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Circuit quantum electrodynamics of granular
aluminum resonators
N. Maleeva1, L. Grünhaupt1, T. Klein2,3, F. Levy-Bertrand2,3, O. Dupre2,3, M. Calvo2,3, F. Valenti1, P. Winkel1,

F. Friedrich1, W. Wernsdorfer1,3,4, A.V. Ustinov1,5, H. Rotzinger1, A. Monfardini2,3, M.V. Fistul 5,6 & I.M. Pop1,7

Granular aluminum (grAl) is a promising high kinetic inductance material for detectors,

amplifiers, and qubits. Here we model the grAl structure, consisting of pure aluminum grains

separated by thin aluminum oxide barriers, as a network of Josephson junctions, and we

calculate the dispersion relation and nonlinearity (self-Kerr and cross-Kerr coefficients). To

experimentally study the electrodynamics of grAl thin films, we measure microwave reso-

nators with open-boundary conditions and test the theoretical predictions in two limits. For

low frequencies, we use standard microwave reflection measurements in a low-loss envir-

onment. The measured low-frequency modes are in agreement with our dispersion relation

model, and we observe self-Kerr coefficients within an order of magnitude from our calcu-

lation starting from the grAl microstructure. Using a high-frequency setup, we measure the

plasma frequency of the film around 70 GHz, in agreement with the analytical prediction.
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The introduction of crystalline defects or dopants can give
rise to so-called dirty superconductors1, characterized by
reduced coherence length and quasiparticle mean free

path. In particular, granular superconductors2 such as grAl3,4,
consisting of remarkably uniform grains connected by Josephson
contacts5 have attracted interest since the 60s, thanks to their rich
phase diagram6,7 and practical advantages, like increased critical
temperature4,8, critical field9,10, and kinetic inductance11. Here
we report the measurement and modeling of circuit quantum
electrodynamics12 properties of grAl microwave resonators in a
wide frequency range, up to the spectral superconducting gap.
Interestingly, we observe self-Kerr coefficients ranging from 10−2

Hz to 105 Hz, within an order of magnitude from analytic cal-
culations based on grAl microstructure. This amenable non-
linearity, combined with the relatively high-quality factors in the
105 range, open new avenues for applications in quantum
information processing13 and kinetic inductance detectors14.

Increasing the level of disorder in a superconducting material
usually decreases the superfluid density and can induce a super-
conducting to insulating transition. Superconductors with low
superconducting carrier density can exhibit rich physical prop-
erties, arising from a variety of phenomena such as quantum
phase transitions15 and localization2. Granular aluminum is a
typical example preferred by experimentalists, thanks to its rela-
tively straightforward fabrication by aluminum evaporation in an
oxygen atmosphere3, which can tune the film resistivity ρ over
five orders of magnitude. The phase diagram of grAl thin films,
with an initial increase of the critical temperature versus resis-
tivity16, followed by a decrease and transition to an insulating
state, has been extensively studied over the last 50 years, with
notable recent developments in both theory17 and experi-
ment18,19. These studies, mostly performed by direct current
measurements, or broadband THz spectroscopy, offer a solid
basis to start addressing the electrodynamics of grAl in the
quantum regime, defined as the limit of single-photon excitations.

In the context of emerging quantum information platforms
based on aluminum13, grAl provides precious ingredients such as
low-loss and high-impedance environments, tolerance to high
magnetic fields, or a robust source of nonlinearity. The prospect

of implementing ultra-high impedance environments, at the level
of the impedance quantum RQ= h/(2e)2≃ 6.5 kΩ, for the design
of qubits20–22 and parametric amplifiers23 or for the engineering
of quantum states of light24 is very appealing. However, the
electromagnetic properties of granular superconductors in the
quantum regime are currently virtually unexplored.

