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The attempt to unify the laws of physics is approached from a discrete vision of space and
time, abandoning the continuous medium paradigm that presided over the derivation of certain
equations of physics - Navier-Stokes., Navier-Lamé, Maxwell, etc. Acceleration considered as an
absolute quantity is expressed as a Hodge-Helmholtz decomposition, the sum of a solenoidal
component and an irrotational component. Discrete mechanics, which has already unified me-
chanics in a relativistic formulation, is extended to electromagnetism with the same equation
of motion expressed in terms of scalar and vector potentials. All the variables and parameters
of this equation are described with only two fundamental units, those of length and time. The
discrete equation makes it possible to account for persistent phenomena in the absence of any
excitation, permanent magnetization, pressure, shear stress and purely unsteady effects such as
magnetic induction, longitudinal and transversal wave propagation, differential rotation.

Keywords : Discrete Mechanics, Weak Equivalence Principle, Hodge-Helmholtz Decompo-
sition, Maxwell equations, Navier-Stokes equations

1 Introduction

The dynamic equations of J.C. Maxwell [1], also called Maxwell-Lorentz equations, are fun-
damental laws of physics. They constitute the basic postulates of electromagnetism, with the
expression of the Lorentz’s electromagnetic force. Today, Maxwell’s four vector equations can be
written in integral form, in just two tensor equations, or even in a single multivectorial equa-
tion in geometric algebra. The application of the discrete exterior calculus [2] to the equations
of mechanics and those of electromagnetism made it possible to federate the discrete approach
without unifying these laws.

An example is the work of E. Tonti [3], which reverses the approach by first using the discrete
constitutive laws to truly define a unified approach. Ideas evolve over time and the concepts of
Galileo or Newton have led to modern formulations that have gone far beyond the scope of
the concepts that led to their development. For example, newtonian mechanics is too often
associated with an infinite wave speed, which is no longer the case since Euler derived the
equations of the mechanics of compressible fluids. The dynamic vision of equations, adopted
by Maxwell for electromagnetism, is essential, and introduces two important quantities for all
physics, acceleration and velocity ; the first can be considered absolute and the second is of course
relative. The limitation of material velocity to the celerity of light is a postulate of relativistic
mechanics which is not a prerequisite in discrete mechanics. This is the point of view adopted
where, if there were any limit on velocity, it would be fixed by the decrease in acceleration when it
approaches celerity, velocity and celerity being two disjointed notions which cannot be compared.

The unification of the physics continuum associating the constitutive laws of the mechanics
of deformable media and electromagnetism is a major objective addressed in particular by A.C.
Eringen et al. on electrodynamics of continua [4]. The goal was not the juxtaposition of the two
theories but the search for a real composition. The authors establish a set of balance laws of
electrodynamics of deformable bodies including Maxwell equations and momentum conservation
laws and scan a wide spectrum of materials to which these equations apply. The laws of the



continuum physics thus obtained remain however in the classical framework of the continuous
medium.

It is in this context that an attempt to unify the laws of mechanics was carried out in 2015
[5] ; it led to the formulation of an equation of motion based on the weak equivalence principle
(WEP) and the principle of relativity introduced by Galileo. The abandonment of the continuous
medium paradigm made it possible to develop a discrete approach based on a quantity considered
absolute, acceleration. The equation of the discrete movement resulting from this formulation
covered all the properties of the Navier-Stokes equations for fluids, Navier-Lamé for solids, and
a first result of General Relativity.

The physics underlying the Navier-Stokes, Navier-Lamé, General Relativity and Maxwell
equations is the same ; only the physical parameters are different. Since the time constants asso-
ciated with these domains can be very different, it is possible that some effects are negligible and
are not taken into account in the modelling of the phenomena ; for example, classical mechanics
does not need to use relativistic mechanics for applications where the velocity is much lower than
the celerity of light in a vacuum. However, the problem here is to find a mathematical formu-
lation to represent the largest number of physical phenomena for various spatial and temporal
scales. Quantum mechanics is outside the scope of this paper, even though its contributions to
the understanding of our usual physics is considerable, for example the duality between wave and
corpuscle. The aim here is to extend the concepts used to unify mechanics and electromagnetism
without modifying the previously derived formulation, is not to find any analogy between me-
chanics and electromagnetism [6], [7] nor even to introduce a new numerical methodology, but to
formulate an equation representative of all these phenomena. The purpose is to derive a generic
equation based on unique variables for all phenomena.

The velocity V considered here is that of fluid in motion, that of a solid loaded in stress
or displacement, or the velocity of displacement of the electric charges in a conductor ; for a
copper conductor the velocity is of the order of V = 10−3 m/s but in a vacuum tube it is of
the order of V = 107 m/s, a value close to the celerity of light. Velocity itself is a secondary
variable, it will appear as a lagrangian in equations updated by acceleration. To clarify the
discrete approach one can present it in a trivial way : a flux of particle or matter moves along
a curvilinear trajectory with velocity V in a medium which can be a fluid, a solid or a vacuum
and where celerity c of this medium is simply known. The particle, whether or not it has a mass,
or the material, can be accelerated on its trajectory, thus modifying the velocity which becomes
V = Vo + dt γ after a lapse observation time dt. The acceleration is due to a certain number of
physical phenomena, some of whose origins have not yet been understood in detail : gravitation,
inertia, viscous friction, cohesion, etc. Only knowledge of acceleration γ and that of the previous
state, defined by velocity Vo, serve to define the current state. These quantities involve only two
scales, that of time and that of space. The goal is to derive an equation of motion with variables
that are characterized by only these fundamental units.

Discrete mechanics [5] has already been validated for the fields of fluid mechanics, solids
or certain cases of General Relativity. It will be confronted here with the field of electroma-
gnetism without any modification to the formulation. The aim is not to find analogies with
Maxwell’s equations but to extend discrete mechanics to discrete electromagnetism, with the
absolute constraint of covering the laws of current electromagnetism in their field of application.

Other fields of physics are accessible by the proposed formalism. This is the case of the heat
transfer where the heat flux vector and the temperature are respectively replaced by the velocity
and the scalar potential ; At the very low time constants we find the hyperbolic law of Cattaneo-
Vernotte [8]. The mass transfer in the multicomponent mixtures or the flows in porous media
correspond to applications treated in discrete mechanics [5].

The undulatory character assigned to certain areas of physics makes it possible to address
complex phenomena such as physical optics, which represent wave interference and diffraction.
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Some composite materials or synthetic three-dimensional structures have similar properties of
polarization and chirality. The metamaterials created by T. Frenzel and his team [9], [10] have the
property of generating a twist when subjected to compression. These unconventional behaviours,
which can thus be created on demand, open up very interesting applications perspectives but
also a path of research focused on mathematical modelling on equivalent properties. The DM is
entirely based on the propagation of longitudinal and transverse waves which allows a potential
unification with the electromagnetism. Cases of complex constitutive laws and metamaterials
have not been addressed. Appropriate constitutive laws are already available in the context of
the continuum mechanics [11].

