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Abstract—The emission of CO2 due to ICT (Information
and Communication Technologies) is found as equivalent to
aviation sector. Although the energy consumption in ICT is due
both to hardware and software. In recent decade, the energy
efficiency studies focus on the hardware part, especially with
the development of cloud computing. Indeed, it is the software
application that is responsible for executing tasks, that indirectly
affects the hardware energy consumption. This work focus on
software energy consumption. We introduce a methodology which
evaluates and improves the software greenability by considering
its energy consumption, performance and readability. Contrary
to existing methodologies, we associate the effect of several
components (CPU, memory, disk and network) when estimating
software energy consumption instead of considering only the
CPU as it is the case in literature. Moreover, the proposed
framework can dynamically examine source code to integrate
some measurement functionality. A Tool to Estimate Energy
Consumption (TEEC) is implemented and its applicability is
demonstrated on the case of cloud-based business application
provisioning software, called MADONA. MADONA allows dy-
namically generating service-oriented business applications by
automatically composing business services and automatically
deploying the generated applications on cloud environment.

Index Terms—Green IT, energy efficiency, cloud computing,
use case, automatic business application provisioning

I. INTRODUCTION

Scientists have commonly stated that human activity is
responsible for the increase of the earth's atmospheric tem-
perature mainly due to the greenhouse gases generated by
energy production. Consequently, the United Nations Climate
Change Conference, COP 21 (Conference of the Parties), has

reasserted the aim of keeping the increase in temperature
below 2◦C by the end of the century. Moving to cloud is said
to be a way of preserving the environment, stated also by a
study commissioned by Microsoft and conducted by Accenture
and WSP Environment & Energy [1]. In fact, this allows
reducing energy consumption and carbon emissions by 30%
or more compared to running the same applications on their
own infrastructure. For small organizations (up to 100 users),
carbon emissions reduce by up to 90%. For large corporations,
the reduction is about 30% or more. As an example, according
to Microsoft, in a large consumer goods company, 32% of net
carbon emissions could be avoided by moving 50,000 email
users in North America and Europe to a cloud [1].

Cloud greenability is due to dynamic provisioning (i.e.
better management of usage peak), multi-tenancy (i.e. shared
infrastructure), server utilization (i.e. workload optimization)
and datacenter efficiency (i.e. to minimize energy use for
a given amount of computing power). Even if the cloud
infrastructure has been studied in terms of offering green
solutions, there is a lack of developing sustainable and green
software applications on the cloud. To this end, we intro-
duce TEEC (Tool to Estimate Energy Consumption), which
improves the source code quality of software by estimating its
power consumption. The estimation is based on mathematical
equations that take into account the CPU, the memory, the disk
and the network together, instead of considering only the CPU
consumption. Moreover, TEEC examines the source code and
locates the parts that consume the highest amount of energy.



These parts then may be analyzed and optimized by software
developers for improving the energy consumption of the code,
its performance and its readability. In this paper, TEEC is used
to improve the source code quality of MADONA, which is
a framework for provisioning business application on cloud
environments. Hence, MADONA will allow to select and
compose business and cloud services, configure and deploy
generated cloud-based business applications in a more eco-
friendly way.

The remaining part of the paper is organized as follows:
Section 2 presents related works regarding energy consump-
tion measurement methodologies. Section 3 briefly gives the
main ideas of TEEC. Then, Section 4 describes the use case
on which the efficiency of TEEC is evaluated. Sections 5
evaluates and discusses the findings, and Section 6 draws final
conclusions.

II. RELATED WORK

In first studies of estimating the energy consumption, an
online power calculator have been used. The energy con-
sumption of each component (CPU, memory, disk, etc.) in
a device was taken into account to approximately calculate
global energy consumption of the device. This approach has
helped, in particular, the game developers to build faster
devices with better game performances. The disadvantage of
these tools is the fact that it is not possible to estimate software
energy consumption distinctively. Thus, researchers oriented
their works to new methodologies in order to measure and/or
estimate an application energy consumption with accuracy.
This will both limit the negative impact of the software on
environment and optimize the source code quality for customer
satisfaction.