Here we present a theoretical model and the corresponding
experimental investigation of the dispersion relation and non-
linear Kerr coefficients for grAl resonators in the microwave
regime. We will use the formalism of circuit quantum electro-
dynamics12 (cQED) and show that in a first-order approximation,
the Hamiltonian of grAl, taking into account the interaction
between the resonant modes, can be written in the familiar
quantum optics form25

H
�h ¼ P

n¼1
ωn þ Knna

y
nan

� �
aynan þ

P
n;m ¼ 1; n≠m

Knm
2 aynana

y
mam:

ð1Þ
The frequencies ωn form the dispersion relation, the self-Kerr
coefficients Knn quantify the frequency shift of mode n for each
added photon, and the cross-Kerr coefficients Knm, quantify the
frequency shift of mode n for an added photon in mode m. The
operators an and ayn are bosonic lowering and raising operators,
and aynan ¼ N gives the photon number.

Results
Electrodynamic model. The microstructure of grAl consists of
pure aluminum grains, with the average diameter a, separated by
thin aluminum oxide barriers, as schematically illustrated in
Fig. 1a. For films fabricated at room temperature with ρ > 10 μΩ
cm, the grain size is homogeneous and independent of resistivity,
a= 3 ± 1 nm4. We use grAl films with a resistivity between 40 μΩ
cm and 4000 μΩ cm, below the superconducting to insulating
transition at ρ≃ 104 μΩ cm7, and for which the kinetic induc-
tance dominates over the geometric inductance11. We model this
medium as a network of effective Josephson junctions (JJ), which
provides a handle to calculate its dispersion relation26 and the
Kerr coefficients27,28.
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Fig. 1 Schematic representation of a grAl stripline resonator with open-boundary conditions. a The length of the stripline, ‘, is in the range of mm, its width,
b, is in the range of a few μm, and the thickness, d, is between 20 and 30 nm. Al grains (sketched in bordeaux color in the inset) have a diameter a= 3 ± 1
nm4. They are separated by aluminum oxide barriers (shown in gray), forming a 3D network of superconducting islands connected by Josephson contacts.
b For the lowest-frequency standing-current modes along the stripline, the resonator can be modeled as a 1D array of effective Josephson junctions with
critical current Ic and junction capacitance CJ, corresponding to the summed critical currents and capacitances of the grains in a stripline section of length a.
c The resulting circuit diagram consists of identical cells, each containing an effective JJ and the self capacitance C0 of the superconducting island. d Typical
dispersion relation of a 1D JJ array, following Eq. (3). The spectrum saturates at the effective plasma frequency ωp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eIc=�hCJ

q
. The slope in the linear part

of the dispersion relation is defined by the ratio aπ
‘

ffiffiffiffiffiffiffiffiffiffiffiffi
CJ=C0

q
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For elongated structures, such as stripline resonators (Fig. 1a),
the calculation of the low-frequency dispersion relation and
nonlinearity can be performed in the limit of one-dimensional
(1D) current distributions along the stripline (see Supplementary
Discussion), resulting in an effective JJ chain model (see Fig. 1b).
The current is homogeneously distributed through the sample
cross-section due to the fact that the thickness d≃ 20 nm is much
smaller than the magnetic field penetration depth, λL > 0.4 μm,
depending on the film resistivity ρ, and the width b is smaller than
the screening distance, λ? ¼ λ2L=d>8 μm

3. The equivalent elec-
trical schematics is shown in Fig. 1c, where each superconducting
section of length a with self capacitance C0 is connected by
effective JJs with critical current Ic and capacitance CJ.

The classical equation of motion for the phase difference φn
across the nth JJ is

2Ic sin φnþ1

� �� Ic sin φnþ2

� �� Ic sin φn

� �þ
þ �hCJ

2e
d2
dt2 2φnþ1 � φnþ2 � φn

� �þ
þδm;nIext cosðωtÞ ¼ �hC0

2e
d2φn
dt2 :

ð2Þ

The resonator drive is introduced as an external current applied
to the mth cell, δm,nIext cos(ωt), where δm,n is the Kronecker delta.
In order to derive the eigenfrequencies, we use first-order Taylor
expansion for the Josephson currents (see Supplementary Dis-
cussion). Thus we obtain the dispersion relation:

ωn ¼
naπ
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eIc

�h C0 þ n2π2a2
l2 CJ

� �
s

; ð3Þ

sketched in Fig. 1d, which is approximately linear for the lowest
modes, and it saturates at the effective plasma frequency
ωp ¼ ωn¼‘=a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eIc=�hCJ

q
, as measured on mesoscopic JJ

arrays29. As we will show in the following, the fundamental
frequency f1= ω1/2π, designed in the low GHz range, can provide
a convenient link through the cross-Kerr effect to the higher
modes of the dispersion relation, spanning up to ~100 GHz.

