
HAL Id: hal-01887230
https://hal.science/hal-01887230

Submitted on 3 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Incremental Parsing of Common Lisp Code
Irène Anne Durand, Robert Strandh

To cite this version:
Irène Anne Durand, Robert Strandh. Incremental Parsing of Common Lisp Code. 11th European
Lisp Symposium, Apr 2018, Marbella, Spain. pp.16-22. �hal-01887230�

https://hal.science/hal-01887230
https://hal.archives-ouvertes.fr


Incremental Parsing of Common Lisp Code
Irène Durand
Robert Strandh

irene.durand@u-bordeaux.fr
robert.strandh@u-bordeaux.fr
LaBRI, University of Bordeaux

Talence, France

ABSTRACT
In a text editor for writing Common Lisp [1] source code, it is
desirable to have an accurate analysis of the buffer contents, so
that the role of the elements of the code can be indicated to the
programmer. Furthermore, the buffer contents should preferably
be analyzed after each keystroke so that the programmer has up-
to-date information resulting from the analysis.

We describe an incremental parser that can be used as a key
component of such an analyzer. The parser, itself written in Com-
mon Lisp, uses a special-purpose implementation of the Common
Lisp read function in combination with a cache that stores existing
results of calling the reader.

Since the parser uses the standard Common Lisp reader, the re-
sulting analysis is very accurate. Furthermore, the cache makes the
parser very fast in most common cases; re-parsing a buffer in which
a single character has been altered takes only a few milliseconds.

CCS CONCEPTS
• Applied computing → Text editing; • Software and its en-
gineering→ Syntax; Parsers;Development frameworks and
environments; Integrated and visual development environ-
ments; Functional languages; Multiparadigm languages;

KEYWORDS
Common Lisp

ACM Reference Format:
Irène Durand and Robert Strandh. 2018. Incremental Parsing of Common
Lisp Code. In Proceedings of the 11th European Lisp Symposium (ELS’18).
ACM, New York, NY, USA, 7 pages.

1 INTRODUCTION
Whether autonomous or part of an integrated development envi-
ronment, an editor that caters to Common Lisp programmers must
analyze the buffer contents in order to help the programmer un-
derstand how this contents would be analyzed when submitted to
the Common Lisp compiler or interpreter. Furthermore, the editor
analysis must be fast so that it is up to date shortly after each key-
stroke generated by the programmer. Miller [5] indicates that an

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’18, April 16–17 2018, Marbella, Spain
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-2-9557474-2-1.

upper bound on the delay between a keystroke and the updated
result is around 0.1 seconds.

In order to obtain such speed for the analysis, it must be incre-
mental. A complete analysis of the entire buffer for each keystroke
is generally not feasible, especially for buffers with a significant
amount of code.

Furthermore, the analysis is necessarily approximate. The reader
macro #. (hash dot) and the macro eval-when allow for arbitrary
computations at read time and at compile time, and these com-
putations may influence the environment in arbitrary ways that
may invalidate subsequent, or even preceding analyses, making an
analysis that is both precise and incremental impossible in general.

The question, then, is how approximate the analysis has to be,
and how much of it we can allow ourselves to recompute, given
the performance of modern hardware and modern Common Lisp
implementations.

In this paper, we describe an analysis technique that represents
an improvement compared with the ones used by the most wide-
spread editors for Common Lisp code used today. The technique is
more precise than existing ones, because it uses the Common Lisp
read function, which is a better approximation than the regular-
expression techniques most frequently used. We show that our
analysis is sufficiently fast because it is done incrementally, and
it requires very little incremental work for most simple editing
operations.

