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Abstract Incidence geometry is a well-established theory which captures the very
basic properties of all geometries in terms of points belonging to lines, planes,
etc. Moreover, projective incidence geometry leads to a simple framework where
many properties can be studied. In this article, we consider two very different but
complementary mathematical approaches formalizing this theory within the Coq
proof assistant. The first one consists of the usual and synthetic geometric axiom
system often encountered in the literature. The second one is more original and
relies on combinatorial aspects through the notion of rank which is based on the
matroid structure of incidence geometry. This paper mainly contributes to the
field by proving the equivalence between these two approaches in both 2D and 3D.
This result allows us to study the further automation of many proofs of projective
geometry theorems. We give an overview of techniques that will be heavily used
in the equivalence proof and are generic enough to be reused later in yet-to-be-
written proofs. Finally, we discuss the possibilities of future automation that can
be envisaged using the rank notion.

Keywords. automation, Coq, formalization, incidence, matroid, projective geom-
etry, ranks

1 Introduction

One of the most elementary geometries that can be studied is incidence geometry
which basically analyzes the incidence relation between two types of objects: points
and lines. This geometry is ubiquitous, and collinearity issues are found in various
contexts such as graph theory, experiments planification, subway maps or even
children games like Dobble 1. Moreover, incidence geometry can be defined by a
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1 Dooble is a board game in which players must find drawings in common between two cards.
Such a deck of cards can be designed by taking the lines in P 2(K) where K is a finite field.
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fairly simple set of axioms both in the plane and in a three dimensional setting
[7,10]. Let us note that it is possible to formalize such a geometry in several ways.

Our main long-term motivation is the mechanization of demonstrations in or-
der to ease the task of mathematicians but also to study more effortlessly the
degenerate cases. Formalizing and proving geometric theorems is not an easy task.
It requires being very rigorous to take into account all degeneracy conditions that
can occur in this context. These conditions often lead to long and tedious technical
proofs. That is why, many papers have emphasized the importance of investigating
the problem of degenerate cases in formal geometry [11, 25, 32]. In an elementary
geometry such as incidence geometry, it is conceivable to efficiently automate some
tedious part of the geometric reasoning.

To specialize primitive incidence geometry, we work in the specific context of
projective geometry in which the notion of parallel does not exist. In other words,
two coplanar lines always meet. This simple framework remains powerful enough
to study the formalization and proof of complex problems such as those suggested
in [26]. In addition, there is no loss of generality since it is possible to switch from
projective geometry to affine geometry by adding a chosen line at infinity.

In this paper, we present two equivalent formalizations of projective incidence
geometry. The first one follows the classical way: it is based on a geometric char-
acterization and is widely described in the literature [7, 10]. The second one is
more original, it relies on the combinatorial notion of rank provided by the ma-
troid structure of incidence geometry. These two different approaches are comple-
mentary when dealing with geometric problems. Indeed, the classical geometric
definition makes it possible to describe, through an intuitive terminology, a large
majority of theorems using powerful notions such as lines, planes, collinearity and
coplanarity relations. These concepts allow us to build complex geometric config-
urations but are relatively difficult to handle when it comes to solving a problem.
It is in this sense that the second approach is complementary to the first one.
Using the rank notion, it is possible to express in a homogeneous way all kind of
incidences of this geometry (point-point, point-line, point-plane, line-line, plane-
plane) as well as relations of collinearity, coplanarity, etc. Thanks to the unique
representation of all incidence relations as ranks, we can thus consider a more
systematic automation.

But, to do this, it is necessary to rigorously prove the equivalence between
these two formalizations in order to be able to use them jointly. The main original
contribution of this paper is the equivalence proof between these two approaches
through the Coq proof assistant [4,9]. This demonstration is not trivial and requires
some sophisticated techniques to establish the equivalence between the two axiom
systems in both 2D and 3D. We give some of the proof engineering methods used
to simplify demonstrations steps and to highlight the automation.

Some ideas behind this work have their origins in previous studies about com-
binatorial aspects of proofs in incidence geometry as described in [22, 28]. More
specifically, a proof of the well-known Desargues’ theorem using only the rank
approach provides a better understanding of the advantages and disadvantages of
ranks. All these results are based on a partial formalization and an intuition of
what might be the equivalence proof between these two systems. To our knowl-
edge, mathematicians have not studied extensively the details of such equivalence.
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Related Work Geometry is a good candidate to be studied through proof assis-
tants like Coq. Many formalizations of plane geometry like Hilbert and Tarski ax-
iomatization have already been performed [12,15,25,32]. In the narrower context of
projective geometry, some work in constructive projective geometry was initiated
by Von Plato [18, 37]. Our formalization differs by considering a decidable inci-
dence relation. In the field of automatic methods in projective geometry, we have
to mention the algebraic formalization of Grassmann-Cayley algebra [13, 21, 34].
Finally, to our knowledge there is no work treating incidence geometry in a pro-
jective framework using the equivalence between a geometric characterization and
a combinatorial approach.

Outline of the paper This paper is an extended version of the contribution pre-
sented but not published at Automated Deduction in Geometry 2016 [6]. The
paper is organized as follows. In Section 2, we present classical axioms for pro-
jective incidence geometry and we give a preview of our Coq formalization. In
Section 3, we expose our axiomatization based on the concept of rank from ma-
troid theory. Section 4 investigates in detail the equivalence proof between these
two formalizations. Finally, automation possibilities and future work are discussed
in Section 5.

Notation We use the naming convention AXYN for our axioms. The letters
correspond to A for axiom, X for the axiom number, Y may take two values (P
= projective, R = rank) and N designs the dimension.

2 Axiom Systems of Projective Geometry

In a general framework, geometry such as Euclidean geometry is a complex subject
mixing objects like points, lines and planes with concepts of distance, angle, conti-
nuity, incidence etc. Among all these notions, only two kinds of objects, points and
lines, and the incidence relation between them are kept to form the elementary
incidence geometry.