To derive the Kerr coefficients of the fundamental mode in Eq.
(1), we solve the equation of motion, expanding the nonlinear
terms up to third order. This method is similar to the one recently
used to derive the nonlinearity of mesoscopic arrays of JJ27,30. By
relating the phase response amplitude to the circulating photon
number �N (see Supplementary Discussion), we obtain the self-
Kerr and cross-Kerr coefficients for the fundamental mode:

K1n ¼ Cπea ω1ωn

jcVgrAl
; with n � 1: ð4Þ

Here, e is the electron charge, a is the grain size, jc= Ic/bd is the
critical current density, ωn are the eigenfrequencies given by Eq.
(3), and VgrAl ¼ bd‘ is the volume of grAl threaded by the
current, see Fig. 1a. C is a numerical constant of order one, which
for a sinusoidal current distribution is C ¼ 3=16 for n= 1 and
C ¼ 1=4 for n > 1. Using the expression for the single-photon
current as a function of frequency and total inductance, I2�N¼1 ¼
2fh=L and L∝ 1/jc, Eq. (4), can be rewritten in a qualitatively
similar form to the K11 coefficient estimated from
Mattis–Bardeen theory for dirty superconductors11,23,
K11 / I�N¼1=I�ð Þ2. The depairing current I� is of the same order
of magnitude as the critical current of the strip Ic. In contrast, Eq.
(4) offers a quantitative model for the nonlinearity of grAl,
starting from the film properties. Remarkably, this analytic result
agrees within an order of magnitude with the K11 coefficients
measured on 14 grAl samples, spanning from K11= 2 × 10−2 Hz
to K11= 3 × 104 Hz.

Furthermore, the cross-Kerr coefficients, K1n, follow the
functional dependence of the dispersion relation, ωn, given by
Eq. (3) and reach a maximum at the effective plasma frequency
ωp (see Fig. 1d). Due to the high cross-Kerr interaction and
high-mode density around ωp, we expect a strong response of
the fundamental mode for drive frequencies in the vicinity of
ωp/2π. As discussed in detail in the next section, for highly
resistive samples (grAl#3) with ρ= 3000 μΩ cm, for which ωp

is low enough to be in the measurable range, we observe
the expected plasma frequency response in the vicinity of
70 GHz.

Measurements. To measure the dispersion relation, microwave
losses, and the nonlinearity of grAl structures, we use three types
of resonators of various shapes and sizes (see Methods), opti-
mized for two complementary measurement setups (see Fig. 2),
covering a broad frequency range up to 200 GHz.

In Fig. 3a, b, we plot a typical amplitude and phase response
measured for stripline resonators in the single-photon regime,
�N � 1, which is relevant for quantum information applications.
We extract an internal quality factor Qi= 105, comparable to
values obtained for JJ array superinductances29. We obtain
similar results for Qi measurements on Hilbert-shaped (Fig. 2c)
and aluminum-shunted stripline resonators, for tens of resona-
tors, with grAl resistivities up to 4000 μΩ cm, corresponding to
~kΩ characteristic impedance. As discussed in ref.31, we estimate
that Qi is dominated by non-equilibrium quasiparticle dissipa-
tion, which could be suppressed by phonon and quasiparticle
traps.

Using a two-tone spectroscopy, similar to a superconducting
qubit readout procedure12, we measure higher modes of the
dispersion relation for stripline resonators. Due to the symmetry
of the electric field, the next mode, above the fundamental,
coupled to the waveguide is the third. For sample grAl#1, we
measure f1= 6.287 GHz and f3= 18.255 GHz. Notice that the
dispersion relation already shows a measurable deviation from
linear behavior, 3 × f1− f3= 606 ± 1MHz, which, using Eq. (3),
allows us to estimate an effective plasma frequency ωp= 68 ± 0.1
GHz (see Supplementary Discussion), as shown in Fig. 4a).

