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Abstract
Distributed/concurrent strategies have been introduced as special maps of event structures. As
such they factor through their “rigid images”, themselves strategies. By concentrating on such
“rigid image” strategies we are able to give an elementary account of distributed strategies and
their composition, resulting in a category of games and strategies. This is in contrast to the usual
development where composition involves the pullback of event structures explicitly and results in a
bicategory. It is shown how, in this simpler setting, to extend strategies to probabilistic strategies;
and indicated how through probability we can track nondeterministic branching behaviour, that
one might otherwise think lost irrevocably in restricting attention to “rigid image” strategies.

1998 ACM Subject Classification F.1.1 Models of Computation, F.1.2 Modes of Computation

Keywords and phrases Games, Strategies, Event Structures, Probability

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.81

1 Introduction

Traditionally in understanding and analysing a large system, whether it be in computer
science, physics, biology or economics, the system’s behaviour is thought of as going through
a sequence of actions as time progresses. This is bound up with our experience of the world
as individuals; in our conscious understanding of the world we experience and narrate our
individual history as a sequence, or total order, of events, one after the other. However, a
complex system is often much more than an individual agent. It is better thought of as
several or many agents interacting together and distributed over various locations. In which
case it can be fruitful to abandon the view of its behaviour as caught by a total order of
events and instead think of the events of the systems system as comprising a partial order.
The partial order expresses the causal dependency between events, how an event depends on
possibly several previous events. The view that causal dependency should be paramount over
an often incidental temporal order has been discovered and rediscovered in many disciplines:
in physics in the understanding of the causal structure of space time; in biology and chemistry
in the description of biochemical pathways; in computer science, originally in the work of
Petri on Petri nets, and later in the often more mathematically amenable event structures.

Interacting systems are often represented mathematically via games. A system operates in
an unknown environment, so often a prescription for its intended behaviour can be expressed
as a strategy in which the system is Player against (an unpredictable) Opponent, standing
for the environment. Games and their strategies are ubiquitous. They appear in logic (proof
theory, set theory, . . . ), computer science (semantics, algorithmics, . . . ), biology, economics,
etc.. They codify the mathematics of interacting systems. But they almost always follow the
traditional line of representing the history of a play of the game as a sequence of moves, most
often alternating between Player and Opponent. Until recently there was no mathematical
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theory of games based on partial orders of causal dependency between move occurrences.
This handicapped their use in modelling and analysing a system of distributed agents.

What was lacking was a mathematical theory of distributed games in which Player and
Opponent are more accurately thought of as teams of players, distributed over different
locations, able to move and communicate with each other. Although there are glimpses
of such a mathematical theory of distributed games in earlier work of Abramsky, Mellies
and Mimram [1, 13], Faggian and Piccolo [8], and others, a breakthrough occurred with the
systematic use of event structures to formalise distributed games and strategies [14]. This
meant that we could harness the mathematical techniques developed around event structures
in an early mathematical foundation for work on synchronising processes [18]; the move from
total to partial orders brings in its wake a lot of technical difficulty and potential for undue
complexity unless it’s done artfully.

But here we meet an obstacle for many people. Distributed/concurrent strategies have
been based on maps of event structures and composition on pullback, which in the case of
event structures has to be defined rather indirectly. Then, one obtains not a category but a
bicategory of games and strategies. At what seems like an increasingly slight cost, a more
elementary treatment can be given. Its presentation is the purpose of this article. The maps
and pullbacks are still there of course, but pushed into the background.

The realisation that a more elementary presentation will often suffice has been a gradual
one. It is based on the fact that a strategy, presented as a map of event structures, has
a “rigid image” in the game and that in many cases this image can stand as a proxy for
the original strategy [25]. True some branching behaviour is lost, just as it, and possible
deadlock and divergence, can be lost in the composition of strategies. But extra structure on
strategies generally remedies this. For example, the introduction of probability to strategies
allows the detection of divergence in composition, or hidden branching, through leaks of
probability. One can go far with rigid images of strategies. They permit the elementary
development presented here.