A. Hardware methodologies

In recent literature, hardware methodologies have been
frequently proposed to measure software energy consumption.
A hardware device, such as a power meter, is used to measure
the global system energy consumption or several sensors are
directly connected to the component to measure this compo-
nent’s energy consumption. Thus, hardware methodologies can
be grouped in two categories: Power meter-based, and sensor-
based. Power meter performs current and voltages measures
to directly calculate power consumption in Watts [2], [3].
This device also measures and logs different types of data,
such as current, voltage, power usage, energy consumption,
etc. These data are then stored on the device memory or
sent to a computer. Then related curves in terms of time or
graphical representations are generated. In the second group
[4], [5], energy consuming components are listed in advance
and one directly connects customized power sensors on them.
Generally, high performance servers use this technique [4].

In general, hardware methodologies are found to be more
accurate than the hybrid and software methodologies. How-
ever, there are several important limitations. With hardware
methodologies, it is not possible to measure the energy
consumption of a particular process and virtual machines.

Moreover, the required devices may be expensive and they
can also consume energy themselves.

B. Hybrid methodologies

The goal of hybrid methodologies is to combine accuracy of
hardware methodologies and simplicity of software method-
ologies [6]. Unfortunately, proposed tools use a hardware
device to measure the total energy consumption and a soft-
ware to manage the collected data. Hence, it is complicated
to distinguish them. Moreover, adding several hardware can
imply additional energy consumption, which can be more than
the saved energy.

C. Software methodologies

Instead of direct measurement, software methodology in-
volves mathematical formulae, which are determined for each
component, with respect to its characteristics. Usually, sim-
plifications and assumptions are adopted depending on the
area of study. In the majority of proposed methodologies,
only the CPU power consumption is taken into account,
whereas the other components (memory, disk, network, etc.)
are neglected. The lack of information can cause unsatisfactory
and incorrect results. In a power measurement tool, accuracy
and completeness are fundamental. In Table I, we summarize
tools proposed to estimate software energy consumption. Each
tool focuses on one component only, and neglects the others.

There is a lack of a tool for the estimation of software
power consumption taking into account several components
(CPU, memory, disk, network) together. This is our motivation
in this paper. We integrated this capacity in our methodology,
even if the energy consumed by a component can be neglected
in several situations. Among the proposed methodologies in
literature, we have not encountered a study that examines
the effects of source code on energy consumption. The most
related ones propose a manual approach, which require in-
tegrating several functions to the source code. However, the
manual approach can be complicated, boring or expensive for
developers. It requires that the developers be experts or co-
work with experts. Thus, a tool allowing to dynamically locate
the hotpoints during runtime of software would simplify the
tasks of developers.

III. TEEC (TOOL TO ESTIMATE ENERGY CONSUMPTION)

We developed TEEC (see Figure 1) (Tool to Estimate
Energy Consumption) that operates both on Windows OS, and
on GNU/Linux. TEEC allows estimating energy consumption
of Java programs taking into account the CPU, memory, disk
and network consumptions. Our prototype uses Sigar [12]
Javassist [13] libraries, which allow to provide Java agents
with the capability to load the content of classes at runtime
in the JVM, and to modify a class file when the JVM loads it
and/or define a new class at runtime, respectively.

As illustrated in Figure 2, insertBefore and insertAfter
Javassist methods allow to modify methods (methodName)
in a class (className) by adding several lines of code at
the beginning and/or at the end of these methods without



TABLE I
PROPOSED SOFTWARE TOOLS TO ESTIMATE THE POWER CONSUMPTION

Tools Component
considered

Description Limits

Intel Power Gad-
get [7]

CPU A software-based power usage monitoring tool en-
abled for Intel Core processors. Monitor and estimate
real-time processor package power information in
Watts using the energy counters in the processor

Estimate the power consumption due to CPU only.
It is not possible to estimate the power consumption
of a specific process.

Orion [8] Network A power performance interconnection network sim-
ulator that is able to provide power features, in ad-
dition to performance features, to allow rapid power
performance trade-offs at the architectural level

Dynamic power is formulated depending on the
switching activity, the clock frequency, the switch
capacitance and the supply voltage. Only a total
network power consumption is estimated.