Indeed, using a Martin–Puplett Interferometer (MPI) as a
broadband illumination source up to 200 GHz and a Hilbert-
shaped set of resonators (grAl#3) with similar sheet resistivity as
grAl#1 mounted in an optical access cryostat, we observe a shift
of the fundamental mode for illumination frequencies in the
range 60–80 GHz (red curve in Fig. 4b). This shift is comparable
to the pair-breaking response at twice the gap, and significantly
above the noise floor. We interpret this response to be the
cumulated cross-Kerr shift due to the population of the high-
mode density region of the effective plasma frequency (see
Fig. 4a).

As expected, for resonators with 50 times higher critical
current densities jc, the effective plasma frequency can no longer
be measured (green line in Fig. 4b), as it is above the
spectroscopic gap frequency. To confirm the correct calibration
of the MPI setup, we measured the response of a standard 25-nm
aluminum film using an additional 180-GHz low-pass filter. The
MPI measurements (blue line in Fig. 4b) indicate the expected Al
spectral gap value of 100 GHz, above which the illumination can
break the Cooper pairs, inducing a shift of the fundamental mode
and a Qi decrease14. Finally, notice that the spectroscopic gap of
samples grAl#2 and grAl#3 increases with resistivity, as
expected7.

To measure the self-Kerr coefficient, K11, we monitor the
fundamental frequency as a function of photon population �N
using the low-frequency setup (Fig. 2b). Typical measurement
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results are shown in Fig. 3c, d in linear and logarithmic scale,
respectively. In Fig. 5, we report the measured K11 for 14 types of
grAl resonators, grouped in three different geometries: KID (in
blue), striplines (in green), and Al-shunted striplines (in red);
details on the resonators' geometry are given in the Supplementary
Discussion. For a direct comparison with Eq. (4) represented by
the black line, we plot the measured self-Kerr coefficients versus
f 21 =jcVgrAl using a measured jc= 1.1 mA/μm2 for ρ= 1600 μΩ cm
(see Supplementary Discussion) and scaling it according to
jc∝ 1/ρ for all resistivities7. We would like to emphasize that there
are no fitting parameters. We estimate the main source of error,
responsible for the scatter of the points and for the deviation
compared to Eq. (4) to be the photon number calibration. We can
only perform this calibration by estimating the total attenuation
of the input lines at various frequencies. We estimate this method
to be accurate only within a factor of 10. Remarkably, the self-
Kerr coefficient of grAl can be tuned over six orders of magnitude
by varying the room temperature resistivity ρ∝ 1/jc and the
resonator volume VgrAl, without compromising the internal
quality factor.

Discussion
According to the strength of the nonlinearity, we can divide the
possible grAl applications into three categories. First, for super-
inductors29,32–34 and microwave kinetic inductance detec-
tors14,35,36, the nonlinearity should be as low as possible. The

devices plotted in green in Fig. 5 could be used as superinductors
with a self-Kerr coefficient of only tens of Hz, which would be at
least three orders of magnitude lower than the state-of-the-art27.
Second, for parametric devices, such as amplifiers23 or frequency
converters37,38, the self-Kerr coefficient should be in the kHz
range, as shown by the devices plotted in red in Fig. 5. Fabricating
them using grAl instead of mesoscopic JJ arrays offers the
advantages of compactness and single-step fabrication. Finally, in
the case of transmon qubits39, the self-Kerr nonlinearity should
be even higher, in the tens of MHz range, which could be
achieved by reducing the grAl volume and increasing the resis-
tivity of the film.