The work in this paper is specific to the Common Lisp language.
This language has a number of specific features in terms of its
syntax, some of which make it harder to write a parser for it, and
some of which make it easier:

• The reader algorithm is defined in terms of a non-tokenizing
recursive descent parser. This fact makes our task easier,
because the result of calling read at any location in the
source code is well defined and yields a unique result. For
other languages, the meaning of some sequence of characters
may depend on what comes much later.
• The Common Lisp reader is programmable in that the ap-
plication programmer can define reader macros that invoke
arbitrary code. This feature makes our task harder, because
it makes it impossible to establish fixed rules for the mean-
ing of a sequence of characters in the buffer. The technique
described in this paper can handle such arbitrary syntax
extensions.
• As previously mentioned, arbitrary Common Lisp code may
be invoked as part of a call to read, and that codemaymodify
the readtable and/or the global environment. This possibility



ELS’18, April 16–17 2018, Marbella, Spain Irène Durand and Robert Strandh

makes our task harder, and we are only able to address some
of the problems it creates.

2 PREVIOUS WORK
In this section, we present a selection of existing editors, and in
particular, we discuss the technique that each selected editor uses
in order to analyze a text buffer containing Common Lisp code.

We do not cover languages other than Common Lisp, simply
because our technique crucially depends on ability to analyse the
buffer contents with a non-tokenizing (i.e, based on reading a char-
acter at a time) recursive descent parser. The Common Lisp read
function is defined this way, but most other languages require more
sophisticated parsing techniques for a correct analysis.

2.1 Emacs
GNU Emacs [2, 3] is a general-purpose text editor written partly in
C but mostly in a special-purpose dialect of Lisp [4].

In the editing mode used for writing Common Lisp source code,
highlighting is based on string matching, and no attempt is made
to determine the symbols that are present in the current package.
Even when the current package does not use the common-lisp
package, strings that match Common Lisp symbols are highlighted
nevertheless.

In addition, no attempt is made to distinguish between the role of
different occurrences of a symbol. In Common Lisp where a symbol
can simultaneously be used to name a function, a variable, etc., it
would be desirable to present occurrences with different roles in a
different way.

Indentation is also based on string matching, resulting in the
text being indented as Common Lisp code even when it is not.
Furthermore, indentation does not take into account the role of
a symbol in the code. So, for example, if a lexical variable named
(say) prog1 is introduced in a let binding and it is followed by a
newline, the following line is indented as if the symbol prog1 were
the name of a Common Lisp function as opposed to the name of a
lexical variable.

2.2 Climacs
Climacs1 is an Emacs-like editor written entirely in Common Lisp. It
usesMcCLIM [9] for its user interface, and specifically, an additional
library called ESA [10].

The framework for syntax analysis in Climacs [6] is very general.
The parser for Common Lisp syntax is based on table-driven parsing
techniques such as LALR parsing, except that the parsing table was
derived manually. Like Emacs, Climacs does not take the current
package into account. The parser is incremental in that the state of
the parser is saved for certain points in the buffer, so that parsing
can be restarted from such a point without requiring the entire
buffer to be parsed from the beginning.

Unlike Emacs, the Climacs parser is more accurate when it comes
to the role of symbols in the program code. In many cases, it is able
to distinguish between a symbol used as the name of a function
and the same symbol used as a lexical variable.

1See: https://common-lisp.net/project/climacs/

2.3 Lem
Lem2 is a relatively recent addition to the family of Emacs clones.
It is written in Common Lisp and it uses curses to display buffer
contents.

Like Emacs (See Section 2.1.), it uses regular expressions for
analyzing Common Lisp code, with the same disadvantages in
terms of precision of the analysis.

3 OUR TECHNIQUE
3.1 Buffer update protocol
Our incremental parser parses the contents of a buffer, specified
in the form of a CLOS protocol[8]. We include a brief summary of
that protocol here.

The protocol contains two sub-protocols:
(1) The edit protocol is used whenever items are inserted or

deleted from the buffer. An edit operation is typically invoked
as a result of a keystroke, but an arbitrary number of edit
operations can happen as a result of a keystroke, for example
when a region is inserted or deleted, or when a keyboard
macro is executed.

(2) The update protocol is used when the result of one or more
edit operations must be displayed to the user. This protocol
is typically invoked for each keystroke, but it can be invoked
less frequently if some view of the buffer is temporarily
hidden. Only when the view becomes visible is the update
protocol invoked.

