 1 either since v cannot
be X 1-free, and so, we did not move any X 1-free vertex during this operation. Finally, since
every center node of CpT xXyq is adjacent to a real node in Xztvu by the hypothesis, we have
after Operation 1 diampT 1xX 1yq “ diampT xX 1yq (i.e., we cannot break Property 3, and we
also obtain distT 1pu, vq ď 4 for every u P X 1).

• Otherwise, X Ę X 1 and we prove T 1xX 1y “ T xX 1y. To see that, first note this may not be
the case only if T xX 1y is not fully contained into Qv. In this situation, we also know that
T xX 1y must intersect T xXyztvu. Since v is X-free, any node β P V pT xX 1yq X pV pT xXyqztvuq
must be Steiner. This leaves β P CpT xXyqztvu as the only possibility. Furthermore, since β is
Steiner there must exist y P X 1 such that the unique vy-path in T goes by β. However, this
implies diampT xX 1 Y NT rβsyq “ diampT xX 1yq. We recall that there exists at least one leaf
node u P RealpNT pβqqztvu by the hypothesis. Thus, by Property 2 of Theorem 8 we have
u, v P X XX 1, thereby contradicting that v is X-free.

The claim directly follows from this above case analysis. ˛

The proof is now divided into two main phases.

v

Qv

v

Qv

Figure 5: Forcing the X-free vertices as leaves.

Phase 1: Transformation into leaves (see Fig. 5 for an illustration). LetX P X pGqzKpGq, |X| ě
3 be fixed. We first transform T so that all the X-free vertices are leaves in T xXy. Assume the
existence of an X-free vertex v P X that is not a leaf. Note that we have v P CpT xXyq . In particu-
lar, every node in CpT xXyq is adjacent to a leaf in Xztvu. We apply Operation 1 with c “ αv (i.e.,
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the Steiner node substituting v in the intermediate tree Tv). Overall, by Claim 1 we can repeat the
above transformation until all the X-free vertices are leaves of T xXy.
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Figure 6: Grouping the X-free vertices on a same side.

Phase 2: Grouping the X-free vertices (see Fig. 6 for an illustration). After Phase 1, the
properties of the theorem are true for any X P X pGq such that T xXy is a star. Thus, from now
on assume T xXy is a bistar. Write CpT xXyq “ tc0, c1u and assume that that each cj is adjacent
to two X-free vertices, denoted v1j , v

2
j . For any i P t1, 2u, there is no vertex xi P RealpRvij

q such

that distT pxi, v
i
jq ď 2 (otherwise, there would exists a maximal clique containing xi, v

1
j , v

2
j , and

so, the two of v1j , v
2
j would be X-constrained). More specifically, either distT pv

i
j , RealpRvij

qq ě 4,

or distT pv
i
j , RealpRvij

qq “ 3 but then cj must be Steiner (otherwise, we can prove as above that

vij should be X-constrained). W.l.o.g., assume either distT pv
i
j , RealpRvij

qq ě 4 for any i, j or c0 is

Steiner. If in addition both c0, c1 are Steiner nodes (real nodes, resp.) then, we further assume
w.l.o.g. c0 is adjacent to more X-free vertices than c1. We apply Operation 1 for v “ v11 and
c “ c0

1. Overall, we can repeat this transformation until X satisfies all the properties stated in the
theorem, that does not impact the properties of the other clique-intersections X 1 by Claim 1.

5 Step 1: Construction of the clique-tree

The main result in this section is the construction of a very specific clique-tree (Theorem 11), of
which we will use the additional properties in order to ensure that our algorithm runs in polynomial
time. We present a first construction in Section 5.1. Then, we introduce the new notion of (weak)
convergence, and we show its relationship with 4-Steiner powers (Section 5.2). We end up proving
the main result of this part in Section 5.3.

5.1 A flat clique-tree

We start with an intermediate construction.

Theorem 10. Given G “ pV,Eq chordal, we can compute in polynomial time a clique-tree TG such
that, for any Si “ Xi X Xppiq and for any child Xj of Xppiq, there is no minimal separator of Gj

that is contained into Si.

1As suggested by Fig. 6, we could actually apply the transformation to v11 and v21 simultaneously. However, we do
not need this refinement for the proof.
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Proof. We modify an arbitrary clique-tree TG of G until the property of the theorem is satisfied.
Specifically, root TG at some arbitrary maximal clique X0. We consider all the minimal separators
S P SpGq by decreasing size. Let XS be incident to an edge in

Ť

SĎS1 ES1pTGq and the closest
possible to the root. We observe that XS is the least common ancestor of all maximal cliques that
are incident to an edge in

Ť

SĎS1 ES1pTGq. All edges in ESpTGq can be made incident to XS , as
follows. Assume there exists Y Z P ESpTGq such that XS R tY,Zu. By the above observation, Y,Z
are into the subtree rooted at XS . W.l.o.g., Z is further than Y from XS . Since S Ď XS XZ, S is
contained into all the maximal cliques onto the XSZ-path. In particular, we still obtain a clique-
tree of TG if we replace Y Z by XSZ and in doing so, S Ď XS XZ Ď Y XZ “ S. Furthermore after
this transformation, XS became the new father node of the maximal clique Z in TG.

It now remains to prove that the gotten clique-tree TG satisfies the conditions of the theorem.
Suppose for the sake of contradiction there exists i ą 0 and Sk Ď Si a minimal separator of Gj

where Xj is a child of Xppiq (possibly, Xi “ Xj). Our transformation ensures Sk ‰ Si, i.e., Sk Ă Si.
Since the subtree rooted at Xj is a rooted clique-tree of Gj , there must exist some edge XkXppkq

in this subtree such that Xk X Xppkq “ Sk. However, since we consider minimal separators by
increasing size, the edge XiXppiq should already exist when we process Sk. It implies the maximal
clique XSk

to which we connected all edges in ESk
pTGq should be an ancestor of Xppiq, that is a

contradiction.

We will see this “flat” clique-tree, given by Theorem 10 (or at least a technical modification
of this clique-tree), considerably simplifies the analysis of our algorithm. In particular, we stress
the following of its properties (that we prove on purpose under slightly weaker conditions than the
ones given by Theorem 10):

Lemma 7. Given a rooted clique-tree TG of G “ pV,Eq, let Xi P KpGq have children Xi1 , Xi2 , . . . , Xip,
and assume that the following properties are true for any j P t1, 2, . . . , pu:

• For any j1 P t1, 2, . . . , pu there can be no minimal separator of Gij1 contained into Sij ;

• Moreover Sij Ę Si.

Then, all the edges in ESij
pTGq are incident to Xi.

Proof. Since Sij Ę Si by the hypothesis, all edges in ESij
pTGq must be in the subtree T i

G rooted at

Xi. But then, since for every j1 we have that T
ij1

G is a rooted clique-tree of Gij1 , there can be no
edge of ESij

pTGq in this subtree. This proves that all edges in ESij
pTGq must be incident to Xi.

Corollary 1. Let TG be a rooted clique-tree of G “ pV,Eq as stated in Theorem 10. For any
minimal separator S P SpGq, the edge-set ESpTGq is incident to a common maximal clique XS.

Proof. By Theorem 6, there exist XijXi P EpTGq such that Xij XXi “ S and Xppijq “ Xi. Hence,
by Lemma 7 we can choose XS :“ Xi.

5.2 Weak convergence

Unfortunately, this “flat” clique-tree that we get is not exactly what we need yet, due to some
encoding issues. Specifically, consider the particular case in our dynamic programming algorithm
where a minimal separator Si induces a star in some partial solutions we found for the subgraph
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Gi. In order to bound the number of partial solutions that we should store where T xSiy is a star,
we would like most vertices in Si to be simplicial in Gi. However, this cannot be the case if we
encountered a larger minimal separator S1 Ą Si in the corresponding clique-subtree. See Section 7
for more details.

We now introduce the following notions:

Definition 3. Given a clique-tree TG of G “ pV,Eq, we say that a minimal separator S is weakly
TG-convergent if there exists some maximal clique XS that is incident to all edges in

Ť

SĂS1

ES1pTGq.

S is termed TG-convergent if the maximal clique XS is also incident to all edges in ESpTGq.

In order to motivate Definition 3, in what follows are two observations on the relationships
between clique-trees, minimal separators and 4-Steiner roots:

Lemma 8. Given G “ pV,Eq and T any 4-Steiner root of G, let Xi P KpGq and let S Ă Xi be a
clique-intersection. If TS is a bistar then, CpT xXiyq Ă CpT xSyq.

In particular, there are exactly two maximal cliques that contain S.

Proof. We have by Theorem 8 diampT xXiyq ą diampT xSyq, and so, diampT xXiyq “ 4. In partic-
ular, write CpT xXiyq “ tciu. Every component in T xXiyztciu has diameter at most two, thereby
implying ci P V pT xSyq. Furthermore since eccT xSypciq ď radpT xXiyq “ 2, ci cannot be a leaf of
T xSy, i.e., ci P CpT xSyq. By Lemma 4, there can be no two maximal cliques Xi, Xj P KpGq such
that CpT xXiyq “ CpT xXjyq. Therefore, the above implies that S can only be contained in at most
two maximal cliques. Finally, since S is not a maximal clique, it is contained into exactly two
maximal cliques.

Lemma 9. Given G “ pV,Eq and T any 4-Steiner root of G, let X P SpGq be a minimal separator.
If TX is a non-edge star then, X is weakly TG-convergent for any clique-tree TG of G.

Proof. We may assume that X is strictly contained into at least one minimal separator S for
otherwise there is nothing to prove. By Theorem 8, T xSy is a bistar and S must be inclusion wise
maximal in SpGq. This implies CpT xXyq Ă CpT xSyq. Furthermore, it follows from Lemma 8 that S
must be contained into exactly two maximal cliques Xi, Xj and CpT xXiyq Y CpT xXjyq “ CpT xSyq.
In particular, we may assume w.l.o.g. that CpT xXyq “ CpT xXiyq. But then, still by Lemma 8, any
minimal separator S1 that strictly contains X must be contained into Xi and exactly one other
maximal clique YS1 . By Theorem 6, the latter implies XiYS1 P EpTGq and Xi X YS1 “ S1.

Our goal is to force weak convergence to imply convergence. Intuitively, this will make the above
issue with stars, as well as several related issues with bistars, local, thereby allowing us to handle
with them more efficiently. We end this section by analysing the cases where the flat clique-tree of
Section 5.1 does not satisfy this property (see Fig. 7 for an illustration of such cases).

Lemma 10. Given a chordal graph G “ pV,Eq and S P SpGq, let TG be a rooted clique-tree of G and
let XS , YS P KpGq be such that: all edges in ESpTGq are incident to XS; all edges in

Ť

SĂS1 ES1pTGq
are incident to YS; and no ancestor of XS can be incident to an edge of

Ť

SĎS1 ES1pTGq. Exactly
one of the following three conditions is true:

• XS “ YS;

• XS is a father node of YS and we have S Ď XS X YS;
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Figure 7: Examples of S weakly TG-convergent but not TG-convergent.

• or there exists ZS P KpGq being a child node of XS and the father node of YS, and we have
XS X ZS “ S Ă ZS X YS.

Proof. Assume XS ‰ YS . We observe that XS must be an ancestor of YS (otherwise, by taking
their least common ancestor we would contradict our assumption that no ancestor of XS can be
incident to an edge of

Ť

SĎS1 ES1pTGq). Since S Ď XS X YS , all edges onto the XSYS-path must
be in

Ť

SĎS1 ES1pTGq. Finally, since all edges in ESpTGq are incident to XS , and all edges in
Ť

SĂS1 ES1pTGq are incident to YS , there can be at most two edges into the XSYS-path. In the case
when there are two edges then, exactly one such edge must be in ESpTGq and this edge is incident
to the maximal clique XS .

5.3 The final construction

The remaining of this section is now devoted to prove the following technical result:

Theorem 11. Given G “ pV,Eq chordal, we can compute in polynomial time a rooted clique-tree
TG where the following conditions are true for any Si :“ Xi XXppiq, i ą 0:

1. If Si is weakly TG-convergent and |Si| ě 3 then, Si is TG-convergent;

2. If Si contains a minimal separator of Gi then, |Si| ě 3 and Si is TG-convergent;

3. Any minimal separator of Gi that is contained into Si is TG-convergent, it has at least three
vertices and it is strictly contained into at least one other minimal separator of Gi.

Proof. Let TG be the rooted clique-tree obtained from Theorem 10. We perform a dynamic pro-
gramming on the internal nodes of TG, that starts from the twigs (a.k.a., the nodes whose all
children nodes are leaves). Specifically, let Xi P KpGq be an internal node of TG, and assume that
all the children nodes of Xi that are not leaves were already processed. Our construction ensures
that the set of descendants of Xi were not modified (but the connections between these nodes may
have changed). In particular, we did not modify the children nodes of Xi neither the set of their
respective descendants. Let Si :“ tXj XXi | Xppjq “ Xiu. We consider all the minimal separators
S P Si by decreasing size. Note that Xi is the maximal clique XS : as defined by Corollary 1.