2.1 Incidence Geometry

Incidence geometry is the study of a triple (Ω,∆,Φ) known as incidence structure.
Ω refers to a set of points, ∆ is a disjoint set composed of lines and Φ is the
binary relation that unites them. Elements which are mutually incident constitute
a subset Φ ⊆ Ω × ∆. Intuitively, a point and a line are within this subset if and
only if the point is on the line. In the following, the incidence relation Φ will be
noted in an infix way by ∈. It is possible to informally describe this geometry with
three rules [3].

– There is always a line passing through two points.
– On any line, there are at least two points.
– There exist three points that are not collinear.

This characterization is already sufficient to prove many theorems [7]. In ad-
dition, the enrichment of incidence geometry by new concepts preserves many
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fundamental results. Projective geometry relies on the basics of incidence geom-
etry. It is a general setting in the hierarchy of geometries which assumes that
two lines in a plane always meet [10]. Planes can be defined within our theory
but as opposed to Hilbert’s formalization they are not primitive objects. With
the concepts of incidence geometry, we can describe properly projective incidence
geometry in 2-dimensional space and in 3-dimensional space.

2.2 Axiom System for Projective Plane Geometry

One of Coxeter’s axiom systems [10] for projective plane geometry consists of five
axioms presented in Table 1 and illustrated in Table 2.

The first two axioms (A1P2, A2P2) deal with construction of points and lines.
We do not need to specify that the involved points (resp. lines) should be different
in axiom Line-Existence (resp. Point-Existence). Indeed if these points (resp. lines)
are equal, such line (resp. point) still exists. In fact, there exists an infinity of lines
(resp. points) passing through the two equal points (resp. lines). This theoretical
choice is significant and defines the degenerate cases that one wishes to maintain.
Indeed, it allows us to consider a geometry where it is always possible to show that
there exists a line passing through a point without extending our axiom system. In
the same way, there always exists an intersection point between two merged lines.
These considerations make it feasible to provide witnesses of existence in some
degenerate configuration proofs. Nevertheless in most books, these degeneracy
conditions are excluded to be consistent with the introduction of finite geometries
where the number of distinct points is specified. The next axiom (A3P2) concerns
uniqueness of the two defined objects. Then, axiom (A4P2) states that each line
contains at least three points. This axiom differs from the second informal rule
cited above by preventing some small and exceptional systems from being called
projective planes. Finally, axiom (A5P2) expresses that there always exist two
distinct lines, which means that the dimension is at least 2. Together with axiom
Point-Existence it shows that the dimension is at most 2. Therefore the dimension
is exactly 2.

(A1P2) Line-Existence : ∀ A B : Point, ∃ l : Line, A ∈ l ∧ B ∈ l

(A2P2) Point-Existence : ∀ l m : Line, ∃ A : Point, A ∈ l ∧ A ∈ m

(A3P2) Uniqueness : ∀ A B : Point, ∀ l m : Line, A ∈ l ∧ B ∈ l ∧
A ∈ m ∧ B ∈ m ⇒ A = B ∨ l = m

(A4P2) Three-Points : ∀ l : Line, ∃ A B C : Point,
A 6= B ∧ B 6= C ∧ A 6= C ∧ A ∈ l ∧ B ∈ l ∧ C ∈ l

(A5P2) Lower-Dimension : ∃ l m : Line, l 6= m

Table 1 Standard axiom system for projective plane geometry
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Table 2 Illustrations of the standard axiom system for plane geometry

The formalization of this axiom system is straightforward; textbooks [7, 10]
often use some variants of this system (see Table 3). There is an equivalence
between axioms (A4P2, A5P2) and (A4P2’) which states that there exists at least
four distinct points, no three of them being collinear. This equivalence proof is
available in [22]. We choose the first axiom system to ease decomposition and
mechanization of proofs. Indeed, the axiom (A4P2’) is often more complicated to
manipulate within the proofs than the decomposition presented in Table 1.

(A1P2) Line-Existence : ∀ A B : Point, ∃ l : Line, A ∈ l ∧ B ∈ l

(A2P2) Point-Existence : ∀ l m : Line, ∃ A : Point, A ∈ l ∧ A ∈ m

(A3P2) Uniqueness : ∀ A B : Point, ∀ l m : Line, A ∈ l ∧ B ∈ l ∧
A ∈ m ∧ B ∈ m ⇒ A = B ∨ l = m

(A4P2’) Four-Points : ∃ A B C D : Point,
A 6= B ∧ A 6= C ∧ A 6= D ∧ B 6= C ∧ B 6= D ∧ C 6= D ∧
(∀ l : Line,
(A ∈ l ∧ B ∈ l ⇒ C /∈ l ∧ D /∈ l) ∧
(A ∈ l ∧ C ∈ l ⇒ B /∈ l ∧ D /∈ l) ∧
(A ∈ l ∧ D ∈ l ⇒ B /∈ l ∧ C /∈ l) ∧
(B ∈ l ∧ C ∈ l ⇒ A /∈ l ∧ D /∈ l) ∧
(B ∈ l ∧ D ∈ l ⇒ A /∈ l ∧ C /∈ l) ∧
(C ∈ l ∧ D ∈ l ⇒ A /∈ l ∧ B /∈ l))

Table 3 Another axiom system for projective plane geometry
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2.3 Axiom System for Projective Space Geometry

In the same way, we declare an axiom system for projective space geometry in
Table 4 and Table 5 by extending the previous one. The system still contains five
axioms with three of them remaining unchanged (A1P3, A3P3, A4P3). Pasch’s
axiom replaces (A2P2) assuming that two coplanar lines always meet. Further-
more, we modify the axiom Lower-Dimension to capture projective geometry in
an at least 3-dimensional space (noted ≥3D). For this, we assume that there exist
two lines which do not meet. This time, Pasch’s axiom does not allow us to limit
the upper dimension, that is why we consider a geometry ≥3D.