This organization solves several problems with the design of
similar protocols:
• The edit protocol does not trigger any updates of the views.
The edit operations simply modify the buffer contents, and
marks modified lines with a time stamp. Therefore the op-
erations of the edit protocol are fast. As a result, complex
operations such as inserting or deleting a region, or execut-
ing a complicated keyboard macro, can be implemented as
the repeated invocation of simpler operations in the edit
protocol. No special treatment is required for such complex
operations, which simplifies their overall design.
• There is no need for the equivalent of observers as many
object-oriented design methods require. Visible views are
automatically updated after every keystroke. Each view con-
tains a time stamp corresponding to the previous time it was
updated, and this time stamp is transmitted to the buffer
when the update protocol is invoked.
• Views that are invisible are not updated as a result of a
keystroke. Such views are updated if and when they again
become visible.

When a view invokes the update protocol, in addition to trans-
mitting its time stamp to the buffer, it also transmits four callback
functions. Conceptually, the view contains some mirror representa-
tion of the lines of the buffer. Before the update protocol is invoked,
the view sets an index into that representation to zero, meaning
the first line. As a result of invoking the update protocol, the buffer
informs the view of changes that happened after the time indicated
by the time stamp by calling these callback functions as follows:
2See https://github.com/cxxxr/lem.



Incremental Parsing of Common Lisp Code ELS’18, April 16–17 2018, Marbella, Spain

• The callback function skip indicates to the view that the index
should be incremented by a number given as argument to
the function.
• The callback function modify indicates a line that has been
modified since the last update. The line is passed as an ar-
gument. The view must delete lines at the current index
until the correct line is the one at the index. It must then
take appropriate action to reflect the modification, typically
by copying the new line contents into its own mirror data
structure.
• The callback function insert indicates that a line has been
inserted at the current index since the last update. Again, the
line is passed as an argument. The view updates its mirror
data structure to reflect the new line.
• The callback function sync is called with a line passed as an
argument. The view must delete lines at the current index
until the correct line is the one at the index.

Notice that there is no delete callback function. The buffer does
not hold on to lines that have been deleted, so it is incapable of
supplying this information. Instead, themodify and sync operations
provide this information implicitly by supplying the next line to be
operated on. Any lines preceding it in the mirror data structure are
no longer present in the buffer and should be deleted by the view.

The buffer protocol is line-oriented in two different ways:
(1) The editing operations specified by the protocol define a line

abstraction, in contrast to a buffer of GNU Emacs [2] which
exposes a single sequence containing newline characters to
indicate line separation.

(2) The update protocol works on the granularity of a line. An
entire line can be reported as being modified or inserted.

In the implementation of the buffer protocol, a line being edited
is represented as a gap buffer. Therefore, editing operations are very
fast, even for very long lines. However, the update protocol works
on the granularity of an entire line. This granularity is acceptable
for Common Lisp code, because lines are typically short. For other
languages it might be necessary to use a different buffer library.

For the purpose of this paper, we are only interested in the update
protocol, because we re-parse the buffer as a result of the update
protocol having been invoked.We can think of such an invocation as
resulting in a succession of operations, sorted by lines in increasing
order. There can be three different update operations:
• Modify. The line has been modified.
• Insert. A new line has been inserted.
• Delete. An existing line has been deleted.

Although the presence of a delete operation may seem to con-
tradict the fact that no such operation is possible, it is fairly trivial
to derive this operation from the ones that are actually supported
by the update protocol. Furthermore, this derived set of operations
simplifies the presentation of our technique in the rest of the paper.

In order to parse the buffer contents, we use a custom read
function. This version of the read function differs from the standard
one in the following ways:
• Instead of returning S-expressions, it returns a nested struc-
ture of instances of a standard class named parse-result.
These instances contain the corresponding S-expression and

the start and end position (line, column) in the buffer of the
parse result.
• The parse results returned by the reader also include enti-
ties that would normally not be returned by read such as
comments and, more generally, results of applying reader
macros that return no values.
• Instead of attempting to call intern in order to turn a token
into a symbol, the custom reader returns an instance of a
standard class named token.