In their CONCUR’16 paper [2] Castellan and Clairambault used the simple presentation
of “rigid image” strategies here. Meanwhile rigid images of strategies had come to play
an increasing role in Winskel’s ECSYM notes [25]. Before this, Nathan Bowler recognised
essentially the same subcategory of games and “rigid image” strategies, within the bicategory
of concurrent games and strategies. (At the time, Winskel thought that too much of the
nondeterministic branching behaviour would be lost irrecoverably to be very enthusiastic.)

Finally, an apology: we obtained the results here by specialising more general results on
strategies to their rigid-images [25]; elementary proofs of the results would be desirable for a
fully self-contained presentation, and should be written up shortly.

2 Event structures

An event structure comprises (E,≤,Con), consisting of a set E of events which are partially
ordered by ≤, the causal dependency relation, and a nonempty consistency relation Con
consisting of finite subsets of E. The relation e′ ≤ e expresses that event e causally depends
on the previous occurrence of event e′. That a finite subset of events is consistent conveys
that its events can occur together by some stage in the evolution of the process. Together
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the relations satisfy several axioms:

[e] =def {e′ ∣ e′ ≤ e} is finite for all e ∈ E,
{e} ∈ Con for all e ∈ E,
Y ⊆X ∈ Con implies Y ∈ Con, and
X ∈ Con & e ≤ e′ ∈X implies X ∪ {e} ∈ Con.

There is an accompanying notion of state, or history, those events that may occur up to some
stage in the behaviour of the process described. A configuration is a, possibly infinite, set of
events x ⊆ E which is: consistent, X ⊆ x and X is finite implies X ∈ Con ; and down-closed,
e′ ≤ e ∈ x implies e′ ∈ x.

Two events e, e′ are considered to be causally independent, and called concurrent if the
set {e, e′} is in Con and neither event is causally dependent on the other; then we write
e co e′. In games the relation of immediate dependency e _ e′, meaning e and e′ are distinct
with e ≤ e′ and no event in between, plays a very important role. We write [X] for the
down-closure of a subset of events X. Write C∞(E) for the configurations of E and C(E) for
its finite configurations. (Sometimes we shall need to distinguish the precise event structure
to which a relation is associated and write, for instance, ≤E , _E or coE .)

We can describe a computation path by an elementary event structure, which is a partial
order p = (∣p∣,≤p) for which the set {e′ ∈ ∣p∣ ∣ e′ ≤p e} is finite for all e ∈ ∣p∣. We can regard an
elementary event structure as an event structure in which the consistency relation consists of
all finite subsets of events. There is a useful subpath order of rigid inclusion of one elementary
event structure in another. Let p = (∣p∣,≤p) and q = (∣q∣,≤q) be elementary event structures.
Write

p↪ q iff ∣p∣ ⊆ ∣q∣ & ∀e ∈ ∣p∣, e′ ∈ ∣q∣. e′ ≤p e ⇐⇒ e′ ≤q e .

We shall often view a configuration x of E as an elementary event structure, viz. a partial
order with underlying set x and partial order the causal dependency of E restricted to x.

In an interactive context a configuration x may be subject to causal dependencies beyond
those of E. It will become an elementary event structure p = (∣p∣,≤p) comprising an underlying
set ∣p∣ = x with a partial order ≤p which augments that from E:

∀e ∈ ∣p∣, e′ ∈ E. e′ ≤E e Ô⇒ e′ ≤p e .

Write Aug(E) for the set of such augmentations associated with E. The order of rigid inclusion
of one augmentation in another expresses when one augmentation is a sub-behaviour of
another.

It will be useful to combine augmentations, in effect subjecting a configuration simultan-
eously to the causal dependencies of the two augmentations – provided this does not lead to
causal loops. Define a key partial operation

∧ ∶ Aug(E) ×Aug(E)⇀ Aug(E)

by taking

p ∧ q =
⎧⎪⎪⎨⎪⎪⎩

(∣p∣, (≤p ∪ ≤ q)∗) if ∣p∣ = ∣q∣ & (≤p ∪ ≤ q)∗ is antisymmetric,
undefined otherwise.

I Lemma 1. Letting p, q ∈ Aug(E) for which p ∧ q is defined, e′ _p∧q e implies

[e′ _p e & (e′ _q e or e′ coq e)] or [e′ _q e & (e′ _p e or e′ cop e)] .