There are several cases:

• We do not modify ESpTGq if either |S| ď 2, S is TG-convergent or S is not weakly TG-
convergent. In this situation, for any child node Xj such that Sj “ S we claim that Sj
satisfies all three conditions of the theorem. Indeed, in order to prove this, it suffices to
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prove that no minimal separator of Gj can be contained into Sj . This was holding initially by
Theorem 10, and so it still holds at this step because we did not modify the set of descendants
of Xj . We stress that here we need to assume that the minimal separators of Si are considered
by decreasing size (otherwise, edges in ES1pTGq could have been made incident to a node of
T j
G at some previous step, for some S1 Ă S).

• Otherwise, |S| ě 3, S is weakly TG-convergent but not TG-convergent. As we did not change
the set of descendants of Xi, we can apply Lemma 10 in order to prove there exists a de-
scendant YS of Xi – either a child or the child of a child – that is incident to all the edges in
Ť

S1ĄS ES1pTGq. We use the same operation as in the proof of Theorem 10 in order to make
all edges in ESpTGq incident to YS . On the way, Xi becomes the father node of YS , and all
the maximal cliques Z R tYS , Xiu that are incident to an edge in ESpTGq are made children
of YS . Note that if we are in Case 3 of Lemma 10, this means we changed the orientation of
YSZS (i.e., ZS used to be the father node of YS and it is now a child of YS). See Fig. 8 for
an illustration.
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Figure 8: Local modifications of a clique-tree.

In doing so, we say that we processed S, all edges labeled by S resp.
We now need to analyse the impact of this second case above to the properties of other minimal

separators. First we notice that since we assume S was not TG-convergent, there was no minimal
separator S1 Ď S TG-convergent before we made the transformation. In particular, any minimal
separator S1 that was TG-convergent before the transformation has kept this property. Conversely,
if after the transformation some minimal separator S1 became (not) weakly TG-convergent then,
S1 Ď S. As we did not modify the descendants of Xi, this implies by Theorem 10 either S1 P Si
or XS1 is an ancestor of Xi. In both cases (since we consider the minimal separators of Si by
decreasing size), S1 was not processed yet. Summarizing, Condition 1 of the theorem is preserved
for all the minimal separators already processed, and it now also holds for S.

For the remaining two conditions, we can further restrict our study to the subtree containing
YS . By Lemma 10 there are only two possibilities:
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1. Situation # 1: Assume YS was a child of Xi before the transformation. Any child Xj of Xi,
Xj ‰ YS , such that Xi X Xj “ S is now a child of YS , with Xj X YS “ S. The latter did
not change the fact that S does not contain a minimal separator of Gj , nor the properties of
the edges in the subtree rooted at Xj . Therefore, the properties of all edges in the subtree
rooted at Xj are left unchanged, and the edge XjYS now satisfies Conditions 2 and 3 of the
theorem (i.e., because Xj X YS “ S). We are left with S1 :“ Xi X YS .

If S1 “ S then, no minimal separator that appears in the subtree rooted at YS can be strictly
contained into S. However, S now appears in this subtree. Since S was weakly TG-convergent
but not TG-convergent before the transformation, there is a minimal separator in the subtree
rooted at YS that strictly contains S. As a result, Conditions 2 and 3 of the theorem are
satisfied.

From now on assume S1 Ą S. Since S is TG-convergent after the transformation, so is S1.
Furthermore, Theorem 10 ensures that, in every Xj ‰ YS such that Xj X Xi “ S (Xj is a
child of YS after the transformation), there can be no minimal separator of Gj contained into
S1. Thus the minimal separator S is the only new one contained into S1 that can appear in
the subtree rooted at YS . In particular, there is another minimal separator S2 Ą S in this
subtree because S was not TG-convergent before the transformation. As a result, Conditions
2 and 3 of the theorem keep holding for the edge XSYS .

2. Situation # 2: Otherwise, the father node ZS of YS previously was a child node of Xi, where
XiXZS “ S and YS XZS Ą S. The analysis here is the same as for Situation # 1 except for
S1 :“ YS X ZS , as we changed the orientation of the edge YSZS during the transformation.
However, after the transformation we have no minimal separator containing S1 in the subtree
rooted at ZS (because such a separator should also contain S, and so, should be incident to
YS). More generally, S1 is TG-convergent because S is. We now focus on the existence of
minimal separators R Ă S1 in this subtree, and we explain how to correct our transformation
when they exist.

A central observation is that we did not change the edges incident to ZS – as they were
after we processed ZS – until this transformation. To see that, first notice that as we have
Xi X ZS “ S, ZS was already a neighbour of Xi when we started processing Xi (recall that
we consider minimal separators in Si by decreasing size). Then, if we had ZS P tYS2 , ZS2u

for some S2 P Si considered before S, the only possibility would be YS2 “ ZS and we fell in
Situation # 1 for S2. However, this would imply S2 Ď S that is a contradiction. Hence, we
proved our above observation that the edges incident to ZS did not change since we started
processing Xi.

Now, since when we process a node we cannot make this node incident to a new set ER1pTGq,
there was an edge ZSY in the initial clique-tree TG that we obtained from Theorem 10 such
that ZS XY “ S1 and Y was a child node of ZS (possibly, Y “ YS , or Y became a child node
of YS after some previous processing). In particular, in any subtree rooted at a child node of
ZS , Theorem 10 ensures that there was no minimal separator contained into S1. As we did
not change the set of descendants of ZS until this transformation we so obtain that, if there
is some edge labeled by R Ă S1 in the subtree rooted at ZS then, there was initially such
an edge incident to ZS . Such edges could have been made incident to a descendant of ZS in
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order to make R TG-convergent but then, this should have been to YS . We can so conclude
this did not happen and all such edges stayed incident to ZS .

Repairing the procedure. We consider all these minimal separators R Ă S1 that appear
in the subtree rooted at ZS by decreasing size. For every such a R, we first verify whether
R is TG-convergent. (Note that before we start the procedure R was either TG-convergent or
not weakly TG-convergent.)

(a) If it is not the case then, we move all edges in ERpTGq in order to make them incident
to YS . Specifically, for any child B of ZS such that B X ZS “ R, we make YS the new
father node of B. See Fig. 9 for an illustration.

(b) Otherwise, R is TG-convergent, and we also verify whether |R| ě 3 and R is strictly
contained into at least one other minimal separator that appears in the subtree rooted
at ZS . If it is not the case then, we move all edges in ERpTGq as explained above.

Overall, at the end of this phase all the edges ERpTGq, R Ă S1 that we could not possibly move
satisfy Condition 3 of the theorem. In order to prove correctness of our repairing procedure,
we must prove that we do not violate one of the conditions stated in the theorem for any
minimal separator or edge that we already processed. Suppose by contradiction that we did
violate one of these properties for some edge labeled by R1 and already processed. There exists
R Ă S1 such that after moving edges in ERpTGq, we violated one of the conditions stated in
the theorem for this edge, and this stayed so until the end of the repairing procedure. Since
we did not modify the ancestor/descendant relationships for any other node than YS and ZS ,
the only way so that it can happen is that the move did not preserve the property for R1 to
be either TG-convergent or not weakly TG-convergent.
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Figure 9: Repairing the procedure when R Ă S1.

Clearly this above property can be modified only if R1 Ď R. We can further assume |R1| ě 3
since otherwise, all conditions stated in the theorem will stay true. We first prove that R1

cannot become weakly TG-convergent after the move, unless this was already the case before
we started this phase. Otherwise already when we processed the node ZS , we could have
made R TG-convergent by making all edges in ERpTGq incident to YS . As a result, if R1 looses
the property of being not weakly TG-convergent then, before we start the repairing procedure
it was TG-convergent (Condition 1) and so, all edges in ER1pTGq must be incident to ZS . In
the same way if R1 looses the property of being TG-convergent then, as R1 Ď R Ă S1, it also
implies all edges in ER1pTGq must be incident to ZS . We so deduce that either R1 “ R or
we will also consider R1 later during the repairing procedure. In particular if R1 Ă R and we
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would move edges in ERpTGq then, two possibilities could arise when we eventually consider
the minimal separator R1:

• R1 is weakly TG-convergent. Since we assume that we previously moved edges in ERpTGq,
R1 is not TG-convergent. Then, moving edges in ER1pTGq would keep for R1 its initial
property of being TG-convergent at the end of the procedure.

• R1 is not weakly TG-convergent. In particular in the subtree rooted at B1, B1XZS “ R1,
there can be no minimal separator strictly contained into R1 (otherwise, by Condition
3 of the theorem such minimal separators should be TG-convergent, which is impossible
since R1 Ă S1 and the edges labeled by S1 are not in this clique-subtree). By moving
edges in ER1pTGq, R

1 would stay not weakly TG-convergent. As a result, we could move
edges in ER1pTGq without violating the conditions stated in the theorem for those edges.

We are left with the special case R “ R1. Moving edges in ERpTGq cannot change the property
for R of being (not) weakly TG-convergent. Thus, the only subcase left is when R was TG-
convergent, |R| ě 3, and the move would violate this property. However, only in this subcase
we do not move the edges in ERpTGq, that is a contradiction. Indeed, R must be strictly
contained into at least one other minimal separator that appears in the subtree rooted at ZS

(otherwise, the move could not violate the property for R of being TG-convergent).

6 Step 2: A family of subtrees for the Clique-Intersections

We use Theorem 9 in this section in order to derive, for every clique-intersection X P KpGqYSpGq,
a polynomial-size family of all possible subtrees T xXy we could have in a well-structured 4-Steiner
root of G. We first focus on the case of minimal separators (Section 6.1), before extending our
results to the maximal cliques that are either leaf-nodes (Section 6.2) or internal nodes (Section 6.3)
of the clique-tree TG.

6.1 Case of Minimal Separators

A key intermediate Step in our algorithm is, for any minimal separator S, the polynomial-time
construction of a family TS of potential subtrees T xSy:

Theorem 12. Let SpGq be the set of all minimal separators in G “ pV,Eq. In Opn3mq-time, we
can construct a collection pTSqSPSpGq such that, for any well-structured 4-Steiner root T of G, and
for any S P SpGq, T xSy is Steiner-equivalent to some subtree in TS.

This result will be further exploited in the next sections.

Proof. Let S P SpGq be fixed. We will show how to construct TS in Op|S|4q-time. Since |SpGq| “
Opnq, maxt |S| | S P SpGqu “ Opnq and

ř

SPSpGq |S| “ Opmq [BP93], the latter will prove the
result.

Case diampT xSyq ď 2. Let us start with some easy cases. If |S| “ 1 then, it suffices to add a
single-node tree to TS . Similarly, if |S| “ 2 then, by Theorem 8, S must induce a path of length at
most k´ 1 “ 3 in any 4-Steiner root of G with its two ends being the vertices of S. This gives only
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Op1q possibilities to put into TS . Thus, from now on assume |S| ě 3. Given any 4-Steiner root
T of G, by Theorem 8 the subtree T xSy can only be a star or a bistar (but the latter only if S is
inclusion wise maximal in SpGq). Furthermore in the former case, all leaves in the star T xSy must
be in S, and the center node can either be in S or Steiner. Overall, this gives Op|S|q possibilities
of stars to put into TS , and so, this takes Op|S|2q-time.

Case diampT xSyq “ 3. We end up focusing on the case where |S| ě 3 and T xSy may be a bistar.
For ease of reasoning, fix some (unknown) well-structured 4-Steiner root T where T xSy is a bistar,
and write CpT xSyq “ tc0, c1u. We will introduce the following additional terminology. A heavy part
of S is any clique-intersection X Ă S such that |X| ě 3. A light part of S is any clique-intersection
X Ă S such that |X| “ 2. We prove the following intermediate claim (also used in other parts of
the paper):

Claim 2. If tc0, c1u is a light part then, there is a heavy part that strictly contains it.