The reader from the SICL project3 was slightly modified to al-
low this kind of customization, thereby avoiding the necessity of
maintaining the code for a completely separate reader.

No changes to the mechanism for handling reader macros is
necessary. Therefore, we handle custom reader macros as well.
Whenever a reader macro calls read recursively, a nested parse
result is created in the same way as with the standard reader macros.
More information about the required modifications to the reader
are provided in Appendix B.

For a visible view, the buffer update protocol is invoked after
each keystroke generated by the end user, and the number of modi-
fications to the buffer since the previous invocation is typically very
modest, in that usually a single line has been modified. It would be
wasteful, and too slow for large buffers, to re-parse the entire buffer
character by character, each time the update protocol is invoked.
For that reason, we keep a cache of parse results returned by the
customized reader.

3.2 Cache organization
The cache is organized as a sequence4 of top-level parse results.
Each top-level parse result contains the parse results returned by
nested calls to the reader. Here, we are not concerned with the
details of the representation of the cache. Such details are crucial in
order to obtain acceptable performance, but they are unimportant
for understanding the general technique of incremental parsing.
Refer to appendix A for an in-depth description of these details.

When the buffer is updated, we try to maintain as many parse
results as possible in the cache. Updating the cache according to a
particular succession of update operations consists of two distinct
phases:

(1) Invalidation of parse results that span a line that has been
modified, inserted, or deleted.

(2) Rehabilitation of the cache according to the updated buffer
contents.

3.3 Invalidation phase
As mentioned in Section 3.1, the invocation of the buffer-update
protocol results in a sequence of operations that describe how the
buffer has changed from the previous invocation.

As far as the invalidation phase is concerned, there are only mi-
nor variations in how the different types of operations are handled.
In all cases (line modification, line insertion, line deletion), the exist-
ing parse results that straddle a place that has been altered must be

3See: https://github.com/robert-strandh/SICL.
4Here, we use the word sequence in the meaning of a set of items organized con-
secutively, and not in the more restrictive meaning defined by the Common Lisp
standard.



ELS’18, April 16–17 2018, Marbella, Spain Irène Durand and Robert Strandh

invalidated. Notice that when a top-level parse result straddles such
a modification, that parse result is invalidated, but it is very likely
that several of its children do not straddle the point of modification.
Therefore such children are not invalidated, and are kept in the
cache in case they are needed during the rehabilitation phase.

In addition to the parse results being invalidated as described in
the previous paragraph, when the operation represents the insertion
or the deletion of a line, remaining valid parse results following the
point of the operation must be modified to reflect the fact that they
now have a new start-line position.

As described in Appendix A, we designed the data structure
carefully so that both invalidating parse results as a result of these
operations, and modifying the start-line position of remaining valid
parse results can be done at very little cost.

3.4 Rehabilitation phase
Conceptually, the rehabilitation phase consists of parsing the entire
buffer from the beginning by calling read until the end of the
buffer is reached. However, three crucial design elements avoid the
necessity of a full re-analysis:

• Top level parse results that precede the first modification to
the buffer do not have to be re-analyzed, because they must
return the same result as before any modification.
• When read is called at a buffer position corresponding to a
parse result that is in the cache, we can simply return the
cache entry rather than re-analyzing the buffer contents at
that point.
• If a top-level call to read is made beyond the lastmodification
to the buffer, and there is a top-level parse result in the cache
at that point, then every remaining top-level parse result
in the cache can be re-used without any further analysis
required.

4 PERFORMANCE OF OUR TECHNIQUE
The performance of our technique can not be stated as a single
figure, nor even as a function of the size of the buffer, simply because
it depends on several factors such as the exact structure of the buffer
contents and the way the user interacts with that contents.

Despite these difficulties, we can give some indications for certain
important special cases. We ran these tests on a 4-core Intel Core
processor clocked at 3.3GHz, running SBCL version 1.3.11.