MFCS 2017



81:4 Distributed Strategies Made Easy

In fact we can see Aug(E) as an event structure in its own right. Its events are those
augmentations with a top event, their causal dependency and consistency induced given by
rigid inclusion [20]. The remark is an instance of a general fact:

I Proposition 2. A rigid family R comprises a non-empty subset of finite elementary event
structures which is down-closed w.r.t. rigid inclusion, i.e. p↪ q ∈R implies p ∈R. A rigid
family determines an event structure Pr(R) whose order of finite configurations is isomorphic
to (R,↪). The event structure Pr(R) has events those elements of R with a top event; its
causal dependency is given by rigid inclusion; and its consistency by compatibilty w.r.t. rigid
inclusion. The order isomorphism θR ∶ C(Pr(R)) ≅R is given by θR(x) = ⋃x, the union of
(the consistent) augmentations in x ∈ C(Pr(R)).

3 Event structures with polarity

An event structure with polarity comprises (A,pol) where A is an event structure with a
polarity function polA ∶ A → {+,−,0} ascribing a polarity + (Player), − (Opponent) or 0
(neutral) to its events. The events correspond to (occurrences of) moves. It will be technically
useful to allow events of neutral polarity; they arise, for example, in a play between a strategy
and a counterstrategy. A game shall be represented by an event structure with polarity in
which no moves are neutral.

I Notation 3. In an event structure with polarity (A,pol), with configurations x and y,
write x ⊆− y to mean inclusion in which all the intervening events are moves of Opponent.
Write x ⊆+ y for inclusion in which the intervening events are neutral or moves of Player.

3.1 Operations

We introduce two fundamental operations on event structures with polarity. We shall adopt
the same operations for elementary event structures, and also for configurations, regarding a
configuration as an elementary event structure with the order of the ambient event structure.

3.1.1 Dual

The dual, A⊥, of A, an event structure with polarity, comprises the same underlying event
structure A but with a reversal of polarities, events of neutral polarity remaining neutral.

We shall implicitly adopt the view of Player and understand a strategy in a game A as
strategy for Player. A counterstrategy in a game A is a strategy for Opponent in the game
A, i.e. a strategy (for Player) in the game A⊥.

3.1.2 Simple parallel composition

This operation simply juxtaposes two event structures with polarity. Let (A,≤A,ConA,polA)
and (B,≤B ,ConB ,polB) be event structures with polarity. The events of A∥B are ({1} ×
A)∪({2}×B), their polarities unchanged, with the only relations of causal dependency given
by (1, a) ≤ (1, a′) iff a ≤A a′ and (2, b) ≤ (2, b′) iff b ≤B b′; a subset of events C is consistent
in A∥B iff {a ∣ (1, a) ∈ C} ∈ ConA and {b ∣ (2, b) ∈ C} ∈ ConB. The empty event structure
with polarity, written ∅, is the unit w.r.t. ∥.
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4 Strategies

A strategy in a game will be a (special) subset of plays in the game.

I Definition 4. A play in A, an event structure with polarity, comprises an augmentation,
a finite elementary event structure p = (∣p∣,≤p) with underlying set ∣p∣ ∈ C(A), which may
augment with extra causal dependencies provided it does so courteously:

∀a, a′ ∈ ∣p∣. a′ _p a & polA(a′) = + or polA(a) = − Ô⇒ a′ _A a .

Note A, and so p, may involve neutral moves.

If A is a game, so with no neutral moves, the only augmentations allowed of a play p to the
immediate causal dependency of A are those of the form ⊖ _ ⊕.

The order of rigid inclusion between plays, p↪ q, expresses that p is a subplay of q. We
shall write

p↪+ q iff p↪ q & ∣p∣ ⊆+ ∣q∣ ,

so when the extension only involves neutral or Player moves, and similarly p↪− q when only
Opponent moves are involved.

I Definition 5. A bare strategy in A, an event structure with polarity, is a rigid family of
plays, so a nonempty subset σ ⊆ Plays(A) satisfying p↪ q ∈ σ Ô⇒ p ∈ σ, which is also

receptive, p ∈ σ & ∣p∣ ⊆− x ∈ C(A) Ô⇒ ∃q ∈ σ. p↪ q ∈ σ & ∣q∣ = x .
(Note that q is unique by courtesy.)

Write σ ∶ A when σ is a bare strategy of A. When A is a game, so an event structure with
polarity without neutral moves, we say σ is a strategy.