However, it is possible to limit this spatial geometry by adding the optional
axiom (A6P3) to constrain the dimension to be exactly 3. This axiom specifies
that there is always a line intersecting three other non-coplanar lines.

(A1P3) Line-Existence : ∀ A B : Point, ∃ l : Line, A ∈ l ∧ B ∈ l

(A2P3) Pasch : ∀ A B C D : Point, ∀ lAB lCD lAC lBD : Line,
A 6= B ∧ A 6= C ∧ A 6= D ∧ B 6= C ∧ B 6= D ∧ C 6= D ∧
A ∈ lAB ∧ B ∈ lAB ∧ C ∈ lCD ∧ D ∈ lCD ∧
A ∈ lAC ∧ C ∈ lAC ∧ B ∈ lBD ∧ D ∈ lBD ∧
(∃ I : Point, I ∈ lAB ∧ I ∈ lCD) ⇒
(∃ J : Point, J ∈ lAD ∧ J ∈ lBC)

(A3P3) Uniqueness : ∀ A B : Point, ∀ l m : Line,
A ∈ l ∧ B ∈ l ∧ A ∈ m ∧ B ∈ m ⇒ A = B ∨ l = m

(A4P3) Three-Points : ∀ l : Line, ∃ A B C : Point,
A 6= B ∧ B 6= C ∧ A 6= C ∧ A ∈ l ∧ B ∈ l ∧ C ∈ l

(A5P3) Lower-Dimension : ∃ l m : Line, ∀ p : Point, p /∈ l ∨ p /∈ m

(A6P3) Upper-Dimension : ∀ l1 l2 l3 : Line, l1 6= l2 ∧ l1 6= l3 ∧ l2 6= l3 ⇒
∃ l4 : Line, ∃ P1 P2 P3 : Point, P1 ∈ l1 ∧ P1 ∈ l4 ∧
P2 ∈ l2 ∧ P2 ∈ l4 ∧ P3 ∈ l3 ∧ P3 ∈ l4

Table 4 Standard axiom system for projective space geometry
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Table 5 Illustrations of the standard axiom system for projective space geometry
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2.4 Formalization in Coq

Implementing these two systems of axioms is rather immediate in Coq; we present
below our formalization of the projective space. To enhance modularity, we take
advantage of the type classes and functors of Coq.

To analyze dependencies between these axiom systems and to observe equiva-
lences between different variants of our axiomatizations, we split our axiom sets in
different classes. These classes are constructed incrementally by adding one by one
each axiom. Therefore, it is possible to examine in great details the equivalence
between each class of axioms within the two formalizations. Moreover, this decom-
position allows us to bring out the minimal axiom system required to demonstrate
a set of properties. Finally, type classes in Coq make it possible to verify that we
have well instantiated what we were trying to prove.

First, we build type classes with common axioms between the dimensions
namely Line-Existence, Uniqueness and Three-Points (see Table 7). Then, we con-
struct three classes, the first one captures the whole projective plane (see Table 8),
the second one (see Table 9) describes the projective space ≥3D and the latter (see
Table 10) captures exactly the projective space. For the sake of clarity, we present
here a simplified version of our implementation. We define point, line, incidence
relation and its decidability in the signature ProjectiveStructure (see Table 6).

(* Types *) Class ProjectiveStructure := {

Point : Set;
Line : Set;
Incid : Point -> Line -> Prop;

(* decidability for incidence relation *)
incid_dec : forall (A : Point)(l : Line), {Incid A l} + {~Incid A l}
}.

Table 6 Type class for projective structure

(* ND *) Class ProjectiveStructureLEU ‘(PS : ProjectiveStructure) := {

(* A1P2-P3 Line-Existence *)
a1_exist: forall (A B : Point) , exists l : Line, Incid A l /\ Incid B l;

(* A3P2-P3 Uniqueness *)
uniqueness: forall (A B : Point)(l1 l2 : Line), Incid A l1 -> Incid B l1 ->

Incid A l2 -> Incid B l2 -> A [==] B \/ l1 = l2;

(* A4P2-P3 Three-Points *)
a3_1: forall l : Line, exists A : Point, exists B : Point, exists C : Point,

(~ A [==] B /\ ~ A [==] C /\ ~ B [==] C /\
Incid A l /\ Incid B l /\ Incid C l)

}.

Table 7 Type class for projective structure independent of dimension
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(* 2D *) Class ProjectivePlane ‘(PSLEU : ProjectiveStructureLEU) := {

(* A2P2 Point-Existence *)
a2_exist : forall (l1 l2 : Line), exists A : Point, Incid A l1 /\ Incid A l2;

(* A5P2 Lower-Dimension *)
a3_2 : exists l1 : Line, exists l2 : Line, l1 <> l2;
}.

Table 8 Type class for projective plane

(* >= 3D *) Class ProjectiveSpaceOrHigher ‘(PSLEU : ProjectiveStructureLEU) := {

(* A2P3 Pasch *)
a2: forall A B C D : Point, forall lAB lCD lAC lBD : Line,

~ A [==] B /\ ~ A [==] C /\ ~ A [==] D /\
~ B [==] C /\ ~ B [==] D /\ ~ C [==] D ->
Incid A lAB /\ Incid B lAB ->
Incid C lCD /\ Incid D lCD ->
Incid A lAC /\ Incid C lAC ->
Incid B lBD /\ Incid D lBD ->
(exists I : Point, (Incid I lAB /\ Incid I lCD)) ->
exists J : Point, (Incid J lAC /\ Incid J lBD);

(* A5P3 Lower-Dimension *)
a3_2: exists l1 : Line, exists l2 : Line, forall p : Point,

~(Incid p l1 /\ Incid p l2)
}.