2 Discrete formulation of conservation laws

2.1 Notion of discreet medium

The establishment of a unified formulation of physics requires the use of quantities that
federate all the variables associated with the multitude of laws of physics. Some of these laws
are of greater importance, such as conservation laws, and others are simple laws of behaviour or
constitutive laws. The best-known laws of physics are those of Navier-Stokes for fluids, Navier-
Lamé for solids, and Maxwell for electromagnetism. Some of them are wrongly attributed to
a Galilean vision, such as Newtonian mechanics ; apart from the very specific case of so-called
incompressible approximation, the celerity of fluid or solid media is not considered infinite. These
equations thus enter the relativistic framework and are supposed to be in agreement with General
Relativity as well as Maxwell’s equations written in space-time formalism.

The search for a generic equation that would unify mechanics for all media and the propaga-
tion of all kinds of waves poses the problem of the existence of this physical law. The equations
developed over the past three centuries were intended to represent only part of the observed rea-
lity. Maxwell brought together in a single dynamic theory the laws of Faraday, Joule, Ampère,
Gauss, etc., using the notion of electromagnetic field. Progress in quantum mechanics and the
advent of the theory of relativity at the beginning of the last century enabled a move towards
a coherent description of certain branches of physics. The vast majority of work has revealed
the existing laws and completed them, such as relativity for Newton’s law ; however, the path
is still long and inconsistencies remain, for example the difference in formulation between fluid
mechanics and solid mechanics, despite the notion of continuous media mechanics which was
supposed to unify mechanics.

The vision proposed here is based on the existence of a single law for all the areas of physics
mentioned above. This law is built on the two principles derived from Galileo’s observations,
the principle of relativity and that of equivalence of the inertial and gravitational masses. These
two principles suggest the existence of an invariant absolute variable independent of any spatial
reference. This quantity is the acceleration γ that a medium or a particle would have under the
influence of the acceleration imposed on it. Given the principle of equivalence, the generic law is
written :

γ = g (1)

This law conforms to Newton’s second law m γ = F but here the vector g is the set of forces
per unit mass applied to the medium or the particle. The law (1) expresses the conservation of
acceleration, it is the only physical quantity which satisfies the mathematical vectorial addition
γ = γ1 + γ2. This law (1) is the cornerstone of the discrete mechanics developed in recent years
[5]. The basic assumptions of discrete mechanics are simply recalled here :
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• the acceleration of a particle or a medium is an absolute quantity ;

• velocity is not limited, velocity and celerity are two disjointed notions ; the first is a pro-
perty of the medium (matter, vacuum) and the second is a relative quantity which can be
accumulated ;

• the equivalence of gravitational and inertial masses as well as relativity are two intangible
principles ;

• there is a scalar potential φ and a vector potential ψ of the same quantity γ, acceleration ;

• the Hodge-Helmholtz decomposition applies to the acceleration that breaks down into one
irrotational component and another solenoidal component ;

• source terms resulting from physical effects such as inertia, gravity, capillarity, etc. are
decomposable according to this same principle.

Any vector can be decomposed into an irrotational part and a null divergence part :

γ = −∇φ+∇×ψ (2)

The two fields ∇φ and ∇ × ψ are orthogonal. We will adopt the principle that any vector
can be written in this form. This decomposition is sometimes presented with a third harmonic
term, at once null divergent and null rotational ; in fact, this term is closely associated with
the uniform overall movements that must disappear from the formulation under the principle of
equivalence. Velocity is a variable whose absolute value does not matter, in discrete mechanics
it is considered as a simple lagrangian upgraded by the acceleration V = Vo + dt γ where Vo is
velocity at moment to and dt the time between two observations of the phenomenon.

(a) (b)

Figure 1. (a) Elementary geometrical structure of discrete media mechanics : three straight Γ
edges delimited by dots define a planar face S. The unit normal vectors n to the face and the
vector carried by Γ are orthogonal, t · n = 0. The edge Γ can be intercepted by a discontinuity
Σ located in c, between the ends a and b of Γ. φ and Ψ are the scalar and vector potentials
respectively. (b) The virtual machine of motion in Discrete Mechanics : the acceleration of the
medium along the edge Γ is due to the difference of the scalar potential φ between the ends of
the edge [a, b] of unit vector t, to the circulation action of the vector V on the contour of the
different primal facets S inducing an acceleration on Γ and the projection g · t imposed other
accelerations as gravity.

Acceleration is thus written as the sum of the two terms γ = γφ+γψ which can be modelled
according to velocity and medium properties. Velocity V also has two components that are
upgraded by the components of acceleration Vφ = γφ dt and Vψ = γψ dt which represent the
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currents flowing over the segment Γ ; as the two fields are orthogonal, these currents do not
have any direct interaction. In fact it is not possible, in general, to extract the components
of velocity V by directly applying a local discrete Hodge-Helmholtz decomposition, the result
depends closely on the boundary conditions. Fortunately the V field is relative and is only a
secondary variable ; it is the decomposition of acceleration γ, the absolute quantity, which is
sought in the form of potentials ; and this decomposition is possible.

The notion of continuous medium is also abandoned, as is that of global reference ; there is
a local discrete geometrical structure represented in the figure (1) composed of a primal and a
dual elementary structures. The term discrete geometric structure or geometric topology used
defines a set of links between connected elementary objects, here points, segments, surfaces.
These notions are identical to those that can be found in mesh structures, for example resulting
from spatial discretization in finite elements. The segment Γ of unit vector oriented t and of ends
a and b defines the basic element of the primal topology which, with two other segments, forms
the planar surface S whose unit-oriented normal is n such that t ·n = 0 (figure 1(a)). The scalar
potential φ is only defined on the ends of the primal topology. A possible contact discontinuity
or shock wave Σ intersects the segment Γ into c. The normal to the S plane is associated with a
pseudo-vector ψ such that the rotation of vector V is itself associated with the segment Γ. Figure
(1(b)) represents the primal surface S as a planar polygon ; the δ outline and the ∆ surface form
the dual topology.

The presentation of the differential operators may be greatly different depending on the degree
of formalization of the differential geometry [12]. The succinct and non-exhaustive presentation
given here is based on a simple physical approach which allows us to define the operators associa-
ted with the switch from one topology to another, on the basis of scalar or vectorial information.
It should be remembered that although the classic notion of a continuum has been set aside, the
material is a continuum where the directions of the edges and of the normal to the surfaces are
also preserved at all scales of observation.