One simple example of a strategy σ ∶ A in a game A is got by taking σ to consist of all
the finite configurations of A regarded as elementary event structures in which their order
of causal dependency is inherited from A. (Bare strategies, with neutral events, have been
called “partial strategies” in [25] and an “uncovered strategies” in [16].)

We shall regard a strategy in the compound game A⊥∥B, where A and B are games as a
strategy from the game A to the game B [7, 12].

4.1 Copycat
We shall shortly define the composition of strategies. Identities w.r.t. composition are given
by copycat strategies. Let A be a game. The copycat strategy ccA ∶ A⊥∥A is an instance of
a strategy. We obtain copycat from the finite configurations of an event structure CCA based
on the idea that Player moves, of +ve polarity, in one component of the game A⊥∥A always
copy previous corresponding moves of Opponent, of −ve polarity in the other component.

For c ∈ A⊥∥A we use c̄ to mean the corresponding copy of c, of opposite polarity, in the
alternative component, i.e. (1, a) = (2, a) and (2, a) = (1, a) . Define CCA to comprise the
event structure with polarity A⊥∥A together with extra causal dependencies c̄ ≤CCA c for all
events c with polA⊥∥A(c) = +. Take a finite subset to be consistent in CCA iff its down-closure
w.r.t. the relation ≤CCA is consistent in A⊥∥A.

I Example 6. We illustrate the construction of CCA for the event structure A comprising
the single immediate dependency a1 _ a2 from an Opponent move a1 to a Player move

MFCS 2017
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a2. The event structure CCA is obtained from A⊥∥A by adjoining the additional immediate
dependencies shown:

A⊥ ā2 ⊖ � ,,2⊕ a2 A

ā1 ⊕

_LLR

⊖ a1

_LLR

�llr

I Lemma 7. Let A be an event structure with polarity. Then, CCA is an event structure
with polarity. Moreover,

x ∈ C(CCA) iff x ∈ C(A⊥∥A) & ∀c ∈ x. polA⊥∥A(c) = + Ô⇒ c̄ ∈ x .

The copycat strategy ccA ∶ A⊥∥A is defined by taking

ccA = {(x,≤CCA ↾x) ∣ x ∈ C(CCA)} .

In other words, ccA consists of all the finite configurations of CCA, each understood as a
finite partial order through inheriting the causal dependency of CCA.

5 Composition of strategies

A play of a strategy σ in a game A⊥∥B and a play of a strategy τ in a game B⊥∥C can
interact at the common game B, where the two strategies adopt complementary views, in
which one sees a move of Player the other sees a move of Opponent, and vice versa. In
effect, the two plays synchronise at common moves in B, one strategy being receptive to
the Player moves of the other. Together they produce a play in the event structure with
polarity A⊥∥B0∥C – the event structure with polarity B0 has the same underlying event
structure as B but where all events now carry neutral polarity. This is because the interaction
over the game B produces moves which are no longer open to Player or Opponent.

We can express this interaction through a partial operation

⊛ ∶ Plays(B⊥∥C) ×Plays(A⊥∥B)⇀ Plays(A⊥∥B0∥C)

defined as follows. Let p ∈ Plays(A⊥∥B), q ∈ Plays(A⊥∥B) with ∣p∣ = xA⊥∥xB and ∣q∣ = yB⊥∥yC .
Take

q ⊛ p =def (p∥yC) ∧ (xA⊥∥q) ,

where we understand the configurations yC and xA⊥ to inherit the partial order of their
ambient event structures. Notice that q ⊛ p is defined only if xB = yB⊥ , and then only if no
causal loops are introduced.

I Lemma 8. Let p ∈ Plays(A⊥∥B) and q ∈ Plays(B⊥∥C). Then, if defined, q ⊛ p ∈
Plays(A⊥∥B0∥C).

Define the projection

(_)↓ ∶ Plays(A⊥∥B0∥C)→ Plays(A⊥∥C) ,

of a play p in A⊥∥B0∥C,with ∣p∣ = xA⊥∥xB∥xC , to a play p↓ in A⊥∥C, to be the restriction
of the order on p to the set xA⊥∥xC .
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Define a partial operation

⊙ ∶ Plays(B⊥∥C) ×Plays(A⊥∥B)⇀ Plays(A⊥∥C)

by

q⊙p = (q ⊛ p)↓

for p ∈ Plays(A⊥∥B) and q ∈ Plays(B⊥∥C).
I Lemma 9. Let p ∈ Plays(A⊥∥B) and q ∈ Plays(B⊥∥C). Then, if defined, q⊙p ∈ Plays(A⊥∥C).