Proof. Suppose by contradiction X “ tc0, c1u is a light part and no heavy part contains it. Let Xi

be any maximal clique such that X Ď Xi but S Ę Xi. Such a Xi always exists since otherwise,
taking the intersection of S with all the maximal cliques that contains X, one would obtain S “ X,
a contradiction. In this situation, X Ď Xi X S, and so X “ Xi X S since there is no heavy
part containing X. Furthermore we have Xi Ę S, hence there exists j P t0, 1u such that cj has
a neighbour in T xXiyzS (possibly, a Steiner node). Then, by Lemma 2 applied to NT rcjs and
T xXiy, diampNT rcjs Y T xXiyq “ diampT xXiyq ď 4, and so, XiYRealpNT rcjsq is a clique of G. By
maximality of Xi, RealpNT rcjsq Ď Xi. However, there is at least one leaf in RealpNT rcjsqzX, that
implies X Ă Xi X S, a contradiction. ˛

Then, we divide the proof in two subcases:

• We first consider the particular subcase when there exists a heavy part X Ă S. In this
situation, X Ď NT rc0s or X Ď NT rc1s. By Property 2 of Theorem 8 either RealpNT rc0sq “ X
or RealpNT rc1sq “ X. Therefore, we can start choosing among Op|X|q possibilities the star
induced by X in T . W.l.o.g., c0 is the center of this star. The other center c1 must be either
a Steiner node adjacent to c0 (in T ) or any vertex in Xztc0u. Hence, there are also Op|X|q
possibilities for c1. Finally, since we have RealpNT rc0sq “ X all the nodes in SzX must be
leaves adjacent to c1. Overall, this gives Op|S|2q possibilities of bistars to put into TS , and
so, this takes Op|S|3q-time2.

• From now on we assume that there is no heavy part. By Claim 2, tc0, c1u is not a light part.
Furthermore, given any light part X Ă S, we can prove that either X induces an edge of
T xSy, or T xXy is a non edge star and X “ RealpNT rcjsq for some j (this also follows from
Property 2 of Theorem 8). In this situation, we construct the intersection graph I2 of the
light parts in S (i.e., with a vertex for each light part and an edge between every two light
parts with a common intersection). We claim that assuming G has a 4-Steiner root T , I2 has
at most two connected components, that follows from the following case analysis:

– Assume there is a light partX Ă S such that T xXy is a non edge star andRealpNT rcjsq “
X. Two different situations might occur:

2We will actually show in Lemma 11 this number of potential bistars can be reduced. However, we choose not to
include this improvement in this part of the proof in order to keep it as simple as possible.
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1. Situation # 1 (see Fig. 10): There is a light part X 1 ‰ X intersecting X. Since
the vertex in X 1 X X cannot be a leaf adjacent to cj (otherwise, we should have
X 1 Ď RealpNT rcjsq “ X, a contradiction), this must be c1´j . In particular, for
any X 1 ‰ X, T xX 1y must be an edge between c1´j and a leaf (thereby implying
X 1 XX ‰ H).

Figure 10: Situation 1: the subtree T xXy is drawn in bold. There are 3 other light parts represented
by dashed ellipses.

2. Situation # 2 (see Fig. 11): There is no other light part X 1 ‰ X intersecting
X. Since T xSyzNT rcjs is an independent set, any light part X 1 Ă S that does
not intersect X cannot be an edge. We so deduce that if such a X 1 exists then,
RealpNT rc1´jsq “ X 1, and so, there are no other light part in S than X and X 1.

Figure 11: Situation 2: the subtrees T xXy and T xX 1y are drawn in bold.

– Otherwise, each light part is an edge of T xSy that contains either c0 or c1, but not both.
Therefore, there is a one-to-one mapping between the connected components of I2 and
the nonempty sets among RealpNT rc0sq, RealpNT rc1sq. See Fig. 12 for an illustration.

Figure 12: A case where all light parts must be edges.

The proof of this above claim also shows there are essentially two possibilities in order to
position the S-constrained vertices:

1. Either I2 is connected, there is a unique light partX that induces a non-edge star in T xSy,
and all other light parts must be edges incident to the unique node in CpT xSyqzCpT xXyq.

2. Or each connected component of I2 must induce a star in T xSy (each around a different
central node).
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Overall, this reduces the placement of S-constrained vertices to the construction of two stars
in parallel, thereby giving Op|S|2q different possibilities. However, each such a possibility
does not quite define a potential bistar for S as we also need to position the S-free vertices.
By Theorem 9, we can always assume the S-free vertices to be leaf-nodes with all of them
except maybe one adjacent to the same central node of T xSy. In particular, given a fixed
placement of the S-constrained vertices, there are Op|S|q possibilities in order to place the
S-free vertices (specifically, we choose among Op|S|q possibilities the unique S-free vertex
that is not adjacent to the same central node as the others, if any, as well as the central node
to which all other S-free vertices must be adjacent).

Summarizing, we only need to add Op|S|3q different trees in TS , that takes Op|S|4q-time.

Remark 1. We only use the fact that a minimal separator is a clique-intersection. In particular,
we can use the algorithm of Theorem 12 in order to generate, for any maximal clique Xi without
a Xi-free vertex, all possible subtrees T xXiy of diameter at most 3 in any well-structured 4-Steiner
root of G.

6.2 Step 2: Case of a Leaf Node

The main purpose of this section is to prove the following result (base case of our dynamic pro-
gramming algorithm):

Theorem 13. Given G “ pV,Eq and a rooted clique-tree TG of G, let Xi P KpGq be a leaf. We
can construct, in time polynomial in |Xi|, a set Ti of 4-Steiner roots for Gi :“ GrXis with the
following additional property: In any well-structured 4-Steiner root T of G, there exists T 1i P Ti
Steiner-equivalent to T xXiy.

Proof. Let Xppiq be the father node of Xi. By Theorem 6, Si :“ Xi XXppiq is a minimal separator.
We compute the family TSi given by Theorem 12. Then, in order to compute a candidate subtree
Ti, to be added into Ti, we consider all the subtrees TSi P TSi and we proceed as follows. We select
a node in TSi that we assume to be closest to CpTiq (hence, Op|V pTSiq|q “ Op|Si|q possibilities), and
we set its distance to the center (this can only be 0, 1 or 2). In doing so, we can assume CpTiq to
be added into TSi . Finally, the vertices in XizSi are all simplicial, and so, we can connect them to
CpTiq as explained in Lemma 6 (one possibility up to Steiner equivalence). Note that in doing so, we
may also obtain solutions Ti such that diampTiq ą 4 or Ti is not well-structured, that we will need
to discard. See Fig. 13 for an illustration. Overall, |Ti| “ Op|Si||TSi |q “ Op|Si|4q “ Op|Xi|

4q.

In order to anticipate an intermediate problem that we will introduce in Section 7, we end up
this section with the following consequence of Theorem 13:

Corollary 2. Given G “ pV,Eq and a rooted clique-tree TG of G, let Xi P KpGq be a leaf and let
pdvqvPV pT xSiyq

be a sequence of positive integers.
We can construct, in time polynomial in |Xi|, a set Ti of 4-Steiner roots for Gi :“ GrXis

with the following additional property: If G has a well-structured 4-Steiner root T where, for any
v P V pT xSiyq:

distT pv,XizSiq ě dv

then, there exists T 1i P Ti Steiner-equivalent to T xXiy.

Proof. We construct the family given by Theorem 13. We only keep the trees Ti P Ti that satisfy
the additional distance constraints we have.
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Figure 13: An execution of the algorithm of Theorem 13. The minimal separator has size two and
induces a star. There is one simplicial vertex to add.

6.3 Case of an internal node

The main objective for the remaining of this section is given some internal node Xi of TG, to
compute a family Fi of all possible T xXiy in a well-structured 4-Steiner root of G. By Lemma 6
there always exists a root T where all Xi-free vertices are leaves of T xXiy and connected to CpT xXiyq

by a path of length two whose internal node is Steiner. Thus, we can first assume for simplicity Xi

does not contain any Xi-free vertex (i.e., such vertices will be added at the end of the construction).
Furthermore, as noticed earlier (Remark 1) we can use the algorithmic proof of Theorem 12 in order
to generate all the subtrees T xXiy of diameter at most three to be added in Fi. Therefore, as a
consequence of other results in this paper we are only interested in generating trees of diameter
exactly four with no Xi-free vertex.

Our main tool for this task is a careful analysis of the intersections between the minimal sep-
arators in Xi (Section 6.3.1). Unfortunately, sometimes we cannot derive from this information a
polynomial bound on the number of possible subtrees. We identify the only degenerate case when
this can happen, and show how to handle with it, in Section 6.3.2. Proposition 1 in Section 6.3.3
will summarize our results for this part.

6.3.1 Getting more from clique-intersections

The following lemma will be useful in order to prove our first result in this section:

Lemma 11. Given G “ pV,Eq strongly chordal, let S P SpGq. There exists a family TS with the
following two properties:

1. For any well-structured 4-Steiner root T of G, there exists a well-structured T 1 such that
T 1xSy P TS and distT 1pu, vq ě distT pu, vq for every u, v P V . Moreover, either T ”G T 1, or
ř

u,vPV distT 1pu, vq ą
ř

u,v distT pu, vq.
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2. For any R Ă S and c P R, there is at most one bistar T xSy P TS such that c P CpT xSyq and
N rcs “ R. In the same way, there is at most one bistar T xSy P TS such that α P CpT xSyq is
Steiner and Npαq “ R.

Moreover, TS has size Op|S|3q and it can be computed in polynomial time.

In order to better understand the significance of Lemma 11, assume that T xSy should be a
bistar in the final solution we want to compute, and that we already identified one of its center
node c and the set of real nodes R to which this node must be adjacent. What Property 2 says
is that there is essentially one canonical way to compute this bistar given R and c. The more
technical Property 1 is simply there in order to ensure that by doing so, we cannot miss a solution
of an intermediate problem we call Distance-Constrained Root (i.e., see Section 7).

Proof. The result is obtained by applying some polynomial-time post-processing to the family TS
of Theorem 12. We consider all possible R, c such that, for some T xSy P TS we have c P CpT xSyq
and RealpN rcsq “ R. W.l.o.g., for any fixed R we keep at most one such a pair such that c is a
Steiner node. There are only Op|TS |q possibilities for a fixed S, that is in Op|S|3q by Theorem 12.
For each such a pair, we define a node c1 R V zR (either in R or Steiner), as follows:

• If there exists a clique-intersection X Ă S such that X Ę R and X X pRztcuq ‰ H then, we
pick c1 P pX XRqztcu;

• Otherwise, c1 is Steiner.

Note that as G is strongly chordal, we can compute the above c1 in polynomial time by using the
clique-arrangement of G (Theorem 7). Furthermore, amongst all the bistars T xSy P TS such that
c P CpT xSyq and RealpN rcsq “ R, we only keep the one such that either CpT xSyq “ tc, c1u (if c1 P R)
or the unique node in CpT xSyqztcu is Steiner.

In order to prove correctness of this post-processing, we fix any well-structured 4-Steiner root T
of G such that T xSy is a bistar, c P CpT xSyq and RealpNT rcsq “ R. Let CpT xSyq “ tc, c2u. If either
c1 “ c2 or both c2, c

1 are Steiner nodes then, we are done. So, we assume from now on this is not the
case. In this situation, we first prove that a clique-intersection X as above cannot exist. Indeed,
suppose by contradiction such a X exists. As we have X Ę R, X cannot contain any leaf node of
T xSy adjacent to c. Thus, the only possible node in pXXRqztcu must be c2, which contradicts our
assumption that c2 ‰ c1. Therefore, we proved as claimed that no such a clique-intersection X can
exist. This implies c2 P R but c1 is Steiner.

We reuse a transformation we introduced in the proof of Theorem 9 (i.e., Operation 1 for v “ c2
and c). Specifically, we define Qc2 as the subtree of T that is induced by the union of c2 with all
the components of T zV pT xSyq that are adjacent to c2. We create a new tree T 1 by first removing
V pQc2qztc2u, then replacing c2 by the Steiner node c1, and finally adding a copy of Qc2 and the
edge c1c2. In doing so, we can only increase the distances in T 1 compared to T , and these distances
strictly increase at least between c2 and all the leaves of T xSy to which it was previously adjacent.

Furthermore, we claim that T 1 keeps the property to be a well-structured 4-Steiner root of
G, that will prove the lemma. This part of the proof closely follows Claim 1. First, suppose by
contradiction there exist x P RealpQc2q, y P V zV pQc2q such that distT px, yq ď 4 but distT 1px, yq ą
4. The unique xy-path in T goes by c2 (see Fig. 11 for an illustration). Furthermore, this path
also goes by a node z in T xSyztc2u since we have y R Qc2 . We cannot have z P NT rcs since
otherwise, the distance between z and c2, and so, the distance between x and y, did not change
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Figure 14: To the proof of Lemma 11.

in T 1. Therefore, z R R is a leaf in T xSy. But then, there exists a maximal clique Xk such that
x, y, c2, z P Xk, and so, X :“ S X Xk Ě tc2, zu. In particular, |X| ě 2 and we cannot have
X Ď NT rcs because XzR ‰ H. Therefore, either |X| ě 3 or |X| “ 2 and c R X. In the former
case, T xXy is a star with center c2, and so, X XNT rcs Ď tc, c2u. Otherwise, X Ď NT rc2sztcu which
implies NT rcs XX “ tc2u. In both cases, this contradicts the non existence of a clique-intersection
X as defined earlier in the proof. As a result, T 1 is a 4-Steiner root of G. We can prove similarly as
above distT 1pRealpQc2ztvuq, V zQc2q ě distT pRealpQc2ztvuq, V zQc2q ą 4. However, one still needs
to ensure that T 1 is well-structured.