Table 9 Type class for projective space at least in dimension 3

(* 3D *) Class ProjectiveSpace ‘(PSH : ProjectiveSpaceOrHigher) := {

Intersect_In (l1 l2 : Line) (P : Point) := Incid P l1 /\ (Incid P l2);

(* A6P3 Upper-Dimension *)
a3_3 : forall l1 l2 l3 : Line, ~ l1 = l2 /\ ~ l1 = l3 /\ ~ l2 = l3 ->

exists l4 : Line, exists J1 : Point, exists J2 : Point, exists J3 : Point,
(Intersect_In l1 l4 J1) /\ (Intersect_In l2 l4 J2) /\ (Intersect_In l3 l4 J3)

}.

Table 10 Type class for projective space exactly in dimension 3

The main difference between our formalization and the axiom system shown
above comes from equality relations and decidability issues. The equality, denoted
[==], is an equivalence relation and a parameter of our theory formally defined in
ProjectiveStructure type class. This equality allows us to make transparent the
way in which objects are built. In other words, this equality makes it possible to
replace one object with another of the same type if they are constructively equiv-
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alent but not equal. The manipulation of this particular equivalence relation will
lead to some technical subtleties which we detail in the following parts. We choose
to use this parametric equality only for points. Indeed lines play a less important
role, they can be represented as a set of points in the other axiomatization. In all
cases, we can consider a specific equality for each type of object without conflict
since we do not compare the objects between them. In theory, these two objects
do not need to be treated differently, we plan to exploit same equality for lines in
a future update also.

As the underlying logic of the Coq system is by default intuitionist, we have to
declare explicitly which predicates are decidable. That is, we must indicate to the
system which concepts are based on the excluded middle property from classical
logic. Assuming only the decidability of the predicate Incid in our theory, we can
prove the decidability of equality for both points and lines [22]. This design choice
in no way complicates the proofs and we will not discuss this further.

3 A Rank-based Axiom System

Section 2 described a standard axiomatization for projective geometry as a refer-
ence. We propose here an alternative axiom system based on the notion of rank.

3.1 Matroid Properties

The concept of rank comes from matroid theory [33]. Matroids were introduced
by Whitney in 1935 to abstractly capture the essence of dependence. Whitney’s
definition embraces a surprising diversity of combinatorial structures. Matroid
allow us to capture and generalize the main set properties of linear dependence
in vector space. When combined with a finite set of points, it catches incidence
(collinearity, coplanarity, ...) between these points.

However matroids apply to a much larger class of objects. Other natural ex-
amples are obtained from graph theory, fields and greedy algorithms. There are
several cryptomorphic ways to define a matroid. In our context, we use the defi-
nition based on rank notion. Using ranks allows us to deal only with points which
makes proofs automation easier because we do not handle directly lines or planes.
It is thus possible to combine all the concepts encountered in incidence geometry
only with the rank function. In this way, most proof schemes are reduced to the
essentials.

Formally, an integer function rk on a finite set E is the rank function of a
matroid if and only if conditions of Table 11 are satisfied.

(A1R2-R3) non-negative and subcardinal : ∀ X ⊆ E, 0 ≤ rk(X) ≤
∣∣X∣∣

(A2R2-R3) non-decreasing : ∀ X ⊆ Y, rk(X) ≤ rk(Y)

(A3R2-R3) submodular : ∀ X,Y ⊆ E, rk(X∪Y) + rk(X∩Y) ≤ rk(X) + rk(Y)

Table 11 Rank function properties
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3.2 Rank to Describe Projective Incidence Geometry

In the framework of projective geometry, we define a rank function on finite sets
of points which checks the three conditions as in Table 11. We specify the notions
of closure and flat which are alternative axiomatizations of the matroids.

Let M be a matroid on a finite set E with the rank function rk as above. The
closure cl of a subset A of E is the set: cl(A) = {x ∈ E | rk(A) = rk(A ∪ {x})}. A
set whose closure equals itself is said to be closed or a flat.

A set is a flat if it is maximal for its rank, meaning that the addition of any
other element to the set would increase the rank. In other words, the rank of a flat
E is the cardinal of a smallest set generating E (see Table 12 for some examples).

rk{A,B} = 1 A = B
rk{A,B} = 2 A 6= B
rk{A,B,C} = 2 A,B,C are collinear with at least two of them distinct
rk{A,B,C} ≤ 2 A,B,C are collinear
rk{A,B,C} = 3 A,B,C are not collinear
rk{A,B,C,D} = 3 A,B,C,D are coplanar, not all collinear
rk{A,B,C,D} = 4 A,B,C,D are not coplanar

Table 12 Some rank statements and their geometric interpretations

Using this definition, it can be shown that every projective space has a matroid
structure, but the converse is not true. To capture projective geometry, we need
to introduce some additional axioms to that of the matroid’s one.

3.3 2D Rank-based Axiom System

Table 13 presents a rank-based axiom system to describe the projective plane. The
first two axioms establish the non-degeneracy of the rank function. The others are
more or less direct translations of the axioms of plane projective geometry.

(A4R2) Rk-Singleton : ∀ P : Point, rk{P} = 1

(A5R2) Rk-Couple : ∀ P Q: Point, P 6= Q ⇒ rk{P, Q} = 2

(A6R2) Rk-Inter : ∀ A B C D : Point, ∃ J : Point, rk{A, B, J} = rk{C, D, J} = 2

(A7R2) Rk-Three-Points : ∀ A B : Point, ∃ C, rk{A, B, C} = rk{B, C} = rk{A, C} = 2

(A8R2) Rk-Lower-Dimension : ∃ A B C : Point, rk{A, B, C} ≥ 3

Table 13 Rank axiom system for projective plane geometry
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3.4 3D Rank-based Axiom System

In the same way, we define a rank-based axiom system to describe projective space
in Table 14. Again, we modify only the axioms of Pasch and Lower-Dimension to
capture at least a three dimensional setting (≥3D). To limit this axiomatization
to 3D, we add the axiom (A9R3).