4.1 Parsing with an empty cache
When a buffer is first created, the cache is empty. The buffer con-
tents must then be read, character by character, and the cache must
be created from the contents.

We timed this situation with a buffer containing 10000 lines of
representative Common Lisp code. The total time to parse was
around 1.5 seconds. This result deserves some clarifications:

• It is very unusual to have a file of Common Lisp code with
this many lines. Most files contain less than 2000 lines, which
is only 1/5 of the one in our test case.
• This result was obtained from a very preliminary version of
our parser. In particular, to read a character, several generic
functions where called, including the stream-read-char

function of the Gray streams library, and then several oth-
ers in order to access the character in the buffer. Further
optimizations are likely to decrease the time spent to read a
single character.
• This situation will happen only when a buffer is initially read
into the editor. Even very significant subsequent changes to
the contents will still preserve large portions of the cache,
so that the number of characters actually read will only be a
tiny fraction of the total number of characters in the buffer.
• Parsing an entire buffer does not exercise the incremental
aspect of our parser. Instead, the execution time is a com-
plex function of the exact structure of the code, the perfor-
mance of the reader in various situations, the algorithm for
generic-function dispatch of the implementation, the cost
of allocating standard objects, etc. For all these reasons, a
more thorough analysis of this case is outside the scope of
this paper, and the timing is given only to give the reader a
rough idea of the performance in this initial situation.
• This particular case can be handled by having the parser
process the original stream from which the buffer contents
was created, rather than giving it the buffer protocol wrapped
in a stream protocol after the buffer has been filled. That way,
the entire overhead of the Gray-stream protocol is avoided
altogether.

4.2 Parsing after small modifications
Wemeasured the time to update the cache of a buffer with 1200 lines
of Common Lisp code. We used several variations on the number of
top-level forms and the size of each top-level form. Three types of
representative modifications were used, namely inserting/deleting
a constituent character, inserting/deleting left parenthesis, and in-
serting/deleting a double quote. All modifications were made at the
very beginning of the file, which is the worst-case scenario for our
technique.

For inserting and deleting a constituent character, we obtained
the results shown in Table 1. For this benchmark, the performance
is independent of the distribution of forms and sub-forms, and also
of the number of characters in a line. The execution time is roughly
proportional to the number of lines in the buffer. For that reason, the
form size is given only in number of lines. The table shows that the
parser is indeed very fast for this kind of incremental modification
to the buffer.

nb forms form size time
120 10 0.14ms
80 15 0.14ms
60 20 0.14ms
24 100 0.23ms
36 100 0.32ms

Table 1: Inserting and deleting a constituent character.

For inserting and deleting a left parenthesis, we obtained the
results shown in Table 2. For this benchmark, the performance is
independent of the size of the sub-forms of the top-level forms.
For that reason, the form size is given only in number of lines. As



Incremental Parsing of Common Lisp Code ELS’18, April 16–17 2018, Marbella, Spain

shown in the table, the performance is worse for many small top-
level forms, and then the execution time is roughly proportional
to the number of forms. When the number of top-level forms is
small, the execution time decreases asymptotically to around 0.5ms.
However, even the slowest case is very fast and has no impact on
the perceived overall performance of the editor.

nb forms form size time
120 10 1.3ms
80 15 1.0ms
60 20 0.5ms
40 30 0.7ms
30 40 0.6ms
24 50 0.5ms
12 100 0.5ms

Table 2: Inserting and deleting a left parenthesis.

Finally, for inserting and deleting a double quote, we obtained
the results shown in Table 3. For this benchmark, the performance
is roughly proportional to the number of characters in the buffer
when the double quote is inserted, and completely dominated by the
execution time of the reader when the double quote is deleted. The
execution time thus depends not only on the number of characters
in the buffer, but also on how those characters determine what
the reader does. As shown by the table, these execution times are
borderline acceptable. In the next section, we discuss possible ways
of improving the performance for this case.

nb forms form size characters per line time
120 10 1 18ms
80 15 1 15ms
60 20 1 17ms
24 100 1 33ms
36 100 1 50ms
120 10 30 70ms

Table 3: Inserting and deleting a double quote.