For that, it suffices to consider all the clique-intersections X 1 that contain c2 (because otherwise,
T xX 1y “ T 1xX 1y and so we are done). There are three cases:

• Case X 1 Ă S. Then, either X 1 “ tc2u and we are done, or |X 1| ě 2. Furthermore in the latter
subcase we have X 1 Ď R (otherwise, this would imply the existence of a X as earlier defined,
that is a contradiction). As a result we have T xX 1y “ T 1xX 1y.

• Case X 1 Ě S. We can observe that T xX 1y X Qc2 “ tc2u since we proved above that we
have distT pRealpQc2ztvuq, V zQc2q ą 4. In particular, T 1xX 1y is obtained from T xX 1y by
replacing c2 by a Steiner node (only if it were an internal node of T xX 1y) then, making of
c2 a leaf. Note that in doing so, any X 1-free vertex that was a leaf in T xX 1y is also a leaf
of T 1xX 1y. Furthermore, the above transformation cannot add new internal real nodes onto
the path between such a leaf and the center nodes, that implies we cannot break Property 2
of Theorem 9. We can break Property 1 only if c2 is X 1-free. However, this is not possible
if S “ X 1 because c2 is not a leaf of T xSy and we assume T is well-structured. This cannot
be the case if S Ă X 1 either, because v P S and |S| ě 3 (i.e., because there is at least one
leaf adjacent to each center node in T xSy). Finally, diampT 1xX 1yq ě diampT xX 1yq and so,
we cannot break Property 3 of Theorem 9.

• Otherwise, in all other cases we prove T 1xX 1y “ T xX 1y. To see that, first note this may
not be the case only if T xX 1y is not fully contained into Qc2 . Then, T xX 1y must intersect
T xSyztc2u. If we suppose by contradiction T 1xX 1y ‰ T xX 1y then in particular, this implies
T xX 1y must contain a real node in NT pc2qztcu “ SzR. But then, X :“ S X X 1 satisfies
|X| ě 2, c2 P X and X Ę R, that contradicts our assumption that no such a X exists.

The above case analysis ends up proving that T 1 is well-structured, thereby proving the lemma.
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We will also need the following useful result which we keep using throughout most of the
remaining proofs in this paper:

Lemma 12. Given G “ pV,Eq and T any 4-Steiner root of G, let X P X pGq and let S Ă X
be a minimal separator. If T xSy is a non-edge-star then, there exists c P NT rCpT xXyqs such that
RealpNT rcsq “ S.

Proof. Write CpT xSyq “ tcu. By Theorem 8, RealpNT rcsq “ S. Furthermore since T xSy has at
least two leaves then, the unique path between at least one such a leaf and CpT xXyq must pass by
c. Since radpT xXyq ď 2, this implies distT pc, CpT xXyqq ď 1.

We now explain how to construct an important subfamily of Fi:

Lemma 13. Let Xi be a maximal clique of G “ pV,Eq with no Xi-free vertex. In Opn|Xi|
5q-time,

we can compute a family Bi with the following special property: For any well-structured 4-Steiner
root T of G where for at least one minimal separator S Ă Xi, T xSy is a bistar, there is a T 1 such
that T 1xSiy ”G T xSiy, T

1xXiy P Bi and distT 1pv, VizSiq ě distT pv, VizSiq for every v P V pT xSiyq.

Note that we do not capture all well-structured roots with this above lemma, but only those
maximizing certain distances’ conditions.

Proof. Let Si Ď SpGq contain all the minimal separators in Xi. By Theorem 12, for any S P Si we
can construct a family TS such that, in any TXi P Fi, we should have TXixSy is Steiner-equivalent
to some tree in TS . This takes total time Op|Xi|

4|Si|q “ Opn|Xi|
4q. Fix S P Si (there are Opnq

possibilities) and a bistar T xSy P TS (by Theorem 12, there are Op|S|3q possibilities, that is in
Op|Xi|

3q). Note that in particular for Si Ď S, this will also generate all possibilities for T xSiy.
Roughly we show that except in a few particular cases easy to solve, for every S1 P Si there is

only one canonical solution in TS1 that is compatible with T xSy. For that, assume the existence
of a 4-Steiner root T of G that contains T xSy as a subtree. We may only consider those S1 P Si
that are not contained into any other S2 P Si. Indeed if S1 Ď S2 then, trivially T xS1y is forced by
T xS2y. Thus from now on, we assume S1 is inclusion wise maximal in Si.

In what follows is a simple observation for the case S X S1 ‰ H (see also Fig. 15 for an
illustration).

Claim 3. If S X S1 “ H then, T xS1y is a star with a Steiner central node. Moreover, the center
node of T xXiy must be Steiner.

S S'

Figure 15: An example where S X S1 “ H.

Proof. By Lemma 8 RealpNT rCpT xXiyqsq Ă S. But then, T xXiyzNT rCpT xXiyqs is a collection of
isolated leaves. The latter proves either S1 “ tvu is a cut-vertex or T xS1y is a star with a Steiner
central node in NT rCpT xXiyqs. In the former case we so conclude that v is Xi-free by inclusion wise
maximality of S1 and by Lemma 5. Since we assume there is no Xi-free vertex, this case cannot
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happen. Therefore, T xS1y is a star with a Steiner central node in NT rCpT xXiyqs. Finally, the center
of T xXiy must be also Steiner (otherwise, this vertex should be in S1). ˛

If S X S1 “ H then, by combining Claim 3 and Lemma 12 there is essentially one way to insert S1

in T xXiy (i.e., we construct a star T xS1y with one Steiner central node, then we make this central
node adjacent to the Steiner center node of T xXiy).

For the remaining cases, we assume S1XS ‰ H for any inclusion wise maximal S1 P Si. Several
cases may arise:

• Case there exist u, v P S X S1 nonadjacent in T xSy (see Fig. 16 for an illustration). We prove
T xS1y is a bistar. Indeed, suppose by contradiction T xS1y is a star. Then, since u, v P SXS1 are
non adjacent, the center of T xS1y must be in CpT xSyq. This implies S1 Ă S, a contradiction.
Therefore, we proved as claimed T xS1y must be a bistar. By the proof of Lemma 8 we must
have T xSy X T xS1y “ NT rCpT xXiyqs. Since there exist u, v P S X S1 nonadjacent in T xSy,
the central node of T xXiy can be uniquely defined as the central node ci P CpT xSyq such that
u, v P NT rcis. Finally, since the neighbourhood NT rcis is fixed by T xSy, by Lemma 11 this
leaves at most one canonical possibility for the second central node in CpT xS1yq, and so, at
most one possibility for T xS1y.

u

v

S S'

Figure 16: Two bistars intersecting.

Note that we always fall in this case provided |S X S1| ě 3. So, we are left to study when
|S X S1| P t1, 2u.

• Case S X S1 “ tu, vu. We further assume uv P EpT xSyq (otherwise, we fall in the previous
subcase). Recall that we assume S1 Ę S. In particular, we must have SXS1 Ď NT rCpT xXiyqs.
W.l.o.g., u P CpT xSyq (or equivalently, u must be the central node of T xXiy) and v is a leaf
of T xSy. Several situations force T xS1y to be a star, for instance if:

– S1 is strictly contained into another minimal separator of G;

– or RealpNT rusq ‰ tu, vu.

If such a situation occurs then, by Lemma 12 v must be the center of the star T xS1y, thereby
leaving only one possibility for T xS1y (i.e., see Fig. 17).

From now on assume no minimal separator strictly contains S1 and RealpNT rusq “ tu, vu.
T xS1y is forced to be a bistar if there exists at least one S2 P Si inclusion wise maximal such
that: S X S2 “ tvu (otherwise, T xS2y should be an edge and, since we assume |S1| ě 3 this
would imply S2 Ď S1 by Lemma 12). Furthermore as explained in the previous case there is
at most one canonical possibility for the bistar T xS1y.

If no S2 as above exists then, T xS1y may be either a star or a bistar. We can bipartition all
the remaining minimal separators S2 P Si that are inclusion wise maximal (including S1) as
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u

v

Figure 17: Star intersecting a bistar.

follows: those containing v, and those that do not. Note that in the former subcase (which
includes S1) we have SXS2 “ tu, vu, whereas in the latter subcase SXS2 “ tuu. Furthermore
if SXS2 “ tuu then, T xS2y must always be a star with a Steiner central node that is adjacent
to u (to see that, recall that RealpNT rusq “ tu, vu, and so, T xS2y cannot be a bistar). In
particular, there is only one possibility for such a S2. However, the same as S1, for all other
S2 such that S X S2 “ tu, vu, T xS2y may be either a star or a bistar. The key observation
here is that T xS2y can be a star for at most one such a S2 (otherwise, by Lemma 12 there
would be two non-edge stars with the same center node v, that contradicts Property 2 of
Theorem 8). Summarizing, since all these sets S2zS are pairwise disjoint, we are left with
Op|Xi|q possibilities for the unique such S2 for which T xS2y is a star (if any); this choice fixes
the corresponding subtree for all the remaining minimal separators. See Fig. 18.

u

v

S

S'

S''

Figure 18: A case where there are two possibilities for T xS1y.

• Case S X S1 “ tvu. If v P CpT xSyq then, the only possibility for T xS1y is a star with a Steiner
central node that is adjacent to v (recall that v is adjacent to at least one leaf in T xSy, and
so, T xS1y cannot be a bistar). Assume for the remaining of the case v is a leaf of T xSy. As
in the previous case, several situations force T xS1y to be a star, like if:

– S1 is strictly contained into another minimal separator of G;

– or RealpNT rCpT xXiyqsq ‰ tvu.

Furthermore if such a situation occurs then, v must be a center node of the star T xS1y
(possibly, T xS1y is an edge), and so, there is only one possibility for T xS1y.

From now on assume no minimal separator strictly contains S1 and RealpNT rCpT xXiyqsq “

tvu. In particular, the unique central node of T xXiy is some Steiner node αi. Furthermore,
as we only consider the inclusion wise maximal elements S2 P Si intersecting S, we must
have S X S2 “ tvu. Unlike the previous subcase, in an arbitrary well-structured T there
may be several such S2 for which T xS2y is a star. However, we now prove that up to local
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modifications of T , we can always assume there is at most one such S2 for which T xS2y is a
star. Note that by doing so, we can conclude as for the previous subcase about the number
of possibilities for T xXiy.

v
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u

x

y

z

v
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u

x
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z

Figure 19: The transformation of an edge into a bistar.

Assume there exist Sij , Sik such that T xSijy, T xSiky are stars. Then, T xSijy, T xSiky must be
edges with a common end v (otherwise, one should be a non-edge star and so by Lemma 12,
either Sij Ă Sik or Sik Ă Sij , a contradiction). By inclusion wise maximality of Sij and Sik ,
there is at least one of these two separators whose intersection with Si is either empty or
reduced to tvu. Assume w.l.o.g. this is the case for Sij and write Sij “ tu, vu. We first gain
more insights on the structure of T xXijy. For that, let Wij :“ VijzSij . Since v has a neighbour
in VizVij we must have distT pv,Wij q “ 4. This implies diampT xXijyq “ 4, distT pu,Wij q “ 3,
and all other real vertices of T xXijy must be leaves at distance two from CpT xXijyq. See
Fig. 19. We connect the unique node αij P CpT xXijyq (which is Steiner) to αi and then, we
remove the edge uv. In doing so, we obtain a tree T 1 such that RealpT 1q “ V and T 1xSijy is
a bistar. Since all neighbours of αi except v and all neighbours of αij except u are Steiner
nodes, T 1 keeps the property of being a 4-Steiner root of G. Furthermore, by inclusion wise
maximality of Sij we have T xXy “ T 1xXy for every clique-intersection X R tSij , Xi, Xiju,
that implies T 1 is well-structured. We end up observing distT 1px, yq ě distT px, yq for every
x, y P T xXiy, and more generally distT 1px,Wiq ě distT px,Wiq for every x P T xSiy, where
Wi :“ VizSi. Then, we obtain the desired property by repeating this above transformation
until there is at most one S2 such that T xS2y is a star.

Overall, given a fixed T xSy we have at most Op|Xi|q possibilities for T xXiy.