(A4R3) Rk-Singleton : ∀ P : Point, rk{P} = 1

(A5R3) Rk-Couple : ∀ P Q : Point, P 6= Q ⇒ rk{P, Q} = 2

(A6R3) Rk-Pasch : ∀ A B C D : Point, rk{A, B, C, D} ≤ 3 ⇒ ∃ J : Point,
rk{A, B, J} = rk{C, D, J} = 2

(A7R3) Rk-Three-Points : ∀ A B : Point, ∃ C, rk{A, B, C} = rk{B, C} = rk{A, C} = 2

(A8R3) Rk-Lower-Dimension : ∃ A B C D : Point, rk{A, B, C, D} ≥ 4

(A9R3) Rk-Upper-Dimension : ∀ A B C D : Point, rk{A, B, C, D} ≤ 4

Table 14 Rank axiom system for projective space geometry

The implementation in Coq follows exactly the same process; we use type classes

to increase modularity of the code depending on the dimension.

Now that we have specified the axiomatization, we will focus on proving the
equivalence between these two axiom systems. In previous work [23, 24], only the
implication from the ranks to ≥3D projective geometry has been studied. It is
sufficient to allow the formalization of Desargues theorem with the ranks. To allow
bilateral translation and to increase the possibilities of automation within proof
steps, we carry out this complete equivalence proof.

4 Equivalence Proof

We prove the following statement:

Theorem 1 The synthetic axiom system on projective incidence geometry and rank-

based axiom system are equivalent respectively in 2D, ≥3D and 3D.

To achieve this proof, we split the demonstration of the equivalence depending
on the dimension and the direction. To represent sets in Coq, we use the Containers

library [20]. It allows us to abstractly reason about sets or to use implementations
such as lists or AVLs. For performance reasons in execution time and given that
we are working on sets of small sizes, we prove one of the two implications by
using an implementation based on the lists rather than the abstract sets. Since it
is necessary to perform more set operations to prove implication from projective
incidence geometry to the ranks, we prefer to manipulate the implementation on
the lists. In addition, we evaluate and compare the abstract approach and one of
its implementations for the automation of reasoning.
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4.1 From Ranks to Projective Geometry

We begin with the implication from ranks to projective geometry in 2D, ≥3D and
3D. The proofs remain the same no matter the dimension.

Preliminaries

To begin, we need to characterize the concept of line and incidence that does
not exist in the axiom system based on ranks (see Table 15). We build, using an
inductive definition, a line from two distinct points. A point P is incident to a
line, if the rank of the triple formed by the two points constituting the line and
the point P remains equal to 2. Finally, two lines l and m are equal, if the rank of
the quadruple formed by the two points constituting each line remains equal to 2.

Definition Point := Point.

Inductive LineInd : Type :=
|Cline : forall (A B : Point)(H : ~ A[==]B), LineInd.

Definition Line := LineInd.

Definition Incid (P : point)(l : Line) := rk(triple (fstP l)(sndP l) P) = 2.

Definition line_eq (l m : Line) :=
rk(quadruple (fstP l)(sndP l)(fstP m)(sndP m)) = 2.

Table 15 Characterization of the projective incidence geometry from rank axiom system

From there we can express the axioms of projective geometry and prove them
using rank axioms.

Submodularity

We detail some proof techniques used to demonstrate the five axioms in pro-
jective geometry in both 2D and ≥3D. Firstly, we usually prove equalities on ranks
(rk(a) = rk(b)) in two steps : first that rk(a) ≤ rk(b), then rk(a) ≥ rk(b).

Second, we work systematically with the axiom of submodularity (A3R2-R3).
Determining the intersection of two finite sets of points is an issue, we need to
distinguish cases about the equalities of points. The resulting proofs become more
complex with these distinctions. Therefore, we do not consider the theoretical in-
tersection but a lower approximation of this intersection (denoted by u). This
intersection will eliminate most case distinctions, thus facilitating intersection be-
tween sets.

Definition 1 (Theorical Intersection).
Let L1 and L2 be two sets of points. By definition L1 ∩ L2 is the exact in-

tersection of the two sets of points considered. Any points that are syntactically
identical or that are equal by construction appear only once in the result set.
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For example, let L1 = {A,C} and L2 = {B,C} be two sets of points. We add
the hypothesis that A = B, then the theoretical intersection of these two sets is
L1 ∩ L2 = {A,C}.

Definition 2 (Literal Intersection).
Let L1 and L2 be two sets of points. By definition L1 u L2 is the intersection of

the two sets of points syntactically considered. Any points that are syntactically
identical appear only once in the result set. In practice, L1 u L2 ⊆ L1 ∩ L2. Using
axiom A2R2-3, we deduce that: rk(L1 u L2) ≤ rk(L1 ∩ L2).

For example, let L1 = {A,C} and L2 = {B,C} be two sets of points. We main-
tain the hypothesis that A = B even if it is not useful in this case, then the literal
intersection of these two sets is L1 u L2 = {C}.

From this literal intersection, we can derive a more appropriate version of the
axiom A3R2-R3 ignoring case distinctions:

Lemma 1 (A3R2-R3-lit),

∀ X Y, rk(X ∪ Y) + rk(X u Y) ≤ rk(X) + rk(Y).

However, Coq does not make it possible to easily define the notion of literal
intersection in a computanional way. We prefer to define a derived version to cap-
ture the meaning of this lemma:

Lemma 2 (A3R2-R3-alt)2,

∀ X Y I, I ⊆ (X u Y) ⊆ (X ∩ Y) ⇒ rk(X ∪ Y) + rk(I) ≤ rk(X) + rk(Y).