MIND [9] Disk A black box power model for RAID arrays. It is
designed to quantitatively measure the power con-
sumption of redundant disk arrays running different
workloads in several execution modes. Five modes
(idle, standby and several types of access) and four
actions have been defined to precisely characterize
power states and changes of RAID arrays

Energy consumption by four types of actions and
power consumption in five types of modes are mod-
elized depending on controller and disks. Only disk
arrays power consumption are estimated.

CACTI-D [10] Memory It adds support for main memory DRAM chip or-
ganization and support for modeling of commodity
DRAM technology. It allows modeling of the com-
plete memory hierarchy with consistent models all
the way from SRAM based L1 caches through main
memory DRAMs on DIMMs

Using benchmarks with large data sets architectural
simulation is performed. The execution time results,
power breakdown in the memory hierarchy and sys-
tem energy delay product for the different system
configurations are presented. It is a tool limited to
the modelization of the DRAM.

SPAN [11] CPU A two-level power model that estimates per core
power dissipation on CMP (Chip Multi Processor)
on the fly by using only one CMP and frequency
information from CPUs. SPAN is a software power
analyzer, which identify behavior of power associ-
ated with software source code manually. Given an
application, SPAN is able to determine its power
dissipation rate at the function-block level

Only the energy consumed by CPU is considered. In
this case, programmers need to use specific function
manually (span-create(), span-open(), span-start(),
span-stop(), etc.) to call the SPAN APIs. Not easy
for developers. Simplicity and adaptability aspects
are more emphasized than accuracy.

Fig. 1. TEEC

any change at the original source code. In our case, insert-
Before and insertAfter methods are used to add a timer to
calculate the execution time of the methodName, leading to
the identification of source code hotpoints. In order to obtain
accurate results, we take into account dynamic parameters
while calculating power consumption. These parameters are
obtained thanks to the pre-defined libraries and variable that
are provided by the manufacturers. The power consumption
of software can be separated in two parts:

- Static power represents the required power to maintain a
running system. This is dependent on the quality of the
device components.

- Dynamic power represents the required power to execute
a task. It is dependent on clock frequency, voltage and
quality of source code.

In this work, we are interested only in dynamic power

consumption. Now, let us represent the power model of each
component.

Fig. 2. Source code manipulation

1. CPU
Power consumption of CPU is calculated as the multi-
plication of frequency, square of voltage and a constant.
We propose an equation (1) that is distinguished from
others with its constant part:

PCPU = β · f · V 2
dd (1)

where β = CL.N.α is the constant, CL is the capaci-
tance, N represents the number of gates and α < 1 is the
average fraction of gates that commute at each cycle, f is
the frequency and Vdd corresponds to voltage. In order
to obtain the power consumed by a specific process, we
multiply (1) by the percentage of the process id, Nid

(2):



PCPU,id = PCPU ·Nid (2)

2. Memory
The power of dynamic DRAM covers four states: acti-
vate, precharge, read and write. Power consumption can
then be expressed as (3):

PMemory = PActivate + PPrecharge + PRead + PWrite

(3)
We multiply previous equation (3) by the usage percent-
age Mid of the process id to obtain Eq. (4):

PMemory,id = PMemory ·Mid (4)

3. Disk
While executing a sequence of requests, a disk can be
in one of the four states: active, idle, standby and sleep.
The dynamic disk power consumption is obtained when
the disk is in active mode. Thus, we can deduce the
following equation :

PDisk,dynamic = PActive = PRead + PWrite

=
PDiskRead

RDiskRead
·BRead +

PDiskWrite

RDiskWrite
·BWrite

(5)

Where PDiskRead and PDiskWrite are, respectively, the
power consumption of disk read and write, RDiskRead

and RDiskWrite are the rate of disk read and write,
BRead and BWrite represents the bytes read and write
by the process at runtime.

4. Network
In this study, we assume that the network power con-
sumption is related to the main activity of transmitting
and receiving bytes. Thus, we establish the following
equation:

PNetwork = PReceive + PTransmit

= PReadBytes ·NetR+ PTransmitBytes ·NetT
(6)

where NetR is Network Received bytes, PReadBytes

represents the maximum power received, NetT is Net-
work Transmit bytes and PTransmitBytes corresponds
to the maximum power transmit. PReadBytes and
PTransmitBytes are data obtained by the manufacturer
specifications.