The gradient operator applied to a scalar φ, ∇φ, represents the difference of that scalar over a
distance d between a and b in a given direction. Unlike with the concept of continuum mechanics,
the gradient vector defined here has only one component, assigned as a scalar to the edge Γ. The
gradient of a scalar in the space has no meaning - it is an illegal operation in discrete mechanics.
The gradient is calculated solely on a bipoint [ab] linked by an edge. The primal rotational of
a vector W, ∇ ×W, is associated with the circulation of its components V over all the edges
Γ constituting the primal boundary. It is represented by a vector n orthogonal to the primal
surface. This surface is considered to be flat. This apparent restriction disappears as the surface
area ds tends toward zero ; however, it will remain a condition for the application of the theorems
of differential geometry in particular context discussed here. The divergence represents the flux
of a vector W, ∇·W, across all the facets of the dual surface. The scalar obtained as assigned to
the single point inside the dual volume. The flux is calculated on the basis of the components V

on the edges Γ of the vector itself. If the vector W is a rotational, calculated as the circulation
of another vector on each primal boundary, then the divergence will be strictly null. The dual
rotational of a vector W, ∇ × W, physically represents the flux of the vector W across that
portion of the dual surface associated with the edge Γ. This flux is calculated using the circulation
of the vector, or rather, of its components, on the boundary delimiting the dual portion which,
in general, is not flat. The result of this operation is assigned to the edge Γ as a vector or a
directed scalar, if necessary.

The circulation of vector V along the contour of the primal surface makes it possible to
calculate the primal rotation of unit vector n, and the circulation along the δ contour of the
surface ∆ is the dual rotational that re-projects the result on the Γ segment. Note that the
number of planes of normals n associated with the segment Γ is arbitrary, five in the figure
(1(b)). In the context of a continuous medium, the requirement to use a reference system leads
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us to consider the three components of the vectors, the nine components of a second-order tensor,
and so on. The same reasons require the introduction of the four components of space-time, the
fourth order Riemann tensor in relativity theory. The discrete description serves to satisfy, from
the outset, the notion of material indifference and to represent the notion of polarization.

The primal and dual topologies thus defined serve to satisfy two essential properties in discrete
∇h×∇hφ = 0 and ∇h·(∇h×ψ) = 0, whatever the topologies based on planar surfaces, polygons or
polyhedra and whatever the regular functions φ and ψ. These conditions are absolutely necessary
for a complete Hodge-Helmholtz decomposition applied here to acceleration. Each vector can be
decomposed into a solenoidal part and an irrotational part, but the scalar and vectorial potentials
are not of the same importance according to the nature of the vector. In electromagnetism φ
and A do not come from the same vector and do not express themselves with the same units.
In mechanics the scalar potential and the velocity vector potential do not have any particular
physical importance but can be used to project velocity over a field with zero divergence. Only
acceleration γ and its potentials φ and ψ have special physical properties.

It should be noted that φo and ψo are the stresses at time t, where all the forces applied before
that instant are “remembered”. The formalism presented here enables us to take account of the
entire history of the medium, i.e. its evolution over time from an initial neutral state. For a given
instantaneous state of strain, there may be multiple paths by which that state can be reached,
and (φo,ψo) will, alone, contain the whole of the medium’s history. It is not helpful to know the
local and instantaneous stresses, in that these two potentials will have accumulated stresses over
time ; these quantities are also called “accumulators” or “storage potentials”. These potential can
therefore be used to take account of the behaviour of media with continuous memory.

2.2 Discrete motion equation

The derivation of the equation of discrete motion is essentially based on the physical mo-
delling of phenomena observed in both mechanics and electromagnetism. The elementary laws
representing these phenomena exist, they are most often written as linear relations between flows
and forces. Some of them may have different representations in CM and DM, for example the
viscous effects interpreted as shear and written in the form of a CM derivative can result in
a primal rotation in DM cite Cal15. Whatever the physical phenomenon observed, it can be
modelled in DM only with two types of effects, a longitudinal directional effect linked to the
longitudinal celerity of the medium cl and another transversal associated with the transverse
celerity ct possessing the property of polarization. In mechanics, for example, compression is
described by the product cl ∇ · V and the shear stress by ct ∇ × V. In electromagnetism the
velocity is replaced by a function of the electric current. The derivation of the discrete equation
is directly carried out on the segment oriented Γ considering that the intrinsic acceleration of
the medium γ is equal to the sum of the external accelerations g.

The equation of motion is established for all media, fluids, solids or vacuum. Properties can
include :

• fluids can be compressible or incompressible, Newtonian or complex rheologies, nonlinear,
viscoelastic, viscoplastic, with thresholds, etc ;

• solids can correspond to various constitutive laws, from the elastic solid to the laws of
complex behaviours ; the unsteady temporal processing of the model makes it possible to
treat cases of large deformations and large displacements while conserving the mass ;

• electromagnetic media can have any properties corresponding to those of fluids, solids or
vacuums ; persistent states such as electric charge accumulation, permanent magnetization
or hysteresis effects are implicitly incorporated into the formulation.
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The derivation of the previously realized equation of motion [5] leads to the system of generic
equations of discrete mechanics :







































γ = −∇
(

φo − dt c2l ∇ ·V
)

+∇×
(

ψo − dt c2t ∇×V
)

− κV + g

φ = αl φ
o − dt c2l ∇ ·V

ψ = αt ψ
o − dt c2t ∇×V

V = Vo + γ dt

(3)

Before giving an expression of the stress state, it is advisable to define mechanical equilibrium.
Mechanical equilibrium is obtained when the law of dynamics is satisfied, γ−g = 0 if g represents
all the forces per inut mass applied to the system studied at time t. This choice of the concept
of equilibrium precludes all motions where acceleration is null, the uniform rectilinear motion.

Any disturbance to this state of equilibrium due to modifications made to one of the source
terms, the boundary conditions, etc., will lead to a change in the variable used - i.e. velocity
or displacement - which leads the system to a different state of equilibrium at time t + dt, for
which we shall also have ρ γ − f = 0. What changes between the two states of equilibrium is the
residual stress state manifested by two potentials φo and ψo. Hence, for a state of mechanical
equilibrium, the sum of the relative contributions to these two values is null and the acceleration
is also null.

The quantity φo is the equilibrium scalar potential and ψo is the equilibrium vectorial po-
tential. They express the persistence of a physical phenomenon such as electric potential and
permanent magnetization in electromagnetism or pressure and shear stress in a solid medium in
mechanics. In the absence of any movement of the particle or the medium and in the presence of
a source term g the equation becomes −∇φo+∇ψo + g = 0. The factors αl and αt are physical
quantities to express the persistence of long-term effects. For example, the relaxation time of
shear stresses in a fluid medium is of order of magnitude of τf ≈ 10−12 s and the αt factor can
legitimately be set to zero for common applications. The quantity ∇φ is a polar vector just like
∇×ψ whereas ψ is an axial vector or pseudo-vector.

The parameter −κ V represents the effects of viscous friction on a small scale ; in fluid
mechanics this term is the volume drag of Darcy −(µf/K) V where µf is the viscosity of the
fluid and K is the permeability of the porous medium. In electromagnetism this term enables to
modelling the reduction of acceleration of electric charges.

Longitudinal cl and transverse ct celerities are intrinsic properties of the medium, matter
or vacuum ; these quantities depend on multiple variables but they will be assumed simply to
be known in space and time. The definition of these celerities also depends on the physical
phenomenon studied - electromagnetism, fluid mechanics, etc. Velocity V is a quantity that is
totally independent of celerity, the two notions are strictly disjointed and cannot be compared as
in Special Relativity. The duality between wave and particle introduced in quantum mechanics
makes it possible to assign a celerity to the wave and a velocity to the particle. If the velocity
happens to be limited by a value equal to the celerity, it means that the acceleration tends towards
zero. Velocity is a secondary variable, a lagrangian, which is updated from the acceleration and
time dt between two observations of the physical system.