This functional version of the submodularity will be extensively used in each
proof. Unlike the intersection, it is not necessary to define the theoretical union
and the literal union since they always capture the same set of points regardless
of the equalities between the points.

Third, the knowledge about the dimension of a set of points can be incomplete
leading to the representation of its value by an integer interval in absence of addi-
tional information or evidence of a contradiction. In other words, the rank of a set
of points is not always exact, the set is not constrained enough in the statement
to represent a specific dimension and the system needs more information or a con-
tradiction to move forward. In most cases, the only possible method to handle this
is to do a case-by-case reasoning for each of the dimensions. The demonstration
of the axiom Upper-Dimension is an example which illustrates this proof pattern.
The three lines which are cut by a fourth one have only the constraint of being
different two by two. To perform this demonstration, it is mandatory to make case
distinctions on whether this couple of lines is coplanar or not.

Proof of the uniqueness property

2 Lemma matroid3 useful is available in the file matroid to matroid p.
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To illustrate the proof mechanism of the last subsection, we detail the demon-
stration of the Uniqueness property within the ranks framework.

Lemma 3 (A3P2-P3) Uniqueness3, ∀ A B : Point, ∀ l m : Line,

A ∈ l ∧ B ∈ l ∧ A ∈ m ∧ B ∈ m ⇒ A = B ∨ l = m

Proof We begin this proof by performing a case distinction on the equality between
A and B.
If A = B, then the conclusion holds trivially.
If A 6= B, by unfolding definitions of Line and Incid, it follows that :

We have A <> B

Let P ∈ l, Q ∈ l and P <> Q

Let R ∈ m, S ∈ m and R <> S

Incid A l ⇒ rk{P, Q, A} = 2
Incid B l ⇒ rk{P, Q, B} = 2
Incid A m ⇒ rk{R, S, A} = 2
Incid B m ⇒ rk{R, S, B} = 2


Assumptions

l = m ⇒ rk{P Q R S} = 2
}
Goal

To continue, we determine the rank of two new sets using A3R2-R3-alt:
rk{P, Q, A, B} and rk{R, S, A, B}.

rk({P, Q, A} ∪ {P, Q, B}) + rk({P, Q, A} ∩ {P, Q, B})
≤ rk{P, Q, A} + rk{P, Q, B}
⇒ rk{P, Q, A, B} + rk{P, Q} ≤ rk{P, Q, A} + rk{P, Q, B}
⇒ rk{P, Q, A, B} ≤ 2

Analogously, we compute that rk{R, S, A, B} ≤ 2. Then we establish that
rk{P, Q, R, S, A, B} ≤ 2.

rk({P, Q, A, B} ∪ {R, S, A, B}) + rk({P, Q, A, B} ∩ {R, S, A, B})
≤ rk{P, Q, A, B} + rk{R, S, A, B}
⇒ rk{P, Q, R, S, A, B} + rk{A, B} ≤ rk{P, Q, A, B} + rk{R, S, A, B}
⇒ rk{P, Q, R, S, A, B} ≤ 2

Using A2R2-R3, we prove that:

{P, Q, R, S} ⊂ {P, Q, R, S, A, B} ⇒ rk{P, Q, R, S} ≤ rk{P, Q, R, S, A, B}

So rk{P, Q, R, S} ≤ 2 and as the set {P, Q, R, S} contains at least two distinct
points, we conclude that rk{P, Q, R, S}=2.

3 Lemma uniqueness is available in the file rk equiv to pp.
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Coq implementation

At the implementation level, to make the deduction on abstract sets, we use the
tactic fsetdecide4 provided by the library about Containers. We also use setoids
to make substitutions when we have to indicate to the system that the sets are
identical. Finally to deal with inequalities, we use the omega5 tactic. The other
lemmas of this implication are dealt with similar techniques.

4.2 From Projective Geometry to Ranks

The opposite direction is more difficult to handle since we need to specify the
concept of rank from projective geometry. Let us recall that this rank function
regroups by itself all the objects that can be found in projective geometry but also
notions of incidence, collinearity and coplanarity.

Preliminaries

Defining the rank function requires to write some intermediate definitions rep-
resenting the different returned values of the rank function. To characterize the
rank (see Table 16), we are inspired by the concept of flat from the matroid theory.
A set of points is either empty or it represents a point, a line, a plane or a space.

Definition rkl s := match s with
| nil => 0
| x :: nil => 1
| s => if contains_four_non_coplanar_points s then 4 else

if contains_three_non_collinear_points s then 3 else
if contains_two_distinct_points s then 2 else 1 end.

Table 16 Characterization of the rank function from projective incidence geometry6

The three predicates contains four, contains three and contains two (see Ta-
ble 17) put bounds on the dimension of the considered set. The system first checks
the coplanarity: either there is a quadruple of non-coplanar points and the set
represents a space, or it continues analyzing collinearity. These predicates form
what is called an intermediate layer. They help the transition between the two
axiom systems and are often accompanied by dozens of lemmas. It is desirable to
be careful during the development of such definitions to take into account all the
degenerate cases (mainly coincident points).

4 fsetdecide : decision procedure for a class of propositions involving finite sets.
5 Omega: a solver of quantifier-free problems in Presburger Arithmetic.
6 Definition rkl is available in the file psoh equiv rk lemmas.
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Fixpoint contains_four_non_coplanar_points l := match l with
| nil => false
| a::r => if coplanar_with_all a (all_triples r)

then contains_four_non_coplanar_points r else true end.