6.3.2 A degenerate case

If there is no minimal separator S Ă Xi such that T xSy is a bistar then, we get much less information
on the structure of T xXiy. We identify the following as our main obstruction for bounding the
number of possible subtrees:

Definition 4. Given G “ pV,Eq and T a 4-Steiner root of G, let Xi P KpGq and let S Ă Xi be a
minimal separator of size |S| ě 2. We call T xSy a thin branch of T xXiy if we have:

• T xSyzCpT xXiyq is a connected component of T xXiyzCpT xXiyq;

• and there is no other T xS1y, S1 Ă Xi which both intersects CpT xXiyq and T xSyzCpT xXiyq.
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The head of a thin branch is the vertex of T xSy that is the closest to CpT xXiyq.
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v u
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Figure 20: Examples of thin branches (represented by a dashed ellipse).

In order to understand the difficulties we met, assume on the way to construct T xXiy we
correctly identified CpT xXiyq and a minimal separator S for which T xSy must be a thin branch.
We can prove that T xSy must be a star (possibly, an edge). However, without any additional
information, there would be at least |S| ě 2 possibilities for CpT xSyq (e.g., see Figure 20). If there
are p such minimal separators S1, S2, . . . , Sp for which T xSjy must be a thin branch then, the
number of possibilities for T xXiy goes up to 2p at least.

Intuitively, our choice for T xSjy does not really matter as long as this does not violate any
distance’s constraints in the final solution we get. Guided by this intuition, we will sketch in
Section 8 a way to process all these Sj ’s – except maybe one – independently from each other. In
particular, for now we do not really need to “guess’ what will be exactly T xSjy in our final solution
but just to correctly certify it has to be a thin branch. Specifically, we prove the following result:

Lemma 14. Let Xi be a maximal clique of G “ pV,Eq with no Xi-free vertex. There exists a family
Di that can be computed in Opn|Xi|

4q-time and such that the following hold for any well-structured
4-Steiner root T of G:

1. If diampT xXiyq “ 4 and there is no minimal separator S Ă Xi such that T xSy is a bistar
then, we have pT 1xYi Y CpT 1xXiyqy, CpT 1xXiyqq P Di for some T 1 ”G T and Yi Ď Xi;

2. Moreover, Si Ď Yi, and for any v P XizYi there is a minimal separator S Ď pXizYiqYCpT xXiyq

such that v P S and T xSy is a thin branch.

Proof. By the hypothesis we are left to compute the diameter-four subtrees where, for every minimal
separator S Ă Xi, T xSy has diameter at most two. For that, we only need to consider the subset Si
of all minimal separators S Ă Xi that are not strictly contained into any other minimal separator
in Xi. Furthermore by the hypothesis there is no Xi-free vertex. In particular, every S P Si has
size at least two. This implies T xSy must be either an edge or a star. We now divide the proof into
several cases:

• Case there is a S P Si such that CpT xXiyq “ CpT xSyq. Note that in this case, T xSy must be a
non-edge star. Fix S P Si (there are Opnq possibilities) and one non-edge star T xSy such that
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RealpT xSyq “ S (there are Op|Xi|q possibilities). By Lemma 12, RealpNT rCpT xSyqsq “ S.
Therefore, there is at most one compatible solution for any other S1 P Si: namely, if v P SXS1

is a leaf of T xSy then, T xS1y must be a star (possibly, an edge) with v as a center node;
otherwise, T xS1y must be a non-edge star with a Steiner center node α P NT pCpT xSyqq. See
Fig. 21 for an illustration of that case.
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Figure 21: Case 1 of Lemma 14.

• Case there is no S P Si such that CpT xXiyq “ CpT xSyq. Fix ci P CpT xXiyq as being any vertex
of Xi or Steiner (this gives Op|Xi|q possibilities). There are several subcases:

– For S P Si of size |S| ě 3, the only possibility for T xSy is to be a non-edge star such
that (by Lemma 12) RealpNT rCpT xSyqsq “ S, and the center of T xSy must be adjacent
to ci. If in addition, there is a clique-intersection X Ă S, |X| “ 2 and ci P X then, the
center of T xSy must be the unique vertex in Xztciu. Otherwise, S is a thin branch.

– Let S1, S2, . . . , Sq be minimal separators of size exactly two that are pairwise intersecting
into some vertex u ‰ v. Then, their union must be a star: where the center is the unique

vertex u in
Ş

Sj , and RealpNT xXiy
rusq “ tvu Y

´

Ť

j S
j
¯

. In particular, T xSjy must be

an edge for every j.

– So, the only remaining subcase is a minimal separator S P Si such that: |S| “ 2, and
the intersection of S with any other minimal separator of Si is either empty or reduced
to ci. Then, T xSy must be a thin branch.

See Fig. 22 for an illustration of these subcases.

Finally, according to Definition 4, there may be at most one S such that Si X pSztciuq ‰ H
and T xSy must be a thin branch. Only for this S we generate all possibilities for T xSy,
thereby generating Op|S|q different pairs pTYi , ciq to add in the family.

6.3.3 The polynomial-time computation

Summarizing this section we get:

Proposition 1. Let Xi be a maximal clique of G “ pV,Eq. In Opn|Xi|
6q-time, we can compute a

family Fi with the following special property. For any well-structured 4-Steiner root T of G, there ex-
ists a T 1 and a (not necessarily maximal) clique Yi Ď Xi such that pT 1xYiYCpT 1xXiyqy, CpT 1xXiyqq P

Fi and we have:
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Figure 22: Case 2 of Lemma 14. Thin branches are identified by dotted rectangles.

• Si Ď Yi and T 1xSiy ”G T xSiy;

• distT 1px, VizSiq ě distT px, VizSiq for any x P V pT xSiyq;

• For any v P XizYi there is a minimal separator S Ď pXizYiq Y CpT xXiyq such that v P S and
T xSy is a thin branch.

Moreover, Yi “ Xi if either diampT 1xXiyq ă 4 or there exists a minimal separator S Ă Xi such
that T 1xSy is a bistar.

Proof. If there are Xi-free vertices then, by using Lemma 6, there is essentially one canonical
way to add these vertices at the end of the construction. For that, it suffices to fix the center of
T xXiy which, as explained in the proof of Theorem 13, can only increase the total runtime by a
multiplicative factor in Op|Xi|q. Thus from now on we may assume that Xi has no Xi-free vertex.
Furthermore, we may also assume we already computed all the diameter-three subtrees to add in Fi

(i.e., see Remark 1). We explain in Lemma 13 how to compute the subfamily Bi of all diameter-four
subtrees where at least one minimal separator S Ă Xi has T xSy being a bistar. Finally, Lemma 14
completes the construction of the family Fi.

7 Step 3: Deciding the partial solutions to store

In what follows, let Xij be a fixed child of Xi in TG. Recall that in the next Step, we will compute a
subset Tij of 4-Steiner roots for Gij . During this current Step, we compute a series of “indications”
to be transmitted to Xij in order to enforce the number of partials solutions that we will store in
Tij to stay polynomial in |Sij |. For that, we introduce the following problem:

Problem 3 (Distance-Constrained Root).

Input: a graph G “ pV,Eq, a maximal clique Xij , a tree TSij
P TSij

, and a sequence

pdvqvPV pTSij
q of positive integers.

Output: Either a 4-Steiner root Tij of Gij s.t. TSij
”G TijxSijy and, @v P V pTSij

q:

distTij
pv, VijzSij q ě dv; Or K if there is no such a root which can be extended to some

well-structured 4-Steiner root T of G.
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Theorem 14. Given G “ pV,Eq chordal and a rooted clique-tree TG as in Theorem 11, let Xi be
an internal node with children Xi1 , Xi2 , . . . , Xip. If we can solve Distance-Constrained Root
in polynomial time then, we can compute in polynomial time a family Ti1 , Ti2 , . . . , Tip of 4-Steiner
roots for Gi1 , Gi2 , . . . , Gip, respectively, such that:

1. For any j P t1, 2, . . . , pu, |Tij | “ Op|Sij |3q;

2. For any well-structured 4-Steiner root T of G, there exists a T 1 such that T xXiy ”G T 1xXiy,
T 1xVijy P Tij for any j P t1, 2, . . . , pu, and (only if Xi ‰ X0) distT 1pv, VizSiq ě distT pv, VizSiq
for any node v P V pT xSiyq.

We postpone the proof that we can solve Distance-Constrained Root in polynomial time
to Section 8. This above result can be seen as a pre-processing phase for Xi, that is crucial in order
to bound the runtime of our algorithm by a polynomial. Note that the technical condition on the
nodes in T xSiy is simply there to ensure that when later in the algorithm, we will need to solve
Distance-Constrained Root at Xi, we cannot miss a solution.

The remaining of this subsection is now devoted to the proof of Theorem 14. We will use some
additional terminology that we define next:

Definition 5. Given G “ pV,Eq, let A,B, S Ă V satisfy A Y B “ V and A X B “ S. Two
trees TA, TB, where RealpTAq “ A and RealpTBq “ B, are compatible if TAxSy ”G TBxSy. Then,
TA d TB is the tree obtained from TA, TB by the identification of TAxSy with TBxSy.

In particular, assumeG to be chordal and let TG be a rooted clique-tree ofG. For anyXi P KpGq,
let Si :“ Xi XXppiq, let Vi :“ V pGiq and let Wi :“ VizSi. Given T, T 1 4-Steiner roots of G, we say
that T 1 is i-congruent to T if T 1 ”G T xV zWiy d T

1
i , for some 4-Steiner root T 1i of Gi.

Note that in particular, any two Steiner roots of G are trivially 0-congruent (i.e., assuming
S0 “ H by convention). Finally in what follows we also use dTij

pvq as a shorthand for distTij
pv,Wij q.

We observe that for any v P V pT xSijyq we have distTij
pv,Wij q ď distTij

pv,XijzSij q ď 4.

Outline of the proof. We process the children nodes Xij sequentially by increasing size of the
minimal separators Sij . For that, we start constructing the family TSij

of Theorem 12, and we

consider the subtrees T xSijy P TSij
sequentially. We divide the proof into several cases depending

on the value of the diameter of T xSijy.

• If |Sij | ď 2 then, there can only beOp1q different possibilities for the pair T xSijy, pdvqvPV pT xSij
yq.

We can solve Distance-Constrained Root for all these possibilities, thereby obtaining the
family Tij . However, for some reasons that will become clearer in Section 8, we only keep in
Tij the solutions which satisfy some local optimality criteria. See Section 7.1.

• The treatment of the minimal separators Sij with at least three elements is more intricate

(Sections 7.2 and 7.3). For a fixed T xSijy we define an encoding with only Op|Sij |Op1qq
possibilities, that essentially summarizes at “guessing” the central nodes of T xXiy and T xXijy.
Then, we show that only one solution per possibility needs to be stored in Tij . The correctness
of this part crucially depends on some additional distances’ constraints that are derived from
the small separators contained into Sij , and on Theorem 11. Indeed, our approach could not
work with an arbitrary clique-tree.
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7.1 Case diampT xSijyq ď 1.

In this situation, |Sij | ď 2 and so, there can only be Op1q possibilities for the distances’ constraints
pdvqvPSij

. We can solve Distance-Constrained Root for all possible values, thereby obtaining
the family Tij . However, for reasons which will become clearer in the proofs of Section 8, storing
all these possibilities increases the runtime of our algorithm. We confront this issue with a local
optimality criterion. Specifically:

Claim 4. Assume Sij “ tvu and let TM
ij
P Tij maximize dTM

ij

pvq. If T is a 4-Steiner root of G and

T xVijy P Tij then, T xV zWijy d T
M
ij

is also a 4-Steiner root of G.

˛

By Claim 4 if Sij is a cut-vertex then, we keep exactly one solution in Tij .

Claim 5. Assume Sij “ tu, vu. Let T be a 4-Steiner root of G such that T xSijy is an edge and
distT pv,Wij q ě distT pu,Wij q. Then, T 1 :“ T xV zWijy d T v

ij
is also a 4-Steiner root of G, where

T v
ij
P Tij is, among all solutions in this set such that TijxSijy is an edge and dTij

pvq is maximized, one

maximizing dTij
puq. Moreover, distT 1pv,Wij q ě distT pv,Wij q and distT 1pu,Wij q ě distT pu,Wij q.

Proof. It suffices to prove distT 1pu,Wij q ě distT pu,Wij q. We first observe dT v
ij
pvq ´ dT v

ij
puq ď 1

because T xSijy is an edge. Therefore, either distT pv,Wij q “ dT v
ij
pvq was already maximized and

so we have dT v
ij
puq ě distT pu,Wij q, or dT v

ij
pvq ě distT pv,Wij q ` 1 and so dT v

ij
puq ě dT v

ij
pvq ´ 1 ě

distT pv,Wij q ě distT pu,Wij q. ˛

By Claim 5 if Sij “ tu, vu and T xSijy is an edge then, we only need to keep two solutions,
namely: among all those maximizing dTij

pvq (dTij
puq, resp.) the one maximizing dTij

puq (dTij
pvq,

resp.).