The system (3) is composed of a vector equation that calculates the variable V and three
updates of potentials and velocity. Acceleration γ can be replaced by the material derivative
definition γ = dV/dt to give an implicit law. The material derivative itself can be replaced by
expressing the terms of inertia γi = ∂V/∂t−∇×(|V|2/2n)+∇(|V|2/2). The form of the inertial
terms discussed in [5] is applicable whatever the medium considered : fluid, solid, vacuum.

7



Similarly, all possible source terms g are considered accelerations and thus decomposed ac-
cording to the Hodge-Helmholtz form. This is the case of gravity where the scalar potential is
φg = GM/r thus giving the two contributions of gravitational acceleration γg = −∇φg+∇×φgn ;
another example is that of capillary acceleration which is written γc = −∇φc +∇ × φc n with
φc = σ κ where σ is the surface tension per unit mass and κ the longitudinal or transverse
curvature.

The equation of the system (3) is written with quantities that are expressed only with the
fundamental units, length and time, whereas the dedicated equations, Navier-Stokes, Navier-
Lamé and Maxwell involve the set of fundamental units, length L, time T , mass M , intensity I
and sometimes temperature Θ.

For the phenomena expected to be described by equation (3), i.e. mechanics of fluids and so-
lids, relativistic mechanics and electromagnetism, table (1) presents the correspondence between
the variables and the properties conventionally used for each of the domains described and those
to be fixed in the equation, dt c2l and dt c2t . The quantities present in this table are respectively
χT the coefficient of isothermal compressibility, µf the viscosity of the fluid, νf its kinematic
viscosity, λ and µs the Lamé coefficients, ρm electrical density, εm permittivity, µm magnetic
permeability and σm electrical conductivity. The variable of the discrete equation is the velocity
V of the particle or the medium, U is the displacement of the solid, e is the electric potential, j
is the density of electrical current, and charge density is noted ρm.

It is easy to extract from this table (1) all the electromagnetic quantities from the potential
ones φ, ψ and the velocity V ; thus the rotational of the vector potential is equal to ∇ × ψ =
∇ × ((ρm/(ρ σ µm))B) and we find the Maxwell-Thomson law ∇ · B = 0, i.e. the fact that
the magnetic field has no charge. As in mechanics, the physical quantities are integrated within
the operators gradient and rotational dual and they do not have to be derived in space, they
are constant on the whole primal surface S. It can be seen that the correspondence between
mechanical and electromagnetic variables has nothing in common with the analogies presented
in the literature. In discrete mechanics the equation is the same and the potentials of a true
Hodge-Helmholtz decomposition are those of a single quantity, acceleration.

V φ ψ dt c2l dt c2t
fluids V p/ρ ω/ρ dt/(ρ χT ) νf = µf/ρ

solids U/dt p/ρ ω/ρ dt (λ+ 2 µs)/ρ νs = µs/ρ

électro. j/ρm (ρm/ρ) e (ρm/(ρ σ µm))B dt/(εm µm) νm = 1/(µm σm)

Table 1. Correspondence of quantities, variables and properties, used in discrete mechanics and
the usual quantities in mechanics and electromagnetism where V is velocity, U displacement, p
pressure, ω the constraint, j the current density, ρm the electrical charge density and B the
induction magnetic field.

The density ρ is that of the fluid medium ρf or the solid ρs or the vacuum ρv = 0 ; even in the
latter case the potentials continue to make sense. For example, for a perfect gas φ = p/ρ = r T
continues to have a value as long as the notion of temperature continues to make sense. For the
electromagnetic phenomena in the vacuum it is the current j which becomes null at the same
time as the density. These cases correspond to very compressible media for which the divergence
of the velocity is very important ; deletions of terms a priori are to be applied with a great care,
as the product of two terms, one of which tends to zero and the other to infinity, is of course
undetermined. The system (3) is unsteady and applies in all the cases previously mentioned
whatever the time-lapse dt considered : for values compatible with the physics of phenomena,
including the propagation of light, the system will report evolutions in time. For much larger
values of dt the evolution will not be physical but the convergence state will correspond to the
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stationary solution of the problem. Given the highly implicit character of the discrete equation,
the formulation is very robust.

In electromagnetism the velocity in the vacuum c0 is equal to the celerity of light and there
is no transverse celerity. There are, however, polarizable transverse gravitational waves whose
velocity is currently fixed at longitudinal velocity c0 ; in the absence of different information we
will use this result. It is recalled that the velocity of the particles (matter, electrons, photons) is
not limited and that the celerities of the associated waves are exclusively measured quantities. The
quantity po is the equilibrium mechanical pressure and ωo the perfectly defined shear-rotation
stress in fluid and solid.

The factors αl and αt, which are dimensionless quantities between 0 and 1, are also intrinsic
properties of the media. These factors depend largely on the time constants τf , τs and τm
corresponding to the relaxation times of the transverse phenomena. For example, for water, if
νf = µf ρ ≈ 10−6 is the kinematic viscosity and c2l = 1/(ρχT ) ≈ 2.25106, the characteristic time
is then τf = νf/c

2
l ≈ 10−12s. It should be noted that transverse celerity is not known for water.

It is understood that water relaxes the shear stresses on characteristic times greater than τf , and
we can adopt αt = 0. For times dt of this order of magnitude, the accumulation of shear stresses
is no longer negligible. The same analysis can be made for the accumulation of constraints in a
solid where we have νs ≈ 2 107 and c2l ≈ 5 106 that is τs ≈ 0.25 in copper ; in this case copper
accumulates the shear stresses αt = 1. For dielectric materials the values are very variable and
it is necessary to perform a preliminary analysis.

The transformation of mechanical or electrical energy into heat is due to the viscous friction
described by the rotational dual but also by the term −κV of the equation (3). This dissipation
is evaluated by the function Φd = dt c2l (∇ ·V)2 + dt c2t (∇×V)2 + κ|V|2 in discrete mechanics.
In electromagnetism this last contribution corresponds to the Joule’s law which is written in this
context −∇φ · t = κ |V|2 by linking the potential difference to the dissipation.

Contrary to what one might think, one cannot eliminate terms with very large or very small
coefficients. For example, if we want the flow to be incompressible, we must keep ∇ · V in the
equation of motion and in fact it is when the longitudinal velocity is very high that the divergence
becomes very low, the term dtc2l ∇·V is an order of magnitude of the other terms of the equation,
a priori of order one. These factors make it possible to maintain persistent effects in the absence
of any velocity, such as the magnetic field of a magnet in the very long term. Its demagnetization
and the hysteresis induced by a current will naturally be taken into account by the equation of
motion.