Table 17 Recursive definition of predicate contains four non coplanar points. The predi-
cate coplanar with all tests if the first point is coplanar with all other points6

Proof techniques

Similarly, we present the main technical aspects that one encounters when
performing the demonstrations of the nine axioms of ranks characterization from
the set of geometric axioms. We exploit mostly the induction mechanism on natural
numbers to do a case analysis on the dimension of a set of points. Handling the
three conditionals in the characterization of rank definition and the management
of degenerate cases yield many goals which significantly increase the size of the
proofs. The resulting proofs are often tedious, although it is possible to automate
many steps.

For this, we design tactics using the Ltac tactic language provided by Coq.
To do that, we identify specific patterns in the context and the goal statement
that we simplify by a sequence of tactics and lemmas. The development of tactics
remains a relatively tricky and challenging problem. The aim is to treat all possible
configurations. This requires a good scheduling of simplifications and attempts to
resolve the problem. If one simplifies too fast or too deeply, the system will not be
able to prove the result, otherwise the search tree can quickly become large and
considerably slow down the use of such tactics.

Tactics like the one depicted in Table 18 allow us to unfold as much as possible
the goal while introducing as many assumptions as possible. If the goal has be-
come trivial with a simple contradiction or equality/inequality, the work is done.
Otherwise one has to make explicit a contradiction in the assumptions. This logic
work is the core of the proof and must generally be performed by hand. To raise
contradictions in the context, it makes sense to write intermediate lemmas.

Ltac my_rank :=
repeat match goal with

|[H : _ |- _] => [progress intros|progress intro]
|[H : _ |- _] => solve[intuition]
|[H : _ |- _] => progress contradiction
|[H : _ = _ |- _] => solve[inversion H]
|[H : ?X[==]?X -> False |- _] => apply False_ind;apply H;reflexivity
|[H : _ |- (if if ?X then _ else _ then _ else _) = _ \/ _] => case_eq X
...
end.

Table 18 Example of simplification tactics8. For a more detailed understanding of the main
Coq commands see [4]

6 Definition contains four non coplanar points is available in the file psoh equiv c4p.
Definition coplanar with all is available in the file psoh equiv copwa.
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Proof of the non-decreasing property

In order to exemplify the proof methodology from the geometric axiom system
to the matroid theory, we detail the proof of the non-decreasing property.

Lemma 4 (A2R2-R3),

∀ X ⊆ Y, rk(X) ≤ rk(Y).

In our context, the rank function can take five possible values from 0 to 4,
thus resulting in twenty five different cases when we make a structural induction
on X and Y which are lists. First case: 0 ≤ 0, second case: 0 ≤ 1, etc. Thanks to
tactics, we eliminate fifteen trivial goals immediately wherein X is included in Y.
To prove the remaining ones, we build a contradiction and we simplify the goal
using the tactic my inA (see Table 19) which automatically handles the calculation
of inclusion. For example, we make clear that a plane cannot be included in a line.
It is therefore impossible to reach the case 3 ≤ 2.

The notation InA denotes the inclusion relation over type A in the case of lists
with respect to a setoid equality. Setoids in Coq make it possible to declare a
new equivalence relation that can be used in certain tactics and especially during
rewrites. When it can be proved that two terms are equivalent but not necessarily
equal, it is possible to replace one of the terms by the other. In our case, we
use a particular equality [==] different from the usual equality of Coq. We must
therefore specify the predicates for which rewriting is allowed using this equality.
The InA predicate only accepts rewrites if the equality provided is an equivalence
relation. This tactic proposes an analogous resolution to fsetdecide in the case
where sets are represented by lists while being much more efficient in time. Indeed,
all the abstract layers of the Containers library are eliminated, thus facilitating the
verification of the proof term.

Ltac my_inA :=
intuition;unfold equivlistA in *; unfold inclA in *;
repeat match goal with
|[H : _ |- _] => progress intros
|[H : _ |- _] => progress intro
|[H : _ |- _] => progress intuition
|[H : _ |- _] => progress my_subst
|[H : _ |- Equivalence eq] => apply eq_equiv
|[H : InA eq _ _ |- InA eq _ ( app _ _ )] => apply InA_app_iff
|[H : InA eq _ ( app _ _ ) |- _] => apply InA_app_iff in H
|[H : _ |- _] => split;intuition
|[H : InA eq _ ( ?P :: ?Q ) |- _] => inversion H; clear H
|[H : InA eq _ nil |- _] => inversion H
|[H : _ = nil |- _] => inversion H
|[H : InA eq ?P ( ?P :: ?Q ) -> _ |- _] => let T:=fresh in

assert(T : InA eq P (P :: Q)) by (intuition)
|[H : InA eq ?P ( ?Q :: ?P :: ?Z ) -> _ |- _] => let T:=fresh in

assert(T : InA eq P (Q :: P :: Z)) by (apply InA_cons_tl;intuition)
end.

Table 19 Tactic of automatic computation of inclusion9

8 Ltac my rank is available in the file psoh equiv rk lemmas.
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Coq implementation

The submodularity lemma (A3R2-R3) is the hardest property to prove with
regards to the management of the intersection and the union. It contains many
non-trivial cases that we decompose into several lemmas as in Table 20. We note
list inter the literal intersection between two lists. The first example indicates
that if two lines l and m are merged, it is possible to represent the problem by a
single line containing all the points of the two lines. The second one specifies that if
a line m is contained in a plane p then all the points of the line m can be added to
the plane p to form a single object. All these usual lemmas of projective incidence
geometry describing results of the different intersections of possible objects must
be defined in order to be able to characterize all the cases of the submodularity
lemma.

(* matroid3_rk2_rk2_interrk2_to_unionrk2 *)
Lemma matroid3_aux17_bis_aux :
forall l m,
rkl l = 2 ->
rkl m = 2 ->
rkl (inter l m) = 2 ->
rkl (union l m) = 2.