Let σ ∶ A⊥∥B and τ ∶ B⊥∥C be strategies. Define their composition

τ⊙σ = {q⊙p ∣ p ∈ σ & q ∈ τ & q⊙p is defined} .

It is sometimes useful to consider their composition without hiding, the interaction

τ ⊛ σ = {q ⊛ p ∣ p ∈ σ & q ∈ τ & q ⊛ p is defined} ,

which is like the strategy τ⊙σ, but before hiding the neutral moves over the game B.

I Lemma 10. The interaction of strategies σ ∶ A⊥∥B and τ ∶ B⊥∥C yields a bare strategy
τ ⊛ σ ∶ A⊥∥B0∥C.
I Theorem 11. The composition of strategies σ ∶ A⊥∥B and τ ∶ B⊥∥C yields a strategy
τ⊙σ ∶ A⊥∥C. Taking objects to be games and arrows from a game A to a game B to be
strategies in the game A⊥∥B, with composition as above, yields a category in which copycat
is identity. (This is in contrast to the bicategory of [14].)

5.1 Deterministic strategies
Let A be an event structure with polarity. A bare strategy σ ∶ A is deterministic iff

p↪+ q & p↪ r in σ Ô⇒ ∃s ∈ σ. q ↪ s & r ↪ s .

The interaction of deterministic bare strategies is deterministic. Similarly, the composition
of deterministic strategies is deterministic. However, for general games A, the copycat strategy
need not be deterministic. It will be deterministic iff A is race-free, i.e.,

x ⊆+ y & x ⊆− z Ô⇒ y ∪ z ∈ C(A) .

Restricting to race-free games as objects and deterministic strategies as arrows we obtain a
category. Deterministic strategies coincide with the receptive ingenuous strategies of Melliès
and Mimram [13] and are closely related to the strategies of Faggian and Piccolo [8], and
Abramsky and Melliès’ strategies as closure operators [1].

The subcategory of deterministic strategies on games which countable and purely positive,
i.e. for which there are no Opponent moves, is isomorphic to that of Berry’s dI-domains and
stable functions. If we restrict the subcategory further to objects in which causal dependency
is simply the identity relation we obtain Girard’s qualitative domains with linear maps and
if yet further insist that consistency Con is determined in a binary fashion, i.e.

X ∈ Con ⇐⇒ ∀a1, a2 ∈X. {a1, a2} ∈ Con ,

his coherence spaces. In this sense we can see strategies as extending the world of stable
domain theory. The relationship with the broader world of traditional domain theory,
following in the footsteps of Scott, is more subtle. In [23], it is shown how a strategy
determines a presheaf and a strategy between games a profunctor, giving a relationship with
a form of generalised domain theory [10, 4].

MFCS 2017
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6 Strategies as maps of event structures

A strategy σ in a game A is a rigid family and so, by Proposition 2, determines an event
structure S whose events are those plays in σ which have a top element. Each top element
is an event of the game A so there is a function from the events of S to those of A; this
function is a total map of event structures and indeed a concurrent strategy in the sense
of [14]. Not all the concurrent strategies of [14] are obtained this way. But any concurrent
strategy of [14] has a rigid image [25] which corresponds to a strategy as presented here.
Though not essential to the rest of the paper, we now explain this summary of the relation
with the concurrent strategies of [14] in more detail.

Recall a (total) map of event structures f ∶ E → E′ is a function f from E to E′ such
that the image of a configuration x is a configuration fx and any event of fx arises as the
image of a unique event of x. Maps compose as functions. Write E for the ensuing category.

A map f ∶ E → E′ reflects causal dependency locally, in the sense that if e, e′ are events in
a configuration x of E for which f(e′) ≤ f(e) in E′, then e′ ≤ e also in E; the event structure
E inherits causal dependencies from the event structure E′ via the map f . Consequently, a
map f ∶ E → E′ preserves concurrency: if two events are concurrent, e1 coE e2, then their
images are also concurrent, f(e1) coE′ f(e2). In general a map of event structures need not
preserve causal dependency; when it does we say it is rigid. Write Er for the subcategory of
rigid maps.