The system (3) and the properties (1) are sufficient to deal with any problem in one of
the domains mentioned. The variables are the scalar potential φ defined at the ends of the
segments Γ and the vector potential ψ, a pseudo-vector, associated with the normals n of each
of the primal faces ; the number of facets having the Γ segment in common is variable and the
vector, tensor or quadrivector formulation no longer makes sense in this discrete context. It is
of course possible to return to the usual variables, for example electric potential e, electric field
E, magnetic field B, excitation field H, magnetization M, charge density ρm, current density j,
etc. for electromagnetism where c2 = 1/ε µ. All these quantities which are not independent have
been defined over time and have become usual notions, but it is no less legitimate to consider
only φ and ψ.

It is necessary to add a law of conservation on a particular potential, mass for fluids ρf and
solids ρs and ρm density of charge in electromagnetism ; in discrete, the law of conservation is
found for all cases treated :

dρ

dt
+ ρ∇ ·V = 0 (4)

In discrete, for a process of temporal accumulation between two states at the instants to and
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to + dt, the states are expressed in the same way :

ρ = ρo − ρo dt∇ ·V (5)

The equilibrium potentials φo and ψo correspond to the potential accumulation of longitu-
dinal and transversal actions over time ; these persistent terms are written :

φo =

∫ to

0
c2l ∇ ·V dt; ψo =

∫ to

0
c2t ∇×V dt (6)

The solution to any problem is to find (φ,ψ, ρ) as a function of space and time. These
quantities corresponding to each equilibrium, defined as the exact satisfaction of equation (3),
are persistent, and stopping the integration process in time will not modify the values. Physical
properties are also updated if they depend on variables and time.

3 Application to mechanics

The equation system of Discrete Mechanics (DM) (3) is representative, without modification,
of several domains of physics, fluid mechanics, solid mechanics, wave propagation or heat transfer,
to cite a few.

Numerous examples have shown the validity of system (3) in fluid mechanics. For example,
compressible, incompressible, non-isothermal or two-phase flows can be approximated with DM to
recover the classically known results, in particular the classical analytical solutions of Poiseuille or
Couette flows. Synthesis solutions of the Navier-Stokes equation, such as the Green-Taylor vortex,
are also valid and satisfied by the DM equations. Reference cases, such as the lid-driven cavity, the
backward facing step or the flow around a cylinder, make it possible to show that the DM model
converges to order two in space and time for both velocity and pressure. The flows associated
with heat and mass transfers including multi-components are reproduced in a similar way. More
complex problems of shockwaves like the Sod tube, phase changes, boiling, condensation [13] are
treated in a coherent way by integrating discontinuities within the equations of motion. Two-
phase flows with capillary effects, surface tension or partial wetting, are particularly well suited
to the discrete mechanics model [14].

In the present form, system (3) is relatively close of the Navier-Lamé equation associated to
the study of stresses and displacements in solids. It differs, however, on several points : especially
the discrete formulation is established in velocity, the displacement is only an accumulation
of V dt as the velocity is itself the raising of γ dt. Numerous examples of simple solicitations
make it possible to find the solutions of the Navier-Lamé equation. More complex 2D and 3D
problems on monolithic fluid-structure couplings have already made it possible to validate the
proposed formulation [15], [16]. The vision of a continuous memory medium makes it possible
to treat the problems of large deformations and large displacements in a formulation where the
pressure stress and the shear are obtained at once in a synchronous way without compatibility
conditions. Given the original dissociation between compression effects and rotation, the material
indifference introduced by Truesdell [17] is satisfied naturally. The complex constitutive laws can
be treated without difficulty, only the physical parameters written in the equation of motion
must be known.

The Special Relativity based on the concepts of Galileo, relativity and equivalence, allowed
Maxwell, Poincaré and many others to introduce the Lorentz transformation into the equations,
and in particular Einstein to make of equivalence notion a strong principle by adding the notion
of velocity limit, that of light in vacuum. The ratio v2/c2 of the Lorentz transformation combines
two quantities which are not of the same nature, the velocity is a relative quantity and the celerity
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a property of the medium. The velocity cannot be limited a priori by the celerity of the light.
In fact, if the velocity should tend towards a limit, the reason for this asymptotic value is that
the acceleration becomes zero. The system of equations (3) is perhaps relativistic, this is what
is advanced in the present work. This statement is motivated by presenting how the discrete
mechanics makes it possible to find the first major result of the theory of the relativity, the
deflection of light by the Sun.

The two very simple cases that follow make it possible to illustrate the role of the set of scalar
and vector potentials (φo,ψo) within the equation (3) ; the compression energy associated with
∇·V and rotation energy linked to ∇×V is stored and released at each instant by these potentials,
which are energies per unit mass. The terms in gradient and in dual rotational are orthogonal
and cannot exchange these energies directly, an imbalance thus leads to an acceleration, positive
or negative. The accumulation of shear stresses in an elastic or viscoelastic solid leads to a state
of rest if the boundary conditions are stationary. The mechanism itself of the propagation of
longitudinal and transverse waves in a material is engraved in this formalism to describe these
complex exchanges.

3.1 A simple case

We consider one of the simplest cases of fluid-structure interaction to study the behaviour of
two media, one viscous and the other elastic. This test case has a very simple analytical solution
that highlights the behaviour of the two media modeled with the discrete description (3). The
domain height h = 1 is separated by a Σ interface located at h/2. The velocity of the lower wall
is kept at rest and the upper surface is initially set in motion with a velocity V0 = 1.

Figure 2. Fluid-structure interaction between a viscous fluid and an elastic solid ; the viscosity
of the fluid is equal to ν = 1 and the solid shear modulus is equal to ν = 4. On the left, the
velocity of the interface over time is presented, in the center, the velocity V at steady-state
regime is reported and on the right, the displacement of the solid U plotted.

Let us first consider the purely viscous case of two kinematic viscosity fluids ν1 = 1 and
ν2 = 4 ; the solution obtained using the system (3) converges very quickly towards the statio-
nary solution. It appears as two right-hand portions satisfying the boundary conditions and the
condition ν1 ∇×V1 = ν2 ∇×V2 at the interface since the density on Σ is unique. Under these
conditions, the velocity at the interface is equal to Vi = 0.2. The 1D solution does independent
on the chosen spatial approximation and the error is zero to almost machine accuracy. Note that
the condition at the interface is implicitly provided by the ∇×(ν ∇×V) operator. The constant
rotational in each medium is respectively equal to ∇ × V1 = −1.6 and ∇ × V2 = −0.4. Since
the problem has no compressibility terms, only the viscous terms independent of the first ones
appear in the discrete motion equation.

The lower part of the domain is now assumed to behave as an elastic solid of celerity c2t = ν =
4. The upper part is occupied by a viscosity fluid with ν = 1. The potential vector ψo makes it
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possible to accumulate the shear stresses in the solid, the constraints at the interface in the fluid
being effectively transmitted and stored in the solid. The solution converges rapidly to a strictly
zero velocity field in the solid and a linear velocity profile satisfying the condition in y = h and
at zero velocity on the Σ interface. The vector equation of the system (3) is identically satisfied
with ψo = ν∇×V where V is the velocity of the fluid and ψo = 2. The exact solution does not
depend on the spatial approximation.