5 CONCLUSIONS AND FUTUREWORK
Currently, parse results that are not part of the final structure of the
buffer are discarded. When the user is not using an editor mode that
automatically balances characters such as parentheses and double
quotes, inserting such a character often results in a large number
of parse results being discarded, only to have to be created again
soon afterward, when the user inserts the balancing character of
the pair. We can avoid this situation by keeping parse results that
are not part of the final structure in the cache, in the hopes that
they will again be required later. We then also need a strategy for
removing such parse results from the cache after some time, so as
to avoid that the cache grows without limits.

Parsing Common Lisp source code is only the first step in the
analysis of its structure. In order to determine the role of each
symbol and other information such as indentation, further analysis
is required. Such analysis requires a code walker, because the role of

a symbol may depend on the definitions of macros to which it is an
argument. Similarly, computing standard indentation, also requires
further analysis. To implement this code walker, we consider using
the first phase of the Cleavir compiler framework.5

We plan to investigate the use of a new implementation of first-
class global environments [7]. This new implementation of the exist-
ing CLOS protocol would use incremental differences to the startup
environment6 so as to define a compilation environment7 that is
different for each top-level form in the editor buffer. This tech-
nique would allow us to restart the compiler in an appropriate
environment without having to process the entire buffer from the
beginning.

The combination of the use of the first pass of the Cleavir com-
piler framework and the use of incremental first-class global envi-
ronments will allow us to handle compile-time evaluation of certain
top-level forms in a way that corresponds to the semantics of the
file compiler. In particular, imperative environment operations such
as changing the current package or modifying the readtable in the
middle of a buffer will have the expected consequences, but only to
subsequent forms in the buffer.

A more precise analysis of Common Lisp code opens the possi-
bility for additional functionality that requires knowledge about
the role of each expression. In particular, such an analysis could be
the basis for sophisticated code transformations such as variable
renaming and code refactoring.

6 ACKNOWLEDGMENTS
We would like to thank Philipp Marek and Cyrus Harmon for pro-
viding valuable feedback on early versions of this paper.

REFERENCES
[1] INCITS 226-1994[S2008] Information Technology, Programming Language, Common

Lisp. American National Standards Institute, 1994.
[2] Craig A. Finseth. Theory and practice of text editors, or, A cookbook for an

Emacs. Thesis (B.S.), M.I.T., Department of Electrical Engineering and Computer
Science, Cambridge, MA, USA, 1980. Supervised by David P. Reed.

[3] Craig A. Finseth. The Craft of Text Editing – Emacs for the ModernWorld. Springer-
Verlag, 1991. ISBN 0-387-97616-7 (New York), 3-540-97616-7 (Berlin).

[4] Bill Lewis, Dan LaLiberte, and Richard Stallman. GNU Emacs Lisp Reference
Manual. Free Software Foundation, Boston, MA, USA, 2014. ISBN 1-882114-74-4.

[5] Robert B. Miller. Response time in man-computer conversational transactions.
In Proceedings of the December 9-11, 1968, Fall Joint Computer Conference, Part
I, AFIPS ’68 (Fall, part I), pages 267–277, New York, NY, USA, 1968. ACM. doi:
10.1145/1476589.1476628. URL http://doi.acm.org/10.1145/1476589.1476628.

[6] Christophe Rhodes, Robert Strandh, and Brian Mastenbrook. Syntax Analysis in
the Climacs Text Editor. In Proceedings of the International Lisp Conference, ILC
2005, June 2005.

[7] Robert Strandh. First-class Global Environments in Common Lisp. In Proceedings
of the 8th European Lisp Symposium, ELS 2015, pages 79 – 86, April 2015. URL
http://www.european-lisp-symposium.org/editions/2015/ELS2015.pdf.