(* matroid3_rk3_rk2_interrk2_to_unionrk3 *)
Lemma matroid3_aux17_bis_bis_aux :
forall l m,
rkl p = 3 ->
rkl m = 2 ->
rkl (list_inter p m) = 2 ->
rkl (p ++ m) = 3.

Table 20 Examples of intermediate lemmas10

Finally, when we define a new predicate with respect to a setoid equality that
does not belong to the standard library, we must write a morphism. This morphism
is the proof that makes it possible to rewrite with our equivalence relation [==].
Thus for each definition involving the point type, it is necessary to establish a
morphism. This ensures that our equality is compatible and consistent with the
definition in which it is used. In this way, it is possible to substitute a set X similar
to a set Y directly in the rank definition. The morphism, as expressed in Coq, is
given in Table 21.

9 Ltac my inA is available in the file p equiv list additions.
10 Lemma matroid3 aux17 bis aux and matroid3 aux17 bis bis aux are available in the file
psoh equiv rk lemmas.
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Instance rank_morph : Proper (@equivlistA Point eq => (@Logic.eq nat)) rkl.
Proof.
...
Qed.

Table 21 Example of morphism11

Once the Proper predicate is unfolded, the following lemma, where the predi-
cate equivlist indicates that the two lists are equal, must be proved:

Lemma 5 rank morph,

∀ x y : list Point, equivlist x y → rkl x = rkl y

The Coq proofs of the other lemmas of projective geometry follow the same
principles.

4.3 Statistics

Finally, we give some data about our library, and we also detail the impact of
automation that we have put in place throughout the process. Overall, our de-
velopment consists of more than 35 000 lines and 1 000 lemmas. As shown in the
Table 22, the proof of the equivalence breaks down to around 15 000 lines. By using
tactics and splitting the demonstration into lemmas, the size of the formalization
can be reduced by a factor of 3. With the sole aim of establishing equivalence and
maximizing automation, it is still possible to improve this result. This development
aims at being a library as exhaustive as possible for projective incidence geometry.

From rank to PG From PG to rank
2D 3D 2D 3D

lines of Coq specs 250 400 650 1 200
lines of Coq proofs 300 1 500 2 600 12 500

Table 22 Organization of equivalence proof in Coq

5 Conclusion and Future Work

This paper explains how projective geometry can be formalized in Coq using two
different axiom systems in both 2D, ≥3D and 3D. We first described the original
axiomatization based on the notion of rank from matroid theory. Then, we rig-
orously proved the equivalence between these two formalizations. We highlighted
the tools and techniques used to achieve it by presenting a typical proof. Finally
we give some thoughts on proof automation in the presence of ranks.

11 Morphism rank morph is available in the file psoh equiv rk lemmas.
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We discuss here the automation possibilities that can be envisaged by combin-
ing the two approaches. For this, we provide an overview of a work in progress
and tracks that we wish to explore.

Automation in incidence geometry quickly reaches its limits when the user has
to manipulate several objects in dimensions greater than 2. Developing lemmas
and tactics becomes a tedious task since it is necessary to duplicate the treatments
for all combinations of processed objects. At each transition to a higher dimen-
sion, it is mandatory to add a new object, new predicates, and update the set of
simplification rules. From this point of view, the approach of geometry with ranks
seems much more promising.

As we mentioned in the first implication of equivalence, submodularity plays
a decisive role in the proof of lemmas involving the concept of rank. This is the
key concept to master and to manipulate in order to automate proofs. By itself,
it allows us to control dimensions and intersections of flats. If we want to auto-
mate proofs involving ranks, we need to formalize a procedure that applies the
submodularity axiom to be able to discover as much information as possible about
the dimensions of different sets of points. In practice, this process is already in
place. However, there is still a major problem: How can we guide the automation
to compute the relevant sets of points? This problem already exists in the case of
projective incidence geometry when it comes to creating new objects. At present,
the rank-based approach facilitates proof simplifications while maintaining control
over the direction of calculated sets. Nevertheless, we plan to use combinatorial
solutions to compute the ranks of numerous subsets before attempting to solve
the theorem. The underlying problem in this case is to avoid the combinatorial
explosion. Indeed if we consider a geometric problem with n points, computing the
set of flats of this theorem amounts to calculating partitions of the set containing
all points, ie 2n flats.

In the work currently in progress, we study these problems of combinatorial
explosion in the specific case of finite geometries. Preliminary results indicate that
it is possible to obtain far more satisfactory results by using the ranks in the most
complicated cases.

In the future, we plan to carry on with our investigations in two main directions.
On the one hand, we expect to write a reliable algorithm for performing a bilateral
translation between the two approaches. In this way we can alternate between
geometry for visualization and combinatorics for automation and computation.

On the other hand, we shall study how to efficiently implement the search for
new flats to automate proofs about ranks at different levels while managing com-
binatorial complexity. First, we will finish our case study on the possibilities of full
automation in the case of finite geometries. Secondly, we are interested in a partial
automation of many steps in the Desargues’ theorem presented in [23, 24] using
mainly the submodularity. To extend this analysis, we will examine two other con-
sequent theorems in projective incidence geometry: Dandelin-Galluci theorem [1,2]
and the harmonic conjugate. The aim will be to make proof as readable as possible
by removing technical details, thus being as close as possible to a mathematical
proof.
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Availability The last version of full Coq development is available from github
repository in the branch amai2018 at:
https://github.com/ProjectiveGeometry/ProjectiveGeometry

References

1. Baker, Henry Frederick: Principles of geometry, vol. 1. Cambridge University Press (1925)
2. Bamberg, John and Penttila, Tim: Completing Segre’s proof of Wedderburn’s little theo-

rem. Bulletin of the London Mathematical Society 47(3), 483–492 (2015)
3. Batten, Lynn Margaret: Combinatorics of finite geometries. Cambridge University Press

(1997)
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