The inclusion functor Er ↪ E has a right adjoint ([20], Proposition 2.3): There is an
obvious map of event structures εB ∶ Pr(Aug(B))→ B taking an event of Pr(Aug(B)) to its
top element. Post-composition by εB yields a bijection

εB ○_ ∶ Er(A,Pr(Aug(B))) ≅ E(A,B) ,

furnishing the data required for an adjunction. Hence Pr(Aug(_)) extends to a right adjoint
to the inclusion Er ↪ E . From the bijection of the adjunction, we have a correspondence
between maps f ∶ A→ B and rigid maps f̄ ∶ A→ Pr(Aug(B)). The adjunction is unchanged
by the addition of polarity to event structures; maps are assumed to preserve polarity.

A strategy determines a map and indeed a “concurrent strategy”as in [14]:

I Proposition 12. Let σ ∶ A be a strategy in a game A. The function fσ ∶ Pr(σ)→ A, taking
an event of Pr(σ) to its top element, is a map of event structures with polarity. It is a
concurrent strategy in the sense of [14], viz. a map which is

courteous, s′ _ s and pol(s′) = + or pol(s) = − in Pr(σ) implies fσ(s′) _A fσ(s) in A ,
(called “innocent” in [14]), and
receptive, fσx ⊆− y in C(A), for x ∈ C(Pr(σ)), implies there is a unique x′ ∈ C(Pr(σ))
such that fσx′ = y .

Not all the concurrent strategies of [14] are obtained in the manner of Proposition 12.
However, from any concurrent strategy f ∶ S → A in a game A there is σ ∶ A obtained as the
image

σ =def {θ(f̄x) ∈ Aug(A) ∣ x ∈ C(S)}

of the finite configurations of S as augmentations of A; recall from Proposition 2, the
order isomorphism θ ∶ C(Pr(Aug(A))) ≅ Aug(A). From the definition of σ, the rigid map
f̄ ∶ S → Pr(Aug(A)) cuts down to a rigid map f̄ ∶ S → Pr(σ). The concurrent strategy f
factors through its “rigid image” fσ ∶ Pr(σ)→ A in that

f ∶ S f̄ // Pr(σ) fσ // A,
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where the rigid image fσ is itself a concurrent strategy. The simple strategies of this article
correspond to such rigid image strategies.

The determination of a strategy, call it σf , from a concurrent strategy f is functorial:
identity, copycat, strategies are preserved and if concurrent strategies f and g are composable
then σg⊙f = σg⊙σf . Often extra structure on a concurrent strategy f can be pushed forward
along the rigid map f̄ from to its rigid image, so to a simple strategy of this article. For
example, probabilistic structure (in the form of a valuation – see the next section) making a
concurrent strategy probabilistic can be pushed forward along the rigid map f̄ from S to
Pr(σf), and so to σf [25]. As a consequence, in the next section, we are able to develop
probabilistic strategies in the simpler framework of this paper.

A major result of [14] is that receptivity and courtesy (called innocence there) are necessary
and sufficient conditions in order for copycat to behave as identity w.r.t. composition; this
motivated the definition of concurrent strategy there. That article directly spawned work on
games with winning conditions and payoff [5, 6], imperfect information [21], probabilistic
strategies [24], “stopping configurations” [3] and “essential events” [16] – the latter two
concerned with capturing the liveness behaviour of concurrent strategies viewed as processes.
(Concurrent strategies are currently being extended to cope with quantum computation of
the kind addressed in the quantum lambda calculus [15].) As an indication of how much of
the work ensuing from [14] could be reformulated in terms of the simple strategies on which
this article concentrates we next address the issue of how to make strategies probabilistic.
Probabilistic strategies developed in this simpler framework, instead of that of concurrent
strategies [14], do not suffer from any loss of information e.g. with regard to expected payoff.

7 Probabilistic strategies

As a first step we describe how to make event structures probabilistic, in itself an issue, as
event structures lie outside the models of probabilistic processes most commonly considered.