[8] Robert Strandh. A CLOS Protocol for Editor Buffers. In Proceedings of the 9th
European Lisp Symposium, ELS 2016, pages 3:21–3:28. European Lisp Scientific
Activities Association, 2016. ISBN 978-2-9557474-0-7. URL http://dl.acm.org/
citation.cfm?id=3005729.3005732.

[9] Robert Strandh and Timothy Moore. A Free Implementation of CLIM. In Pro-
ceedings of the International Lisp Conference, ILC 2002, October 2002.

[10] Robert Strandh, David Murray, Troels Henriksen, and Christophe Rhodes. ESA:
A CLIM Library for Writing Emacs-Style Applications. In Proceedings of the
2007 International Lisp Conference, ILC ’07, pages 24:1–24:10, New York, NY,

5Cleavir is currently part of SICL. See the directory named Code/Cleavir in the SICL
repository.
6Recall that the startup environment is the environment in which the compiler was
invoked.
7Recall that the compilation environment is the environment used by the compiler for
definitions and side effects of the compilation process.

http://doi.acm.org/10.1145/1476589.1476628
http://www.european-lisp-symposium.org/editions/2015/ELS2015.pdf
http://dl.acm.org/citation.cfm?id=3005729.3005732
http://dl.acm.org/citation.cfm?id=3005729.3005732


ELS’18, April 16–17 2018, Marbella, Spain Irène Durand and Robert Strandh

USA, 2009. ACM. ISBN 978-1-59593-618-9. doi: 10.1145/1622123.1622150. URL
http://doi.acm.org/10.1145/1622123.1622150.

A CACHE REPRESENTATION
Figure 1 illustrates the representation of the cache for parse results.
The buffer contents that corresponds to that cache contents might
for instance be:
(a
(b c))

(d)
(e
f)

(g
(h))

The sequence of top-level parse results is split into a prefix and
a suffix, typically reflecting the current position in the buffer being
edited by the end user. The suffix contains parse results in the order
they appear in the buffer, whereas the prefix contains parse results
in reverse order, making it easy to move parse results between the
prefix and the suffix.

Depending on the location of the parse result in the cache data
structure, its position may be absolute or relative. The prefix con-
tains parse results that precede updates to the buffer. For that reason,
these parse results have absolute positions. Parse results in the suf-
fix, on the other hand, follow updates to the buffer. In particular,
if a line is inserted or deleted, the parse results in the suffix will
have their positions changed. For that reason, only the first parse
result of the suffix has an absolute position. Each of the others
has a position relative to its predecessor. When a line is inserted
or deleted, only the first parse result of the suffix has to have its
position updated. When a parse result is moved from the prefix to
the suffix, or from the suffix to the prefix, the positions concerned
are updated to maintain this invariant.

To avoid having to traverse all the descendants of a parse result
when its position changes, we make the position of the first child
of some parse result P relative to that of P , and the children, other
than the first, of some parse result P , have positions relative to the
previous child in the list.

As a result of executing the invalidation phase, a third sequence
of parse results is created. This sequence is called the residue, and it
contains valid parse results that were previously children of some
top-level parse result that is no longer valid. So, for example, if the
line containing the symbol f in the buffer corresponding to the
cache in Figure 1 were to be modified, the result of the invalidation
phase would be the cache shown in Figure 2.

As Figure 2 shows, the top-level parse result corresponding to
the expression (e f) has been invalidated, in addition the child
parse result corresponding to the expression f. However, the child
parse result corresponding to the expression e is still valid, so it is
now in the residue sequence. Furthermore, the suffix sequence now
contains only the parse result corresponding to the expression (g
(h)).

For the rehabilitation phase, we can imagine that a single char-
acter was inserted after the f, so that the line now reads as fi).