Figure (2) shows the evolution of the velocity at the Σ interface over time. It diminishes
quickly, enough to become zero. The velocity field is zero in the solid and linear in the steady-
state fluid. The figure also gives the displacement U of the solid at the end of the time evolution.

While a fluid moves indefinitely under the action of shear, an elastic solid quickly reaches a
stationary displacement. The absence of interpolation at the interface between a fluid and a solid
allows to reach the exact solution. This very simple example makes it possible to understand the
different mechanisms involved in the equation (3) and to validate the unsteady and stationary
fluid-solid interaction.

In continuum mechanics, the theoretical solution of this problem can be obtained by conside-
ring the two media separately by imposing boundary conditions at the interface. The respective
equations, in stationary incompressible regime without inertial effects, are respectively for the
fluid and solid media :







∇ ·
(

µf
(

∇V+∇tV
))

= 0

∇× (µs ∇×U) = 0
(7)

When the properties µf and µs are constant, these equations are reduced to laplacian terms.
With the adopted assumptions, results in the fluid are obtained with the Navier-Stokes equation
while solid solutions come from the Navier-Lamé equation. The conditions at the interface are
simple, for the fluid the velocity is zero at y = h/2 while its value is V0 at y = h. For the solid,
the displacement is null at y = 0 and the constraint is imposed at the interface y = h, chosen
equal to that of the fluid side. The velocity is of course zero in the solid domain. The solution
is very simple : v(y) = V · ex = (2 y/h− 1) and u(y) = U · ex = µf /µs (2 y/h). As expected,
the velocity solution v(y) does not depend on the viscosity whereas the displacement depends on
the ratio µf/µs. For this simple problem, the solutions of the discrete mechanics are of course
the same as in mechanics of continuous media. Among the advantages of the monolithic discrete
approach, the equation of motion is unique for all media. Its acceleration formulation makes it
possible to consider velocity and displacement as simple accumulators associated with operators
∇ ·V and ∇×V.

3.2 Extension to other constitutive laws

When the media have more complex rheologies, i.e. viscoelastic fluids, non-linear viscosity
laws, viscoplastic fluids or time-dependent properties, it is possible to represent a priori their
behaviour in complex situations. In particular, the accumulation of shear-rotation constraints
can only be partial and a weighting of the accumulation term of ψo by an accumulation factor
0 ≤ αt ≤ 1 makes it possible to account for viscoelastic behaviour. Threshold fluids are also
easily represented by specifying the value of ψo = ψc below which the medium behaves like an
elastic solid. The rheology case with non-linear viscosities is no more a difficulty. In fact, the
discrete mechanics leads us to consider the notion of viscosity and that of rotation as attached
only to the faces of the primal topology where the constraint is expressed in the form ν ∇×V

in fluids and dt ν ∇×V in solids.
As an example, the interaction between an incompressible Newtonian viscous fluid and a

Neo-Hookean elastic solid is now studied. The stress tensor expression of an incompressible
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isotropic hyperelastic material for the Neo-Hookean model is written as σs = −p I+µsB where
B = F Ft is the Cauchy-Green deformation tensor at left. In two space dimensions, Cayley-
Hamilton’s theorem shows that the model of Mooney-Rivlin hyperelastic material is equivalent
to the Neo-Hookean model.

The case published by K. Sugiyama in 2011 [18] is considered. This is a problem relating to
an elastic band solicited in shear by an incompressible Newtonian fluid flow periodic in time.
The laminar flow is periodic along x. In the absence of the inertia terms, the problem can be
solved in one dimension of space along direction y, with y ∈ [0, 1]. In the present configuration,
the upper interface is animated by a periodic motion V (t) = V0 sin(ω t) with V0 = 1 and ω = π
and the lower surface is maintained at zero velocity.

Figure 3. Study of the fluid-structure interaction between a viscous fluid and an elastic solid
with a periodic evolution. The viscosity of the fluid is equal to ν = 1 and the solid shear modulus
is equal to ν = 4. Velocity profile based on y for times t = 10 s, t = 10.5 s, t = 10.8 s are plotted.
In solid lines the theoretical solution is reported. The dots correspond to a spatial approximation
of a 32 mesh for y ∈ [0, 1].

The solid occupies the lower part of the domain while the fluid lies in the upper part, the in-
terface between them being located at y = 1/2. The theoretical solution obtained by K. Sugiyama
is based on the method of variable separation applied to y and time t. A homogeneous solution is
sought by a development based on Fourier functions in the interval y ∈ [0, 1] and time exponential
functions separately for each of the fluid and solid domains. Interfacial relations makes it possible
to determine the set of the Fourier coefficients by expressing the continuity of the velocities and
the stresses at the interface. The solution V (y, t) is obtained directly by the equations of the
discrete mechanics (3) for which only the conditions in y = 0 and y = 1 are imposed. Interfacial
connection conditions enforcing continuity of velocity and constraint are implicitly verified by
the dual rotational operator. The notion of 2D or 3D space does not exist in discrete mechanics,
the operators orient the normal and tangential directions in a three-dimensional space. Despite
this, in the present case, depending on the adopted assumptions, the resolution is performed in
one space dimension. The chosen time step is equal to δt = 10−4 s in order to guarantee good
overall accuracy. From the knowledge of the theoretical solution, the numerical solution is shown
to behave with order two in space and time.

The solution is established very quickly, some periods are necessary to obtain a periodic
evolution of the velocity and the profiles of the velocity are recorded starting from a time t = 10s.
The displacement of the solid is computed over time by the relation U = Uo +V dt where dt is
both the differential element and the increment in time δt = dt.

Some profiles of the velocities following y are given in figure (3) as soon as the periodic regime
is well established. A spatial and temporal convergence of order 2 is observed. Given the absolute
precision obtained (of the order of 10−4) with a coarse mesh (n = 32), the error is unobservable
on the comparison between theoretical solution and numerical simulation.
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The case of fluid-structure interaction proposed by K. Sugiyama for a Neo-Hookean model
has the advantage of having a theoretical solution allowing a precise validation of the numerical
solutions. It also provides a basis for the development of new concepts like Discrete Mechanics.
In his publication, Sugiyama gets an error in norm L2 and norm L∞ converging with order 1
in space whereas the DM model (3) makes it possible to reach order two with a much lower
absolute error. This very nice result is due to the separation of the properties at the interface
and the absence of any interpolation in spite of an entirely monolithic and implicit treatment of
the fluid-solid coupling.

Other more complex behaviour laws can be taken into account. Despite the intrinsic interest
of specific studies in this area, they would not bring additional elements for the validation of the
discrete model. The total disconnection between the motion equations and behaviour or state
laws allows a priori to consider, as for multiphase flows for example, the use of constitutive laws
of any kind.

4 Application to electromagnetism

Maxwell’s equations are partial differential equations in time and space ; it is possible to
reformulate them in the exterior algebra formalism if we know how to determine the analogues
of the derivation operations on the differential forms. They are also found as tensors, potentials
φm and A or even in a form used in Special Relativity, quadrivectors. The equation of discrete
motion (3) is significantly different from these classical forms of electromagnetism. The key is to
know whether this equation does not call into question the results obtained previously, but we
expect significant differences in shape.