IV. USE CASE

This section presents the use case to be evaluated. It
consists of the prototype of a Method for AutomateD provi-
sioning of clOud-based component-oriented busiNess Applica-
tions (MADONA) [14]. MADONA allows automatic service-
oriented development and deployment on cloud environment,
where the user introduces her requirements through a Web
form, and a business application is automatically generated,
deployed and made available to the user.

We implemented MADONA as a web application. We chose
the Grails framework [15], which allows the applications
development following the Model, View, Controller (MVC)
template.

Figure 3 illustrates the prototype architecture of MADONA.
Requirements elicitation, discovery of business services, inte-
gration of new services into the marketplace, generation and
rating of composition plans, and automatic deployment are
implemented.

The prototype works as follows: from the user’s require-
ments, several composition plans are generated and ranked.
The plan with the highest QoS rating is selected. A script is
generated and sent to the Juju [16] server for the deployment
of this plan. We recall that some business services provide
some configuration options (e.g., the name of the application).
In this case, after selecting the composition plan to deploy, a
new web page will open providing an interface to choose these
options. A new script to configure the service is created and
sent to the Juju server. Once the process is complete, the user is
returned to the web page displaying the status of the generated
application. The status of each service is analyzed to keep
the user informed of the deployment status of its application.
This status has two possible values "being deployed" or the
link (IP address) to the application if the application is already
deployed. An automatic refresh every thirty seconds of the web
page allows the return and execution of a script for obtaining
the status of deployed services. In the case where no service
in the marketplace meets the functional needs of the user, the
latter is directed to the "AddCharm" and "AddDescription"
web interfaces that respectively allow the integration of new
charms in the marketplace and to describe the service newly
integrated. A charm is composed of scripts that simplify the
deployment and management of a service [16].

MADONA is composed of three levels as follows:

1. The interface level (Level 1 of Figure 3) allows commu-
nication with the user. It is composed of controllers and
views representing the MADONA Web interfaces.

2. The application level (Level 2 in Figure 3) enables
the generation and deployment of composition plans. It
consists of Java classes, distributed over five packages
(Engine, Ranking, Config, Deployment, Integration) as
follows:

(a) Engine: this package is responsible for generating
the composition plans based on the requirements of
the user.

(b) Ranking: this package deals with calculating the QoS
rating of a service and a composition plan.

(c) Config: this package contains the class "Composi-
tionPlanConfig", which allows to generate the Juju
configuration script of a business service from the
configuration data entered by the user via the con-
figuration Web form. The constructor of this class
takes as input the name of the service to configure, its
configurable parameters, as well as the configuration
data to generate the configuration script, which will



Fig. 3. MADONA implemented architecture

be stored in the MADONA shell directory.
(d) Deployment: this package is responsible for deploy-

ing the application corresponding to the selected
composition plan. MADONA relies on the Juju Or-
chestrator to manage the deployment, configuration,
and composition of business services. It generates
the deployment and configuration scripts, and runs
them on the Juju server via Open-SSH.

(e) Integration enables the integration of new business
services into the marketplace. We implemented five
classes, which provide capabilities to integrate new
services into the marketplace.

3. The service level (Level 3 in Figure 3) represents the
marketplace of services. It consists of extended Linked
USDL (Unified Service Description Language) descrip-
tions of marketplace services, XML-formatted QoS files,
and distributed business services’ packages. The Market-
place elements are used when discovering, composing,
scoring, configuring, and deploying services.

V. EVALUATION

We evaluate the green dimension of MADONA regarding
the energy consumption, performance and readability aspects.

A. Energy consumption

Energy consumption is evaluated following both software
(using the proposed TEEC) and hardware (using a power
meter) methodologies for comparison purposes. Figures 4 and
5 compare the variation of energy consumption of optimized
and non-optimized MADONA source code with 10 users, who
use MADONA sequentially using TEEC and a power meter,

respectively. In both figures, we can observe that optimized
MADONA consumes less energy than the non-optimized one
and it ends in less time, which is the reason why the curve’s
peaks do not occur at the same time.