7.1 Probabilistic event structures

A probabilistic event structure essentially comprises an event structure together with a
continuous valuation on the Scott-open sets of its domain of configurations.1 The continuous
valuation assigns a probability to each open set and can then be extended to a probability
measure on the Borel sets [11]. However open sets are several levels removed from the
events of an event structure, and an equivalent but more workable definition is obtained by
considering the probabilities of sub-basic open sets, generated by single finite configurations;
for each finite configuration x this specifies Prob(x) the probability of obtaining events
x, so as result a configuration which extends the finite configuration x. Such valuations
on configuration determine the continuous valuations from which they arise, and can be
characterised through the device of “drop functions” which measure the drop in probability
across certain generalised intervals. The characterisation yields a workable general definition of
probabilistic event structure as event structures with configuration-valuations, viz. functions

1 A Scott-open subset of configurations is upwards-closed w.r.t. inclusion and such that if it contains the
union of a directed subset S of configurations then it contains an element of S. A continuous valuation is a
function w from the Scott-open subsets ofC∞(E) to [0, 1] which is ((normalized) w(C∞(E)) = 1; (strict)
w(∅) = 0; (monotone) U ⊆ V Ô⇒ w(U) ≤ w(V ); (modular) w(U ∪ V ) +w(U ∩ V ) = w(U) +w(V );
and (continuous) w(⋃i∈I Ui) = supi∈Iw(Ui), for directed unions.
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from finite configurations to the unit interval for which the drop functions are always
nonnegative [22].

In detail, a probabilistic event structure comprises an event structure E with a configuration-
valuation, a function v from the finite configurations of E to the unit interval which is

(normalized) v(∅) = 1 and satisfies the
(drop condition) dv[y;x1,⋯, xn] ≥ 0 when y ⊆ x1,⋯, xn for finite configurations y, x1,⋯, xn;

where the “drop” across the generalized interval starting at y and ending at one of the
x1,⋯, xn is given by

dv[y;x1,⋯, xn] =def v(y) −∑
I

(−1)∣I ∣+1v(⋃
i∈I

xi)

– the index I ranges over nonempty I ⊆ {1,⋯, n} such that the union ⋃i∈I xi is a configuration.
The “drop” dv[y;x1,⋯, xn] gives the probability of the result being a configuration which
includes the configuration y and does not include any of the configurations x1,⋯, xn.

If x ⊆ y in C(E), then, provided v(x) ≠ 0, the conditional probability Prob(y ∣ x) is
v(y)/v(x); this is the probability that the resulting configuration includes the events y
conditional on it including the events x.

7.2 Probability with an Opponent
This prepares the ground for a definition of probabilistic distributed strategies. Firstly
though, we should restrict to race-free games, in particular because without copycat being
deterministic there would be no probabilistic identity strategies. A probabilistic strategy in
a game A, is a strategy σ ∶ A in which we endow σ with probability, while taking account of
the fact that in the strategy Player can’t be aware of the probabilities assigned by Opponent.
To this end we notice that σ, being a rigid family, has the form of a family of configurations.
We can’t just regard σ as a probabilistic event structure however. This is because Player
is oblivious to the probabilities of Opponent moves beyond those determined by causal
dependencies of σ. An appropriate valuation for σ needs to take account of Opponent moves.
It turns out to be useful to extend the concept of valuation to bare strategies, which may
also have neutral moves.

Let σ ∶ A be a bare strategy in A, an event structure with polarity; so both A and σ may
involve neutral moves. A valuation on σ is a function v, from σ to the unit interval, which is

(normalized) v(∅) = 1,
(oblivious) v(p) = v(q) when p↪− q for p, q ∈ σ , and satisfies the
(drop condition) dv[q;p1,⋯, pn] ≥ 0 when q ↪+ p1,⋯, pn for elements of σ.

When p ↪+ q in σ, we can still express Prob(q ∣ p), the conditional probability of
the additional neutral or Player moves making the play q given p, as v(q)/v(p), provided
v(p) ≠ 0. The game being race-free and the valuation being oblivious ensure the probabilistic
independence of Player or neutral moves and Opponent moves with which are concurrent.

For a race-free game A, the copycat strategy is deterministic and we obtain a valuation
on ccA by taking vccA to be the function which is constantly 1.