4.1 Differences and convergences

A fundamental difference is related to the treatment of instationarity within equations. For
Maxwell’s equations they are associated with the temporal variations of the electrical potential
∂E/∂t in the Maxwell-Ampere equation and the induced magnetic field ∂B/∂t in the Maxwell-
Faraday equation ; they appear as ad-hoc quantities which make it possible to represent the
evolutions of these quantities but also of all those with which they are associated. In discrete
mechanics these are variations of the current dj/dt which generate all the evolutions in time
of the variables ; from the physical point of view it is the variations of the acceleration which
generate the strong coupling between E and B. These fields become solenoidal for B, ∇ ·B = 0
and irrotational for E, ∇ × E = 0 and then E = −∇e and B = νm ∇ × (j/ρm) where νm is
constant on the face of the primal topology ; the magnetic field induced B does not accumulate
magnetic charges.

The electric field E is a polar vector defined by the gradient of the electric potential E = ∇e
while the magnetic induction field B is a pseudo-vector associated with the normal n of the
primal topology ; these two fields do not express themselves with the same units. In discrete
mechanics or discrete electromagnetism the vectors ∇φ and ∇× ψ are two real vectors carried
by Γ and whose sum is equal to the acceleration. The three vectors are expressed with the same
units.

When there is a time dependence of electric and magnetic fields, the gauge conditions asso-
ciated with Maxwell’s equations are quite complex to define and apply. In discrete mechanics
the two fields γφ = ∇φ and γψ = ∇×ψ are orthogonal and therefore do not exchange anything
directly, these two accelerations γφ and γψ are independent. The exchange mechanism is in fact
complex : when one of the two fields is no longer in equilibrium with the other, it is the accele-
ration γ which varies and which de facto redistributes the electric currents into a magnetic field
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or vice versa. If γ = 0 two orthogonal fields can only be locally equal to a constant, their sum is
zero on a segment Γ.

Another remarkable difference is the absence of terms of inertia within Maxwell’s equations ;
in discrete they are written −∇ × (|V|2/2 n) + ∇(|V|2/2). It should be noted that the dual
rotational operator does not exist in a continuous medium, it is similar to the gradient operator
but in a direction orthogonal to it ; in a discrete medium it corresponds to the circulation of an
axial vector along the dual δ contour of the figure (1(b)). Inertia exists whether the medium has a
mass or not, as with photons for light. The variations in velocity due to inertia, those of electrons,
photons and matter can be of very different values according to the cases. It should be noted
that the Navier-Lamé equations do not have terms of inertia. They are practically negligible in
the usual cases but that does not mean that they do not exist ; the displacement of the medium
must always be accompanied by inertial effects if there are spatio-temporal variations in velocity.

By combining the Maxwell-Gauss and Maxwell-Ampère equations we arrive at the law of
conservation of the charge density ∂ρm/∂t+∇ · j = 0 ; this equation is found identically in fluid
and solid. The treatment of instationarity is certainly different, but the equation of discrete me-
chanics has the general characteristics of Maxwell’s original equations. The constraint of unifying
the equations of physics requires the formulation of an equation based on a single variable, the
velocity of the fluid, of the solid or the electric current.

In the absence of variations in the electric and magnetic fields, Maxwell’s equations are
decoupled and the equations of magnetostatic give rise to different treatments : the Coulomb
approach favoring the φm scalar potential and the Amperian approach which favors the potential
vector A. In discrete mechanics, the two terms being orthogonal they must also be equal to zero
separately. Similarly, in electrostatic mechanics one can define an electric potential.

4.2 Equations in terms of potentials

Maxwell’s equations in potentials φm and A are obtained by combining the equations on
electric potential E and magnetic induction B and, after simplification, lead to the classical
relations :























∇2φm −
1

c2
∂2φm
∂t2

= −
ρm
ε0

∇2A−
1

c2
∂2A

∂t2
= −

j

ε0 c2

(8)

The second members of these equations are null in the vacuum, their solutions correspond to
the propagation of a wave at c, the celerity of light.

Consider the case of discrete mechanics and take the divergence of equation (3). The rotational
term disappears and it becomes :

∇ · γ = ∇ ·

(

dV

dt

)

=
d

dt
(∇ ·V) + (∇ ·V)2 (9)

Applying this result from [5] to the vector equation of the system (3) assuming cl constant,
leads to an equation on the scalar potential :

∇2φ = −
d

dt
(∇ ·V)− (∇ ·V)2 (10)

but the upgrade of φ of the same equation system makes it possible to extract c2l = −dφ/dt and
substituting :

∇2φ−
1

c2l

d2φ

dt2
=

(

1

c2l

dφ

dt

)2

(11)
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Now let us apply the primal rotational operator to the γ acceleration :

∇× γ = ∇×

(

dV

dt

)

=
d

dt
(∇×V) + (∇×V)2 n (12)

Considering the identity c2t ∇×V = −dψ/dt and taking into account equality ∇×∇×ψ =
∇(∇ · ψ) −∇2ψ, as the pseudo-vector ψ is solenoidal ∇ · ψ = 0 , we can simplify the equation
obtained and summarize the potential formulation :



























∇2φ−
1

c2l

d2φ

dt2
=

(

1

c2l

dφ

dt

)2

∇2ψ −
1

c2t

d2ψ

dt2
=

(

1

c2l

dψ

dt

)2

n

(13)

If we compare the Maxwell equations (8) in terms of potentials φm and A with those of the
system (13) on φ and ψ, a similarity is observed, but the second derivatives in time become second
material derivatives. The difference is the advection of quantities at velocity V ; these inertial
effects not taken into account in Maxwell’s equations may be second order, but it cannot be
denied that any medium or elementary particle is subjected to an acceleration due to variations
in its velocity. Indeed, all media have finite compressibility characterized by celerities cl or ct ;
these potential equations translate the compression energy exchanges from one point to another of
a conductor. The physical significance of this phenomenon is best demonstrated in the equation
of motion (3) where the equilibrium potentials φo and ψo represent the accumulators of the
unsteady exchanges with their respective deviators dt c2l ∇ · V and dt c2t ∇ × V. In the first
order, in the vacuum, if we neglect the inertial effects we find the expressions of the potentials
directly derived from Maxwell’s equations. Another difference is that in discrete mechanics φ and
ψ express themselves with the same fundamental units, length and time, and above all are the
potentials of the same quantity, acceleration.

In fact, the application of operators to an equation, whatever they are, inevitably leads
to a loss of information ; this degradation is due to the elimination of certain terms of the
initial equation. The intrinsic properties of the discrete vision satisfy the two essential equalities
∇ × ∇φ = 0 and ∇ · (∇ × ψ) = 0 but it is important to keep both contributions in the same
equation of motion. The resolution of this equation leads, in a single step, to the two potentials,
the conservative quantity ρ, acceleration and velocity. The equilibrium potentials φo and ψo

serve to represent long-term persistent quantities, magnetization, electric charge, shear stress,
mechanical pressure, and so on.