7.2 Case T xSijy is a non-edge star.

If |Sij | “ 2 then, as already observed in Section 7.1, there can only be Op1q different possibilities
for the constraints. We can solve Distance-Constrained Root for all possible values, thereby
obtaining the family Tij . Thus from now on we assume |Sij | ě 3.

Although there may be exponentially many possible sets of constraints in this case, we show that
only a few of the distances’ constraints we impose truly need to be considered by our algorithm.
Specifically, write CpT xSijyq “ tcu. For any fixed choices of a node ci P CpT xXiyq X NT rcs and
cij P CpT xXijyq XNT rcs (in a final solution T ), we will prove that all the choices of our algorithm
can be based on Op1q distances. The existence of such two nodes is given by Lemma 12. Of course
we do not know the center nodes ci, cij in advance. In what follows we propose to “guess” these
nodes. Since ci and cij will be either in Sij or Steiner, this leaves |Sij | ` 1 possibilities for each.
Furthermore for every fixed triple T xSijy, ci, cij , we will show that only Op1q partial solutions will
need to be stored. Overall, that gives only Op|Sij |3q different possibilities for stars.

Finally, on our way to upper-bound the number of possibilities to store by a polynomial, we
also use various properties of 4-Steiner powers in order to impose additional distances’ constraints
on the solutions in Tij which we prove to be necessary in order to extend such a partial solution to
all of G. This second phase is crucial in proving correctness of our approach.

39



Recall that TG is a rooted clique-tree of G as stated in Theorem 11. Before starting our analysis,
we need to derive a few properties from TG. Indeed, our approach could not work with an arbitrary
clique-tree.

Claim 6. Sij does not strictly contain any minimal separator of Gij

(otherwise we can discard all the solutions where T xSijy is a star).

Proof. Suppose by contradiction it is the case. Since we assume T xSijy is a star, any such a minimal
separator should have size at most two. However, Condition 3 of Theorem 11 ensures that all such
minimal separators should have size at least three. A contradiction. ˛

We are now left with two possibilities:

7.2.1 Subcase no minimal separator of Gij contains Sij .

Given an arbitrary 4-Steiner root Tij of Gij , we extract the following information:

short´ encodepTij q :“ xc, cij , dTij
pcq, dTij

pcij qy.

The relationship between short encodings and Distance-Constrained Root is discussed at the
end of the section. First we prove the following result:

Claim 7. If short´ encodepTij q “ short´ encodepT 1ij q and T :“ T 0 d Tij is a 4-Steiner root of

G then, T 1 :“ T 0 d T 1ij is also a 4-Steiner root of G.

Proof. It suffices to prove dTij
pvq “ dT 1

ij
pvq for every v P Sij . For that, we need to analyze the

possible intersections between Sij and the minimal separators in Xij . Recall that Sij is not a
minimal separator of Gij by the hypothesis.

• Moreover, assume cij ‰ c. By Lemma 12 we have RealpNT rcsq “ Sij . Combined with the
fact that a minimal separator of Gij can neither contain Sij nor be strictly contained into
Sij (Claim 6), this implies all the paths between Sij and Wij must pass by c, cij (see Fig. 23
for an illustration). In this situation, our partial encoding already contains all the distances’
information we need.

T<W >c cij i j

Figure 23: A schematic view of T xVijy.

• Otherwise, cij “ c. A simple transformation of the construction proposed in Lemma 6 shows
that we can always assume the simplicial vertices among Sijztcu (in Gij ) to be leaves adjacent
to c in T . Namely, we can make all these vertices leaves of T xXijy in such a way that they
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cij

S

S'

Figure 24: The case c “ cij . Two minimal separators S, S1 overlapping Sij are drawn in bold.

are connected to c via a path with one Steiner node. We complete this construction by
contracting each such simplicial vertex with its Steiner neighbour.

We end up showing that all the vertices in Sijztcu that are contained into another minimal
separator S of Gij are adjacent in T to some vertex in Wij (hence, their distance to this
set is known implicitly and does not need to be stored in the encoding). Indeed, since S
and Sij overlap, we cannot have T xSy is a bistar (otherwise, Sij Ď S by Lemma 8). In
particular, either T xSy is an edge with exactly one end in Sij , or T xSy is a non edge star and
by Lemma 12 the unique vertex in pS X Sij qztcu is its center. See Fig. 24 for an illustration.

˛

Finally given short´ encodepTij q, we can transform such a short encoding into the constraints
pdvqvPV pT xSij

yq where:

• dc “ dTij
pcq

• If cij is a real node that is different than c then, dcij “ dTij
pcij q;

• For all other nodes v P Sij :

dv “

#

dc ` 1 if c ‰ cij or v is simplicial in Gij

1 otherwise.
.

Note that in doing so, dc P t2, 3u and when it is defined dcij P t1, 2u. Overall, there are at most

22 “ 4 possibilities for a fixed T xSijy. Furthermore, this above transformation is not injective, and
we can so obtain the same constraints for different short encodings (thereby further reducing the
size of Tij ). The reason why this does not matter is that assuming we made a correct guess for
short´ encodepTij q, we proved in Claim 7 that we have dTij

pvq “ dv for any v P V pT xSijyq. In

particular, if Tij can be extended to a 4-Steiner root of G then, so could be any partial solution T 1ij
that would satisfy these above constraints as we would have dT 1

ij
pvq ě dTij

pvq for any v P V pT xSijyq.
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c
ci

T<X \ S >i ij

Figure 25: To the proof of Claim 8.

7.2.2 Subcase a minimal separator of Gij contains Sij .

As for the previous subcase, we start introducing a short encoding then, we explain its relationship
with Distance-Constrained Root at the end of this section. The novelty here is that we need
to complete our encoding with distances’ conditions, that we will also use in order to define our
distances’ constraints. We set:

short´ encode´ 2pTij q “
”

xc, ci, dTij
pcq, dTij

pciqy
ˇ

ˇ

ˇ
dTij

pvq, @v P Si X Sij

ı

.

In order to bound the number of possible such encodings, we prove that |Si X Sij | “ Op1q.
Indeed, recall that by Lemma 9, Sij must be weakly TG-convergent. Since we assume |Sij | ě 3,
by Condition 1 of Theorem 11 Sij is TG-convergent. Moreover since there is a minimal separator
of Gij that contains Sij , the maximal clique incident to all edges in

Ť

Sij
ĎS1 ES1pTGq must be Xij .

This implies that Si :“ Xi XXppiq cannot contain Sij . In particular, |Si X Sij | ď 2.

This new encoding above may not be informative enough in some cases. We complete it with
additional distances’ conditions. Specifically, we consider all the other minimal separators Sik :“
XiXXik between Xi and one of its children nodes such that Sik Ă Sij . Note that since we assume
T xSijy to be a star, we must have |Sik | ď 2. There are two possibilities:

• If Sik “ tviku then, by Claim 4 there is only one solution left in Tik . Specifically, this solution
Tik P Tik maximizes dik :“ dTik

pvikq. We are left ensuring dTij
pvikq ą 4´ dik .

• Otherwise, Sik “ tuik , viku. Then, T xSiky must be an edge and we may assume w.l.o.g.
cij “ uik . We are left to ensure that dTij

pvikq ě 2.

Claim 8. Let Tij satisfy the above distances’ conditions. Exactly one of the following conditions is
true:

1. Tij can be extended to a well-structured 4-Steiner root of G;

2. For any 4-Steiner root T 1ij of Gij such that short´ encode´ 2pTij q “ short´ encode´ 2pT 1
ij
q,

we cannot extend T 1ij to a well-structured 4-Steiner root of G.

Proof. See Fig. 25 for an illustration. Assume there is a T 1ij as stated in the claim that can be

extended to a well-structured 4-Steiner root T 1 of G. In order to prove the claim, it suffices to
prove that T :“ T 1xV zWijyd Tij is also a 4-Steiner root of G. For that, we start observing that by
Condition 3 of Theorem 11, there is a minimal separator of Gij that strictly contains Sij . Such a
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minimal separator must induce a bistar in T 1 and T , thereby implying c ‰ ci by Lemmata 8 and 9
(possibly, c “ cij ). In particular, all the paths between Sij and XizSij will need to pass by ci, and
so:

distT pXizSij ,Wij q “ distT 1pXizSij ,Wij q ě 5.

We finally consider the other minimal separators Sik :“ Xi X Xik between Xi and one of its
children nodes that intersect Sij . We have Sij Ę Sik and so, |Sik X Sij | ď 2. Furthermore since we
have c ‰ ci, Lemma 12 implies either Sik Ă Sij or Sik X Sij Ď tci, cu. In the latter case:

distT pWik ,Wij q “ distT 1pWik ,Wij q ě 5.

Thus from now on assume Sik Ă Sij (and so, |Sik | ď 2).
If Sik is a cut-vertex then, it follows from Claim 4 and the distances’ constraints over Tij that

we can always assume distT pWik ,Wij q ě 5. We end up with the case Sik “ tuik , viku. Then,
T xSiky must be an edge and we may assume w.l.o.g. c “ uik . Since we assume T xSijy is a
non-edge star, c is adjacent to some other leaf than vik . In other words, distT pc, V zWikq “ 1 is
minimized. Then, since we have distT 1pWik ,Wij q ě 5 we must have distT 1pc,Wikq “ 4 and so,
distT 1pvik ,Wikq “ 3. It follows from Claim 5 and the distances’ constraints over Tij that we can
always assume distT pWik ,Wij q ě 5. ˛

Finally given short´ encode´ 2pTij q, we can transform such a short encoding into the constraints
pdvqvPV pT xSij

yq where:

• dc “ dTij
pcq

• For any v P Sij X Si, dv “ dTij
pvq.

• If ci is a real node that is not in Si Y tcu then, dci “ dTij
pciq;

• If vik P Sik X Sij has a distance-condition then, dvik is set to the largest such a condition.

• For all other nodes v P Sij : dv “ 1 (trivial constraint).

For any fixed T xSijy the mapping ϕ : short´ encode´ 2pTij q Ñ xci, pdvqvPV pT xSij
yqy is injective.

Moreover in any final solution extending to all of G, we proved in Claim 8 that we will have all
the paths between T xSiy and Wij which need to pass by tc, ciu Y pSi X Sij q. Therefore, our short
encodings always preserve a yes-instance of Distance-Constrained Root at Xi provided one
exists.

7.3 Case T xSijy is a bistar

We follow the same approach as in Section 7.2. In fact, the proof is a bit simpler in this case. For
instance by Lemma 8, we must have CpT xSijyq “ tci, ciju.

Before choosing our short encoding, we will need the properties of TG given by Theorem 11.

Claim 9. Let Tij be a 4-Steiner root of Gij such that TijxSijy ”G T xSijy is a bistar. All the vertices
in NTij

pciqztciju are simplicial in Gij

(hence, their distance to Wij is implicitly deduced from dTij
pciq).
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Proof. This may not be the case only if some of these vertices are contained into a minimal
separator S of Gij . Then, S Ď Sij , and so, by Condition 3 of Theorem 11 we have |S| ě 3. By
Lemma 8, S Ă Sij . This implies by Lemma 9 the only possibility is that T xSy is a star such that
RealpNT rcisq “ S. However, by Condition 3 of Theorem 11, another minimal separator of Gij must
strictly contain S. By Lemma 9 this implies that in fact, RealpNT rcij sq “ S, that is a contradiction
since cij ‰ ci. ˛

Claim 10. Let Tij be a 4-Steiner root of Gij such that TijxSijy ”G T xSijy is a bistar, and let T be
a 4-Steiner root of G extending Tij . One of the following conditions is true:

1. All the vertices in NT pcij q are either simplicial in Gij or adjacent in T to a vertex of Wij .

2. |Si XNT rcij s| ď 2, and in the same way |Sik XNT rcij s| ď 2 for any other child Xik of Xi.

Proof. We may assume |NT rcij s| ě 3 (otherwise we are done). Then, |Si X NT rcij s| ě 3 (|Sik X
NT rcij s| ě 3, resp.) would imply RealpNT rcij sq “ Si (RealpNT rcij sq “ Sik , resp.).

Furthermore by Condition 3 of Theorem 11 any minimal separator of Gij strictly contained into
Sij must have size at least 3 and be strictly contained into another minimal separator of Gij . So,
the only possibility for such a separator is also S “ RealpNT rcij sq. In particular if such a S exists
then, it is TG-convergent (i.e, Condition 3 of Theorem 11). Therefore, we cannot have S “ Si
(S “ Sik , resp.), thereby implying we always fall in Case 2 of the claim.