At the start of the rehabilitation phase, the position for reading is
set to the end of the last valid top-level parse result in the prefix, in

prefix

suffix

absolute position relative position

(a (b c) a

(b c) b

c(d) d

(e f) e

f

(g (h) g

(h) h

Figure 1: Representation of the cache.

prefix

(a (b c) a

(b c) b

c(d) d

(g (h) g

(h) h

suffix

residue

e

Figure 2: Cache contents after invalidation.

this case at the end of the line containing the expression (d). When
the reader is called, it skips whitespace characters until it is posi-
tioned on the left parenthesis of the line containing (e. There is no
cache entry, neither in the residue nor in the suffix, corresponding
to this position, so normal reader operation is executed. Thus, the
reader macro associated with the left parenthesis is invoked, and
the reader is called recursively on the elements of the list. When the
reader is called with the position corresponding to the expression
e, we find that there is an entry for that position in the residue, so
instead of this expression being read by normal reader operation,
the contents of the cache is used instead. As a result, the position

http://doi.acm.org/10.1145/1622123.1622150


Incremental Parsing of Common Lisp Code ELS’18, April 16–17 2018, Marbella, Spain

suffix

prefix

(a (b c) a

(b c) b

c(d) d

e

(g (h) g

(h) h

fi

(e fi)

Figure 3: Cache contents after read.

in the buffer is set to the end of the cached parse result, i.e. at the
end of the expression e. The remaining top-level expression is read
using then normal reader operation resulting in the expression (e
fi). This parse result is added to the prefix resulting in the cache
contents shown in figure 3.

The reader is then invoked again in order to read another top-
level expression. In this invocation, whitespace characters are first
skipped until the reader is positioned immediately before the ex-
pression (g (h)). Not only is there a parse result in the cache
corresponding to this position, but that parse result is the first in
the suffix sequence. We therefore know that all parse results on in
the suffix are still valid, so the we can terminate the rehabilitation
phase.

B READER CUSTOMIZATION
In order for it to be possible for the Common Lisp read function to
serve as a basis for the incremental parser described in this paper,
it must be adapted in the ways described below.

B.1 Returning parse results
In addition to the nested expressions returned by an unmodified
read function, it must also return a nested structure of parse results,
i.e. expressions wrapped in standard instances that also contain
information about the location in the source code of the wrapped
expressions.

To accomplish this additional functionality, it is not possible to
create a custom read function that returns parse results instead
of expressions, simply because the function must handle custom
reader macros, and those reader macros return expressions, and
not parse results. Also, it would create unnecessary maintenance
work if all standard reader macros had to be modified in order to
return parse results instead of expressions.

It is also not possible to modify the read function to return the
parse result as a second value, in addition to the normal expression.
One reason is that we would like for the modified read function to
be compatible with the standard version, and it is not permitted by
the Common Lisp standard to return additional values.

Instead, the modified read function maintains an explicit stack
of parse results in parallel with the expressions that are normally
returned. This explicit stack is kept as the value of a special variable
that our parser accesses after a call to read.

B.2 Returning parse results for comments
The modified read function must return parse results that corre-
spond to source code that the standard read function does not
return, such as comments and expressions that are not selected by
a read-time conditional. We solve this problem by checking when
a reader macro returns no values, and in that case, a correspond-
ing parse result is pushed onto the explicit stack mentioned in the
previous section.

B.3 Intercepting symbol creation
The modified read function must not call intern in all situations
that the ordinary read function would, and it must not signal an
error when a symbol with an explicit package prefix does not exist.
For that reason, the modified reader calls a generic function with
the characters of a potential token instead. The unmodified read
function just calls intern, whereas the custom read function cre-
ates a particular parse result that represents the token, and that can
be exploited by the editor.


	Abstract
	1 Introduction
	2 Previous work
	2.1 Emacs
	2.2 Climacs
	2.3 Lem

	3 Our technique
	3.1 Buffer update protocol
	3.2 Cache organization
	3.3 Invalidation phase
	3.4 Rehabilitation phase

	4 Performance of our technique
	4.1 Parsing with an empty cache
	4.2 Parsing after small modifications

	5 Conclusions and future work
	6 Acknowledgments
	References
	A Cache representation
	B Reader customization
	B.1 Returning parse results
	B.2 Returning parse results for comments
	B.3 Intercepting symbol creation