4.3 An example : magnetic field created by infinite length wire

This very simple case corresponds to a stationary phenomenon resulting from magnetostatics :
a current I runs through an electrical conductor of infinite length and very weak radius ; it has
an electrical conductivity σ, a density ρ and the permeability of the external medium is equal to
that of the vacuum µ0. The degeneracy of the equation of motion (3) makes it possible to obtain
the equation of magnetostatics in terms of potentials :

−∇φ+∇×ψ = 0 (14)

The two quantities φ(x) and ψ(r) are functions of different variables and the two fields of
equation (14) are orthogonal. The Stokes theorem and the fundamental theorem of the integral
mean value make it possible to write :

∫ 2π

0
ψ · t dl =

∫ b

a

∇φ dx (15)
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To within a constant, null in this case since the lines of the magnetic field are closed, the
solution of this problem is thus :

ψ · n =
(φb − φa)

2 π r
(16)

By replacing the potentials with the usual variables of electromagnetism, φ = ρm e/ρ and
B = ρ σ µ/ρm and noting that (eb − ea) = I/σ we find the result obtained classically by the law
of Biot and Savart in the form of the following component n of the magnetic field :

B(r) =
µ0 I

2 π r
(17)

The considerable interest of equation (14) and its solution (16) bearing on the two potentials
φ and ψ, is that it is expressed only with two fundamental units, time and space. In electromagne-
tism the equation and its solutions involve the other fundamental units, mass M and intensity A.
In the perspective of the unification of the laws of physics this would remain a difficulty ; indeed,
it is not an analogy that is sought ; it is a unique equation.

4.4 Magnetic field in a torus

Many cases of practical interest are inspired by the design of electric motors and, in general,
machines where magnetic fields and electric fields interact. The case treated here does not refer to
an industrial problem, it highlights the properties of the discrete equation on a simple problem : a
conductive coil is considered, made of a copper toroid, traversed by an electric current I inducing
a magnetic field B in the surrounding medium. The near field can be obtained by integrating
the equations of the magnetostatic physics B = µ I R2/(2(R2 + z2)(3/2)) where R is the radius
of the turn and z is the coordinate orthogonal to the plane of the torus.

The problem is simulated by assuming that the turn is contained in a torus of elliptical section
delimiting a zero electric field surface. The three-dimensional domain is meshed with gmsh [19]
in the form of an unstructured tessellation with a reduced number of cells conforming to the
toric surfaces. Figure (4) illustrates the geometry used and the unstructured mesh adopted.

Figure 4. Magnetic field created by a circular turn crossed by a current I within a torus of
elliptical section. The unstructured mesh is composed of non-regular hexahedra [19]. On the left
is the torus coil surrounded by isovalues of the magnetic field and on the right, a cross-section
representing the potential field is shown.

From the values of the electrical potential e at the ends of the turn, the properties of the
media and the geometry of the chosen case, it is possible to define the scalar potential φ and to
deduce the current density j to be imposed, represented by the velocity V in the discrete model.
As the current is imposed, the resulting gradient of scalar potential is a constant ∇φo = Cte and
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the equation to be solved becomes :















∂V

∂t
+∇

(

|V|2

2

)

−∇×

(

|V|2

2
n

)

+∇× (νm ∇×V) = −∇φo

ψ = −νm ∇×V

(18)

At the end of the unsteady process, the obtained solution relates to the only component V of
the velocity on each of the segments Γ of the primal topology. The magnetic field ψ is obtained
at every instant by an upgrade from ∇×V. The magnetic field lines are almost circular. They
are contained in each elliptical section orthogonal to its main axis. Figure (4) shows the electric
flux tubes around the coil. It should be noted that the electric field exists in the whole field, in
the copper turn as well as within the elliptical core. On the contrary, the electric charge density
exists only in the turn. This is actually the V = j/ρm velocity that is searched for and this ratio
always keeps a physical meaning, even in the limit when ρm → 0 in the absence of current.

If we neglect the inertial effects, the equation reaches a steady state for which ∇× (νm ∇×
V) = −∇φo. We consider that νm is a constant and that the field V is solenoidal. Under these
conditions, the equation (18) becomes a simple vectorial Poisson equation νm ∇2ψ = ∇φo. For
this example, the scalar field ψ = ψ · n depends on two space variables and so is the same
whatever the plane defined by an elliptical cross section of the external torus.

This simulation of an induced magnetic field problem deals with a stationary case with obvious
symmetries but it shows the versatility of the equation of discrete motion. The problem has been
solved with an unsteady formulation of the vectorial equation (18) and the solution deals with
the quantities (V, φ,ψ). Since the relations between these quantities and the classical variables
of electromagnetism are bijective, it is of course possible to recover these variables, even if it is
not a necessity. In fact, each field of physics has its variables, its physical properties, nevertheless
they are not all independent. The discrete formulation presented here not only unify mechanics
and electromagnetism, but also proposes unique variables for these domains. These variables,
which are expressed only with two fundamental units, as well as the physical properties involved
in the formulation, could possibly be extended to other areas of physics.

In the general framework of electromagnetism it is the discrete equation (3) that must be
integrated directly into space and time ; this makes it possible to find the solution on the velocity
V by knowing its value at the previous time to. Any disturbance of the magnetic or electric field,
any variation in a source term or boundary condition generates an acceleration γ which extends
to both components of its Hodge-Helmholtz decomposition. Understanding the behaviour of this
discrete equation is very complex and it would be illusory to seek to explain it through trivial
reasoning. It is only necessary to find the results obtained conventionally with laws of physics
established previously, which does not mean that the equations must be identical. For example,
the equation of discrete mechanics is significantly different from the Navier-Stokes equation and
yet the solutions are the same. Although different from one of Maxwell’s forms, the equation of
discrete movement must serve to find the same results as in electromagnetism. The formalism
presented to unify certain equations of physics cannot escape the concepts of General Relativity
introduced by Einstein, encompassing those of Newton and many others before him, including
Galileo.

5 Conclusions

Each field of physics has its equations and variables : pressure, stress and velocity for fluids,
compression and shear stresses and displacement for solids or electrical potential, magnetic field
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and current for electromagnetism. Unification, if possible, requires the definition of common
quantities and the return to specific variables is not a necessity. For example, the potential
φ = p/ρf in fluid can be used for solving the equation and for the subsequent use of the results
without having to go back to the pressure, even if it is possible.

The system equation (3) considered as generic has remarkable properties induced by its
form, the two components of the Hodge-Helmholtz decomposition of acceleration. The terms
potential sources, gravity and capillary effects can also be written following the same principle.
The boundary conditions will be written in the same way by the introduction of irrotational and
solenoidal terms into the equation. The four properties, the factors αl and αt and the celerities
cl and ct can be constant or a function of the variables themselves, they can only be fixed by the
experiments. It is noticeable that all quantities are expressed only with two fundamental units,
those of length and time. It is remarkable that it is the generic law γ = g resulting from Galileo’s
concepts which is at the origin of this.
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