The total energy consumption while executing MADONA
corresponds to the area of the curve representing the energy
consumption as a function of time according to the formula
E=P*T where E is the energy (Joules), P is the power
(Watt) and T represents the time (Seconds). While executing
MADONA with 10 users using respectively non-optimized and
optimized codes, the energy consumption goes from 985,8
Joules for power meter and 968.484 Joules for TEEC to 373,5
Joules for power meter and 368,523 Joules for TEEC; thus
saving 612.3 Joules (62% less).

In Figures 4 and 5, we note that the gain of average margin
of error of TEEC compared to the power meter is equal to
1,76% for non-optimized MADONA and 1,33% for optimized
MADONA.

B. Performance

Source code quality improvement of MADONA implies
reducing the execution time. Figure 6 illustrates the execution
time of MADONA in respect to 1, 10 and 100 users. The
figure shows that the time saving is significant allowing to
save at least 34% of execution time. In fact, for one user, our
tool allowed to save 56% of execution time; for 10 users, it
allowed to save 34% of execution time; and for 100 users, it
allowed to save 38% of execution time.

Table 2 illustrates several examples of used techniques,
which allowed us to save execution time in some parts of



Fig. 4. TEEC: Optimized vs. non-optimized MADONA energy consumption

Fig. 5. Power Meter: Optimized vs. non-optimized MADONA energy consumption

source code. Here, the saved times are calculated for one user
executing MADONA.

These positive results show us the importance to improve the
source code quality to obtain efficient, sustainable and green
software.

C. Readability

In a context that is more and more collaborative, readability
of source code becomes essential. In fact, it allows analysts to
review source code in a faster way, which implies an energy
economy due to time saving. This is why we are considering
the readability criterion in this work. We reduced MADONA
source code from 3571 to 2134 lines (1437 less lines, which
corresponds to 40% of reduction in code size). This has been
done by eliminating non-used portions of code, and those
allowing to display control messages used by developers.

VI. CONCLUSION

In this paper, we describe a methodology and a tool to
evaluate software energy consumption and to improve software
quality in respect to three dimensions: energy consumption,
performance and source code readability. As the demonstra-
tive example, we have evaluated a software for provisioning
cloud business application, called MADONA. The evalua-
tions demonstrate the accuracy and efficiency of TEEC. In
fact, TEEC estimation error rate of energy consumption is
lower than 2%, which is commonly acceptable. Moreover,
MADONA execution time decreased from 145s to 140s for
10 executions, number of lines of source code decreased
from about 3000 lines to 2000 lines. Moreover, non-optimized
MADONA program consumes 5000 Joule, whereas the opti-
mized one consumes 2000 Joule. This energy gains correspond
approximately to the nonstop operating power of a computer
during one year.



Fig. 6. Performance in terms of time

TABLE II
DETAILS OF TIME CONSUMPTION OPTIMIZATION

Parts Saved time (ms) Remarks

Composition plan genera-
tion

18 Variables allowing to read the files have been deleted. Some attributes were used only in one
method, consequently we change them as a variable of the concerned method.

Composition plan ranking
and selection

5855 Inside the loop, a default model was created and a file was opened with the format TTL (Turtle),
whereas it is more efficient to do these tasks before beginning the loop in order to do only one
model creation. We also avoid using the collection’s length in the declaration of the loop’s
parameters in order to call the length method only one time (before the loop).

Generated application
configuration and
deployment

3524 SPARQL (SPARQL Protocol and RDF Query Language) have been improved in removing line
break at the end of each line. Not used variables have been deleted. The same improvement
regarding the declaration of the size of a loop. For reading/writing files, we replaced the methods
used in the original code of MADONA by the new ones defined in Java 8, which are more
optimized and more readable.

Fig. 7. Readability improvement

As future works, TEEC will integrate energy consumption
measurements for physical resources in cloud environment.
This will be done by defining a middleware, which communi-
cates with public and private cloud APIs to collect measure-

ment data. APIs differ according to the cloud providers. We
will then define translation rules for communication among
these APIs.
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