From now on assume such a S does not exist. We prove either RealpNT rcij sq ‰ Si and
RealpNT rcij sq ‰ Sik for any child Xik , or there is no separator of Gij that contains RealpNT rcij sq.
Indeed, suppose by contradiction RealpNT rcij sq “ Si and there exists a separator S1 of Gij that
contains RealpNT rcij sq. It implies by Lemma 9 Si is weakly TG-convergent but not TG-convergent,
thereby contradicting Condition 1 of Theorem 11. The proof for Sik is identical as the one above.

Finally, assume either RealpNT rcij sq “ Si or RealpNT rcij sq “ Sik for some child Xik (otherwise
we are done). Since no minimal separator of Gij can contain RealpNT rcij sq, Case 1 of the claim
follows from the same proof as for Claim 7 (Case c “ cij ). ˛

For any 4-Steiner root Tij of Gij such that TijxSijy ”G T xSijy is a bistar, we include in our short
encoding the following information:

”

ci, dTij
pciq, dTij

pcij q
ı

and

#

only if |RealpNT rcij sq| ď 2) dTij
pvq, @v P NTij

rcij s

or (only if |Si XNTij
rcij s| ď 2) dTij

pvq, @v P NTij
rcij s X Si

As usual, the relationship between this above encoding and Distance-Constrained Root is
made explicit at the end of the section. There are only Op1q possibilities for a fixed T xSijy. By
Theorem 12, we so obtain Op|Sij |3q different encodings. However, we need to complete this case
with similar distances’ conditions as for the star case (Section 7.2).

Additional conditions. Specifically, assume |RealpNTij
rcij sq| ě 3 and |NTij

rcij s X Sik | ď 2 for

any child Xik of Xi (otherwise, no additional constraint is needed). We consider all the other
minimal separators Sik :“ Xi X Xik between Xi and one of its children nodes such that Sik Ď
NTij

rcij s. In particular, |Sik | ď 2. There are two possibilities:
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• If Sik “ tviku then, by Claim 4 there is only one solution left in Tik . Specifically, this solution
Tik P Tik maximizes dik :“ dTik

pvikq. We are left ensuring dTij
pvikq ą 4´ dik .

• Otherwise, Sik “ tuik , viku. We have Sik ‰ RealpNTij
rcij sq. Then, the tree T xSiky must be

an edge and we may assume w.l.o.g. cij “ uik . We are left to ensure that dTij
pvikq ě 2.

Claim 11. Let Tij satisfy all of the above distances’ conditions. Exactly one of the following
conditions is true:

1. Tij can be extended to a 4-Steiner root of G;

2. For any 4-Steiner root T 1ij of Gij with the same short encoding as Tij , we cannot extend T 1ij
to a well-structured 4-Steiner root of G.

Proof. Assume there is a T 1ij as stated in the claim that can be extended to a well-structured

4-Steiner root T 1 of G. In order to prove the claim, it suffices to prove that T :“ T 1xV zWijy d Tij
is also a 4-Steiner root of G. By Theorem 9, we have distT pv,Wij q “ 2`distTij

pci,Wij q and in the

same way distT 1pv,Wij q “ 2` distT 1
ij
pci,Wij q for any simplicial vertex v P Xi. In particular:

distT pv,Wij q “ distT 1pv,Wij q ě 5.

So, we are left to consider the other minimal separators Sik :“ Xi X Xik between Xi and any
other node. Note that Sik cannot both intersect NT pcij q and NT pciq (otherwise, Sik “ Sij , thereby
contradicting Lemma 8). If Sik X Sij Ď NT rcis then, by Claim 9, we have:

distT pWij ,Wikq “ mintdistT pWik , ciq ` distTij
pci,Wij q,

distT pWik , cij q ` distTij
pcij ,Wij qu,

and in the same way:

distT 1pWij ,Wikq “ mintdistT 1pWik , ciq ` distT 1
ij
pci,Wij q,

distT 1pWik , cij q ` distT 1
ij
pcij ,Wij qu,

(i.e., because all other vertices in NT pciq are simplicial in Gij ). In particular:

distT pWij ,Wikq “ distT 1pWij ,Wikq ě 5.

Therefore, we are only interested in the situation Sik XNT pcij q ‰ H – that implies Sik Ď NT rcij s.
We further assume |Sik | ď 2 since otherwise, we are done by Case 1 of Claim 10 and the fact that
Tij , T

1
ij

have the same short encoding. Then, there are two cases (i.e., exactly the same as for the

star case):

• Assume Sik “ tviku. Then, as explained above (Section 7.1), we only kept in Tik a partial
solution Tik maximizing dik :“ dTik

pvikq. In this situation, it follows from the distances’
constraints over Tij that we have distT pWik ,Wij q ě 5.
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• Otherwise, Sik “ tuik , viku. Recall that Sik Ă Sij . We may further assume |RealpNT rcij sq| ě
3 and Si ‰ Sik (otherwise, the encoding already includes the distance to Wij from any node
in T xSiky). Thus, T xSiky must be an edge and we may assume w.l.o.g. cij “ uik . Since we
assume |RealpNT rcij sq| ě 3, cij is adjacent to some other real node than vik . In other words,
distT pcij , V zWikq “ 1 is minimized. Then, since we have distT 1pWik ,Wij q ě 5 we must have
distT 1pcij ,Wikq “ 4 and so, distT 1pvik ,Wikq “ 3. It follows from Claim 5 and the distances’
constraints over Tij that we can always assume distT pWik ,Wij q ě 5.

˛

Finally, an encoding for bistars is transformed into distances’ constraints as follows:

• If dTij
pvq is included in the encoding then, dv :“ dTij

pvq. In particular, this will be the case
for ci, cij .

• If vik P Sik X Sij has a distance-condition then, dvik is set to the largest such a condition.

• For all other vertices v P Sij , dv “ 1 (trivial constraint).

For any fixed bistar T xSijy the mapping from the encodings to the distances’ constraints is bijective.
Indeed, in order to prove it is the case, the only difficulty is to prove that we can correctly identify
from the constraints the nodes ci, cij . Since we will always impose dcij ď 2 whereas dci ě 3, this is
always possible.

8 Step 4: The dynamic programming

In what follows, let ||G|| :“
ř

XiPKpGq |Xi|. For a chordal graph, ||G|| “ Opn`mq [BP93]. We can
now state the core result of this paper:

Theorem 15. Let G “ pV,Eq be strongly chordal, let TG be a rooted clique-tree as in Theo-
rem 11 and let Xi P KpGq. There is some polynomial P such that, after a pre-processing in time
Opn||Gi||

3P pnqq, we can solve Distance-Constrained Root for any T xSiy, pdvqvPT xSiy
in time

OpP pnqq.

Theorem 15 proves Theorem 2 directly. Note that we made no effort in order to improve the
running time in our analysis. A very rough analysis shows that we have P pnq “ Opn8q.

Proof of Theorem 15. If Xi is a leaf of TG then, this follows from Corollary 2. Thus from now on,
assume Xi is an internal node with children Xi1 , Xi2 , . . . , Xip .

Preprocessing. Let Ti1 , Ti2 , . . . , Tip be as in Theorem 14. By induction on TG, the computation
of all the Tij ’s requires total preprocessing time

řp
j“1Opn||Gij ||

3P pnqq, and
řp

j“1Op|Sij |3P pnqq
additional time. We also need to construct the family Fi of Proposition 1, that takes Opn|Xi|

6q-
time. Note that the elements in Fi are of the form pTYi , Ciq where Yi Ď Xi and Ci must represent
the center of T xXiy (missing vertices of XizYi are supposed to be located in thin branches, see
Lemma 14). Overall, if we assume w.l.o.g. that P pnq “ Ωpn3q then, this pre-processing phase takes
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total time:

p
ÿ

j“1

Opn||Gij ||
3P pnqq `

p
ÿ

j“1

Op|Sij |3P pnqq `Opn|Xi|
6q

“ OpnP pnq ¨
p
ÿ

j“1

||Gij ||
3q `Opp|Xi|

3P pnqq `Opn|Xi|
3P pnqq

“ OpnP pnq ¨ p||Gi||
3 ´ |Xi|

3qq `Opn|Xi|
3P pnqq

“ OpnP pnq||Gi||
3q.

Answering a query. In what follows let T xSiy and pdvqvPT xSiy
be fixed. Recall that for every

pTYi , Ciq P Fi we have Si Ď Yi, and so, we can check whether T xSiy ”G TYixSiy. This takes total
time Op|Si||Fi|q “ Opn|Xi|

7q. Then, we consider each pTYi , Ciq P Fi that passes this first test above
sequentially. Simply put, we use a series of filtering rules in order to greedily find a solution to
Distance-Constrained Root, or to correctly conclude that there is none.

Assume first Yi “ Xi (no thin branch). For every v P T xSiy we check whether we have:

distTYi
pv,XizSiq ě dv

(otherwise, we violate our distances’ constraints). We will assume from now on it is the case. In
the same way, for every u P T xSijy, j P t1, 2, . . . , pu, we only keep in Tij those solutions Tij such
that we have:

distTYi
pv, uq ` dTij

puq ě dv.

Overall, since |Tij | “ Op|Sij |3q “ Op|Xi|
3q, this new verification phase takes total timeOpp|Si||Xi|

3q “

Opn|Xi|
4q. Furthermore in doing so, we ensure that any 4-Steiner root of Gi that we can obtain from

TYi and the remaining solutions in the Tij ’s will satisfy all our distances’ constraints. Conversely,
if no such a solution can be found then, we can correctly report that our distances’ constraints
cannot be satisfied by Theorem 14.

We now introduce another filtering rule, quite similar as the one above, that we will keep using
throughout the remaining of the proof. Specifically, for every j P t1, 2, . . . , pu and u P T xSijy,
we assign some value rij puq that intuitively represents the distance of u to VizVij . Every time
the rule is applied, we discard all solutions Tij P Tij such that dTij

puq ` rij puq ď 4. We set

initially rij puq :“ distTYi
pu,XizSij q and we apply the rule. Overall, updating (initializing, resp.)

the values rij for every j takes time
řp

j“1Op|Sij |q “ Opn|Xi|q. Applying the rule takes time
řp

j“1Op|Sij ||Tij |q “
řp

j“1Op|Sij |4q “ Opn|Xi|
4q. In what follows, we explain how to greedily

construct a solution (if any), starting from Ti :“ TYi . The procedure is divided into a constant
number of phases. Every time we complete one of these phases, we need to apply this above filtering
rule.

• Phase 1: Processing the cut-vertices. We consider all the indices j P t1, 2, . . . , pu such that
Sij “ tvu is a cut-vertex. By Claim 4 there is exactly one solution left in Tij . We add it
to the solution, i.e., we set Ti :“ Ti d Tij . Furthermore, for every k P t1, 2, . . . , puztju and
u P T xSiky (possibly, u “ v) we set rikpuq :“ mintrikpuq, distTipu, vq ` dTij

pvqu. We end up
applying the filtering rule above.
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• Phase 2: Processing the edges. We consider all the indices j P t1, 2, . . . , pu such that Sij “
tu, vu and T xSijy is an edge. The following claim shows that we can proceed similarly as for
Phase 1 provided we know which among u or v will be closest to VizVij . Therefore, computing
this information is the main objective of this phase.

Claim 12. Assume Sij “ tu, vu. Let T be a 4-Steiner root of G such that T xSijy is an edge
and distT pu, V zVij q ě distT pv, V zVij q. Then, T xV zWijy d T v

ij
is also a 4-Steiner root of G,

where T v
ij
P Tij is, among all solutions in this set such that TijxSijy is an edge and dT v

ij
pvq is

maximized, one maximizing dT v
ij
puq.

Proof. By maximality of dT v
ij
pvq the resulting T 1 would not be a 4-Steiner root of G only if

distT pu, V zVij q ` dT v
ij
puq ď 4. But then, since dT v

ij
pvq ´ dT v

ij
puq ď 1 (because T xSijy is an

edge), one would obtain distT pu, V zVij q “ distT pv, V zVij q and distT pv, V zVij q ` dT v
ij
pvq “ 5.

In particular, we should have in the original Steiner root T :

mintdistT pu,Wij q, distT pv,Wij qu ě dT v
ij
pvq.

As T v
ij

maximizes dT v
ij
pvq and dT v

ij
puq is maximized, dT v

ij
puq ě distT pu,Wij q ě dT v

ij
pvq. ˛

By Claim 12 we are left to decide which amongst u or v will minimize its distance to VizVij
in the final solution. If either u or v has a real neighbour in TizSij then, we are done. Thus
from now on we assume this is not the case.