7.3 Composing probabilistic strategies
Let A, B and C be race-free games. Assume σ ∶ A⊥∥B, with valuation vσ, and τ ∶ B⊥∥C,
with valuation vτ , are probabilistic strategies. To define their interaction and composition
we must define the valuations vτ⊛ vσ on τ ⊛ σ and vτ⊙vσ on τ⊙σ, respectively.
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I Lemma 13. For r ∈ τ ⊛ σ, defining

(vτ⊛ vσ)(r) =def ∑{vτ(q).vσ(p) ∣ q ⊛ p = r} ,

yields a valuation on τ ⊛ σ.

I Lemma 14. For r ∈ τ⊙σ, defining

(vτ⊙vσ)(r) =def ∑{vτ(q).vσ(p) ∣ q⊙p = r} ,

yields a valuation on τ⊙σ.

I Theorem 15. For race-free games A, B and C, we define the composition of probabilistic
strategies σ from A to B, with valuation vσ, and τ from B to C, with valuation vτ , to be
τ⊙σ, with valuation vτ⊙vσ. Taking objects to be games and arrows from a game A to a
game B to be probabilistic strategies in the game A⊥∥B, with composition as above, yields a
category in which copycat, with the constantly-1 valuation, is identity.

The next example illustrates how through probability leaks we can track deadlocks, or
divergences, that can arise in the composition of strategies. (Such branching behaviour might
otherwise be lost in the composition of strategies and through concentrating on rigid images.)

I Example 16. Let B be the game consisting of two concurrent Player events b1 and b2, and
C the game with a single Player event c. We illustrate the composition of two probabilistic
strategies σ from the empty game ∅ to B and τ from B to C. The strategy σ ∶ ∅⊥∥B plays
b1 with probability 2/3 and b2 with probability 1/3 (and plays both with probability 0).
The strategy τ ∶ B⊥∥C does nothing if just b1 is played and plays the single Player event
c of C with certainty, probabilty 1, if b2 is played. Their composition yields the strategy
τ⊙σ ∶ ∅⊥∥C which plays c with probability 1/3, so has a 2/3 chance of doing nothing.

One way in which the probabilistic interaction of strategies is important is in calculating the
expected outcome of the competition between a probabilistic strategy and a counterstrategy,
the subject of the following example.

I Example 17. Given a probabilistic strategy σ ∶ A, with valuation vσ, and a counterstrategy
τ ∶ A⊥, with valuation vτ , we obtain a valuation vτ⊛vσ on their interaction τ⊛σ ∶ A0, where now
all the events of the interaction are neutral. Via the order isomorphism θ ∶ C(Pr(τ⊛σ)) ≅ τ⊛σ
we obtain a configuration-valuation (vτ ⊛ vσ) ○ θ, making Pr(τ ⊛ σ) a probabilistic event
structure. As such we get a probability measure µσ,τ on the Borel sets of its configurations.
Assuming a payoff given as a Borel measurable function X from C∞(A) to the real numbers,
the expected payoff is obtained as the Lebesgue integral

Eσ,τ(X) =def ∫
x∈C∞(Pr(τ⊛σ))

X(∣x∣) dµσ,τ(x) ,

where ∣x∣ ∈ C∞(A) is the configuration of A over which x ∈ C∞(Pr(τ ⊛ σ)) lies.

8 Conclusion

We have provided an elementary account of a form of distributed strategies by choosing only
to represent the rigid images of concurrent strategies. Is anything irredeemably lost through
this simplification? (In the sense that it can’t be regained through adding extra structure, in
the way that probabilistic structure recovers hidden branching.) Not obviously. Though, for
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instance, we couldn’t exactly reproduce the result of [3], establishing a bijection between
events of a strategy and derivations in an operational semantics. Though an elementary
account is more accessible, a more abstract, categorical account can be helpful too. As often,
there are pros and cons. To some extent, one pays for the elementary treatment in not seeing
the abstract picture, the wood for the trees.

On another tack, the account of strategies here reveals an alternative way to develop
strategies while capturing noneterministic branching explicitly, viz. as (pre)sheaves over plays
rather than subsets, in the form of rigid families. For instance, we can recover the concurrent
strategies of [14] as certain separated presheaves in the manner of [19]; this brings us close
to the developments of Hirschowitz and Pous [9] and Ong and Tsukada [17].
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