There may be several other indices k such that Sik “ Sij . As an intermediate step, we explain
how to merge the solutions in Tij and in Tik into a new set T 1ij when this happens. For that,

we consider all the Tij , Tik sequentially. We put Tij d Tik into T 1ij if and only if we have

mintdTij
pvq ` dTik

pvq, dTij
puq ` dTik

puqu ą 4. If so then, dTij
dTik

puq “ mintdTij
puq, dTik

puqu,

and in the same way dTij
dTik

pvq “ mintdTij
pvq, dTik

pvqu. Overall, since there are at most
two solutions stored in each of Tij and Tik , this takes constant-time. We end up applying
Claim 5 in order to replace Tij by the at most two best solutions in T 1ij . By repeating this
above procedure, we can assume w.l.o.g. that there is no other index k such that Sik “ Sij .

We may further assume that there is no index k such that Sik “ tuu (Sik “ tvu, resp.) for
otherwise we already ensured at the last step dTik

puq “ 4 (dTik
pvq “ 4, resp.). Then, let us

assume distTipu, Ciq ď distTipv, Ciq (u is closer than v to the center of TYi). In most cases, u
will be the closest to VizVij . Indeed, as we assume v has no real neighbour in TizSij , it is a
leaf in TYi . Therefore, a necessary condition for having v closer than u to VizVij is that there
exists another minimal separator Sik containing v. Since v is a leaf, this implies Sij Ă Sik .
In particular, as we also assume v has no real neighbour in TizSij , T xSiky must be a bistar.
We divide our analysis in several subcases:

– Subcase Sij “ CpT xSikyq. By Claim 2, there should be a heavy part in Sik , and so, one
of u or v should have a real neighbour in Ti. A contradiction.

– Subcase Ci “ tuu. By Claim 9, v is simplicial in Gik . This proves u will be closest than
v to VizVij in this subcase.
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– Otherwise, as u minimizes its distance to the center we must have CpTikxXikyq “ tuu
(this can only be true for at most one index ik). Note that v is the only leaf of T xSiky
that is adjacent to u. Therefore, by Lemma 8, v is the only real neighbour of u in any
Tik P Tik . This implies that we always have dTik

puq “ 2. We must ensure that the
solution Tij P Tij that we will choose satisfies dTij

puq ě 3. Conversely, among all the
partial solutions in Tij that satisfies this necessary condition, we can always choose the
one Tij maximizing dTij

pvq.

• Phase 3: Processing the bistars. We consider all the indices j P t1, 2, . . . , pu such that T xSijy
is a bistar. Let Ci “ tciu and let CpT xSijyq “ tci, ciju. We keep only the solutions Tij P Tij
such that CpTijxXijyq “ tciju. Then, we have by Claim 9 dTij

pvq “ dTij
pciq ` 1 for any

v P NTipciqztciju. So, we would like to pick Tij P Tij that maximizes dTij
pciq. The only case

where we cannot do that w.l.o.g. is when there exists a minimal separator Sik Ď NTircij s. We
may further assume |Sik | ě 3 (otherwise, due to Phases 1 and 2, this was already taken into
account).

However, by Claim 10 and its proof, this implies that there is only one possibility for dTij
pvq,

for every v P T xSijy. Specifically (Case 1 of the claim), dTij
pcij q “ 2, and for every

u P NT xSij
ypcij q either dTij

puq “ 3 or (if and only if u belongs to a minimal separator of

Gij ) dTij
puq “ 1. So, in this situation, there is only one solution stored in Tij , and we need

to pick this one. As in the two previous phases, for every k P t1, 2, . . . , puztju and u P T xSiky
we update rikpuq and then, we end up applying the filtering rule above.

• Phase 4: Processing the stars. We finally consider all the indices j P t1, 2, . . . , pu such that
T xSijy is a star. Let CpT xSijyq “ tcu. We divide the analysis in two subphases:

– Subphase 4.a: Processing a star when c P Ci. As a guidance towards our next choices,
we start analyzing the possibilities we still have among Tij :
Claim 13. The following properties are true for any Tij P Tij :

1. diampTijxXijyq “ 4;

2. and the unique center node vj P CpTijxXijyq is either in SijzCi, or it is a Steiner
node. Moreover:

(a) if v P Sij then, v is a leaf of TYi;

(b) every vertex of Sijztvu must be simplicial in Gij .

Proof. We show that assuming any of these above properties does not hold, some dis-
tances’ constraints would be violated w.r.t. our previous choices in the other Phases, and
so, we should have discarded Tij when we applied the filtering rule. If diampTijxXijyq ă

4 then, the only possibility is diampTijxXijyq “ 3, and so, c P CpTijxXijyq. How-
ever, the latter would contradict Lemma 4 as we already assume c P Ci. Therefore,
diampTijxXijyq “ 4, thereby implying CpTijxXijyq “ tvju for some vj . By Lemma 12,
RealpNTij

rcsq “ S. Thus, either vj is Steiner, or vj P S. Furthermore if vj P S then,

vj P SzCi (otherwise, this would contradict Lemma 4).

Finally, we prove that every vertex of Sijztvu must be simplicial in Gij . Indeed, we recall
that by Lemma 12 we have RealpNTij

rcsq “ S. By Claim 6, no minimal separator of Gij
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can be strictly contained into Sij . So, in order for having vertices of Sijztvu that are
not simplicial in Gij , there should be a minimal separator S1 of Gij that contains Sij .
But then, by Condition 3 of Theorem 11 we could assume at least one such S1 strictly
contains Sij . This would imply TijxS

1y would be a bistar, and so, by Lemma 9 c would
also be in CpTijxXyq for some maximal clique X in Gij . A contradiction. ˛

We observe that no such a vj as above in the claim can be contained into another
Sik ‰ Sij where T xSiky is a star. This implies that w.r.t. every such a separator Sik ,
any solution Tij that maximizes dTij

pCpTijxXijyqq would be a best possible choice – i.e.,
regardless of our exact choice for vj . However, we also need to account for the other
indices k such that Sik “ Sij .

Ti

Ti

Ti
Ti

Ti

j

j

j

j

1

2

3

4

Figure 26: An illustration of Phase 4.

Let J “ tj1 | Sij1 “ Siju. One should ensure that in the solutions Tij1 , j
1 P J that we will

choose, the center nodes vj1 in Tij1 xXij1 y will be pairwise different. Furthermore, since
all the vj1 ’s are pairwise at distance two, there can be at most one jmin P J such that
dTijmin

pvjminq “ 1. See Fig. 26 for an illustration. In order to satisfy all these constraints,

while ensuring that such a jmin does not exist if it is possible, we make a reduction to
Maximum-Weight Matching [DPS18].

1. Specifically, let SteinerrJs :“ tαj1 | j1 P Ju be a set of Steiner nodes. We construct
a bipartite graph BippSij q with respective sides J and pSijzCiq Y SteinerrJs.

2. For every j1 P J and v P SijzCi, there is an edge j1v if there exists a Tij1 P Tij1

such that CpTij1 xXij1 yq “ tvu. Furthermore if such a Tij1 exists then, we choose one
maximizing dTi

j1
pvq and we assign the weight dTi

j1
pvq to the edge j1v (this can either

be 1 or 2).

In the same way, there is an edge j1αj1 if there exists a Tij1 P Tij1 such that the unique
node in CpTij1 xXij1 yq is Steiner. Furthermore if such a Tij1 exists then, we choose
one maximizing dTi

j1
pCpTij1 xXij1 yqq and we assign the weight dTi

j1
pCpTij1 xXij1 yqq to

the edge j1αj1 .

3. We compute a matching in BippSij q of maximum total weight. This takes Opn5{2q-
time [DPS18]. By construction, such a matching should contain an edge incident to
every j1 P J , and its total weight should be either 2|J | ´ 1 (if jmin exists) or 2|J |.

For every j1 P J , we pick a solution Tij1 corresponding to the edge incident to j1 in the
matching. Then, as in all previous phases, we end up applying our filtering rule above.
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– Subphase 4.b: Processing a star when c R Ci. This situation can happen only if diampTYiq “

4. Then, the unique node ci P Ci is a neighbour of c. We may further assume that, if
RealpNTircisq is a minimal separator S then, we already handled with S during the
previous subphase. Similarly, we already handled with any minimal separator strictly
contained into Sij , strictly containing Sij resp., during the previous phases. Hence, the
unique path in Ti between T xSijy and any other T xSiky that we did not process yet
goes by ci. We are left with finding a solution Tij P Tij maximizing dTij

pciq. However,
as in the previous subphase we also need to account for the other indices k such that
Sik “ Sij .

Let J “ tj1 | Sij1 “ Siju. We may assume |J | ě 2 since otherwise, we are done by
taking any solution Tij P Tij that maximizes dTij

pciq (i.e., as explained above). Since

Sij must be weakly TG-convergent (Lemma 9), and so, TG-convergent (Condition 1 of
Theorem 11), it implies that, for any j1 P J , there can be no minimal separator of Gij1

that contains Sij . However, an additional difficulty compared to the previous subphase
is that now the center c of the star can also be in CpTij1 xXij1 yq. So, we need to modify
our approach in the previous subphase as follows:

1. We first choose the unique j0 P J such that c P CpTij0 xXij0
yq (if any). Then, we

choose a corresponding solution in Tij0 among Op|Sij0 |
3q “ Op|Xi|

3q possibilities.

Overall, there are Opn|Xi|
3q possibilities. We test each such a possibility sequen-

tially.

2. By Claim 7, the following property holds for any v P Sztcu: either v is simplicial
in Gij0

(and so, dTij0
pvq “ 3), or dTij0

pvq “ 1. In the latter case, we discard all

solutions Tij1 P Tij1 , j
1 P Jztj0u such that CpTij1 xXij1 yq “ tvu.

3. Finally, we observe that for every j1 P Jztj0u, we will always obtain dTi
j1
pciq “ 2`

dTi
j1
pCpTij1 xXij1 yqq P t3, 4u. Since we aim at maximizing dTi

j1
pciq, we can apply our

reduction to Maximum-Weight Matching in order to pick the solutions Tij1 P Tij1

for every j1 P Jztj0u.

4. Overall, among all the valid solutions computed, we keep the one maximizing
minj1PJ dTi

j1
pciq.

This last phase concludes the algorithm.

In order to complete the proof, let us finally assume Yi ‰ Xi (there are thin branches). Then,
Ci “ tciu. We consider all the minimal separators Sj1 , Sj2 , . . . , Sjq Ď pXizYiq Y tciu sequentially.
For every ` P t1, 2, . . . , qu we must have T xSj`y is a thin branch, and so, a star. We so have
Op|Sj` |q “ Op|Xi|q possibilities. Furthermore, since according to Definition 4 there can be no
minimal separator Sik which intersects both Sj` and XizSj` , any solution Tj` P Tj` that maximizes
dTj`

pciq would be a best possible choice. This latter case ressembles to the situation we met in
Subphase 4.b. We can solve it by using the same tools as for this subphase. Specifically:

1. We consider each possibility for the star T xSj`y sequentially;

2. Given a fixed T xSj`y, every minimal separator Sik Ă Sj` must be either a cut-vertex or induce
an edge (otherwise, we can discard this possibility for T xSj`y). Then, we can process such
minimal separators Sik as in Phases 1 and 2 above (but we do not apply the filtering rules).
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3. We end up applying the same procedure as for Subphase 4.b.. Namely, this procedure com-
bines a brute-force enumeration with our reduction to Maximum-weight Matching.

4. Overall, among all the valid solutions computed, we keep the one maximizing dpciq. Then,
we can apply our filtering rule above.

Once we applied this above procedure to all the thin branches, we can reuse our previous four-phase
algorithm in order to process all the other minimal separators.

9 Conclusion

There are essentially two dominant approaches in order to solve k-Leaf-Power and k-Steiner
Root in the literature. The first one, and by far the most elegant, is based on structural charac-
terization of the corresponding graph classes [BL06, BLS08]. Unfortunately such characterizations
– mostly based on forbidden induced subgraphs – look challenging to derive for larger values of
k. Furthermore, some recent work suggests that even a nice characterization of k-leaf powers (k-
Steiner powers, resp.) by forbidden induced subgraphs might not be enough in order to obtain a
polynomial-time recognition algorithm [Laf17].

The second approach consists in a clever use of dynamic programming. Although this approach
is much less satisfying on the graph-theoretic side, it may be more promising than the first one.
For instance, the only known algorithms so far for recognizing 5-leaf powers and 3-Steiner powers
are based on this approach [CK07]. Unfortunately, standard dynamic programming techniques are
challenging to apply as the value of k increases, which is probably why no improvement has been
obtained for this problem for over a decade – until this paper.

We propose several new avenues for research on dynamic programming algorithms for k-leaf
powers and k-Steiner powers. In particular, we hope that our structural analysis of these roots
– based on a renewed interest for clique-intersections – can be helpful in order to generalize our
algorithmic framework to larger values of k. Some of our side contributions, especially the design
of a problem-specific clique-tree and our greedy procedures in order to select partial solutions, can
also be of independent interest for future research on this topic.
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