In conclusion, granular aluminum is a superconductor with
high characteristic impedance, low microwave losses, and
amenable nonlinearity, which recommend it as a material of
choice for quantum information processing. Using a high-
frequency setup, including a Martin–Pupplet interferometer, we
observe the effective plasma frequency of highly inductive grAl
devices in the range of 70 GHz, which is in agreement with
estimates based on a 1D JJ array model and the measured low-
frequency spectrum. The measured self-Kerr coefficients agree
within an order of magnitude with our analytic model, and they
are in the range of applications for parametrically pumped
devices, such as quantum amplifiers. Highly inductive grAl films
could implement low-loss superinductors for quantum circuits or
ultra-sensitive kinetic inductance detectors.
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Fig. 2 Two complementary microwave measurement techniques for the study of grAl resonators (grAl#1). Low-frequency setup: a Photograph of the Cu
waveguide sample holder used to perform reflection measurements on stripline grAl resonators. The inset photograph shows three of the measured
resonators, with dimensions 400 × 5.4 μm2, 600 × 10 μm2, and 1000 × 40 μm2. All resonators are 20-nm thick (see Supplementary Discussion). The
waveguide is shielded and thermally anchored to the mixing chamber plate of a commercial dilution refrigerator. b Schematic of the cryogenic
measurement setup. A reflection measurement with a vector network analyzer (VNA) characterizes the resonator response. The total attenuation on the
input lines is −70 dB, and both input and output lines are interrupted by commercial and custom-made low-pass filters providing at least −30 dB of
filtering above 9 GHz. The output signal is amplified by 40 dB, using a commercial high-electron mobility transistor amplifier. High-frequency setup:
c Photograph of the Al sample holder and one of the resonators measured using a Martin–Puplett interferometer (MPI). The grAl resonators consist of a
second-order Hilbert-shaped fractal inductor and an interdigitated capacitor. Twenty-two resonators are coupled to the common Al feed line, and each
resonator is surrounded by an Al ground plane. Notice the different apparent color of the grAl film compared to Al. d Schematics of the measurement
setup. The resonators are cooled down in a dilution refrigerator with optical access up to 200GHz, facing the MPI40. The optics (shown in green) consist
of a lens at room temperature, and two aperture and lens pairs at 4 K and 100mK, in front of the sample41. The grAl resonator response to high-frequency
illumination consists in shifting its low-frequency spectrum, which is continuously monitored in a transmission measurement through the common feed
line. All samples were fabricated on c-plane, double side polished sapphire substrates, using standard e-beam and optical lithography lift-off techniques

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06386-9

4 NATURE COMMUNICATIONS |  (2018) 9:3889 | DOI: 10.1038/s41467-018-06386-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


100 101 102 103
–100

–80

–60

–40

–20

0

F
un

da
m

en
ta

l f
re

qu
en

cy
 s

hi
ft,

 Δ
f 1

 (k
H

z)

|S
11

|, 
(d

B
)

Frequency, f (GHz)

ar
g(

S
11

),
 (

ra
d)

0 1000 2000 4000

Average photon number, N

–0.10

–0.05

0.00

6.285 6.287 6.289

–2.5

0.0

2.5

6.285 6.287 6.289 –100

–80

–60

–40

–20

0

3000

Q i = 105

Q c = 104

a

b

c

d

K11 = 21 Hz

Δf1 = −K11N

Fig. 3 Measurement of the nonlinearity in grAl resonators. Typical measured amplitude (normalized by the sample holder response) (a) and phase (b) of
the reflection coefficient S11 for resonator grAl#1 (see Fig. 2a). We typically observe internal quality factors of the resonators in the range of 105. c, d We
plot the measured shift of the first resonant frequency vs. circulating photon number �N in logarithmic and linear scale, respectively. The corresponding self-
Kerr coefficient extracted from the linear fit K11/2π= 21 Hz. The measured frequency shift remains linear versus photon number for all samples measured
below bifurcation, which is consistent with the fact that the estimated circulating current never exceeds ~1% of the critical current

0 0 025 50

25

50

75

100

125

150

175

200

2Δ Al

grAl#3
3000 μΩ cm

grAl#2
80 μΩ cmAl

grAl#1
4000 μΩ cm

180 GHz

Mode number MPI response (Hz)

Fr
eq

ue
nc

y
(G

H
z)

a b

Plasma
frequency

2Δ
grAl#2

2Δ
grAl#3

50 100 2

K
1n

 (H
z)

10

20

Fig. 4 Measurement of the dispersion relation in grAl resonators. a Calculated dispersion relation f(n) for resonator grAl#1 starting from two-tone
measurements of the third mode (see text). The spectrum saturates at the effective plasma frequency 68 ± 0.1 GHz. From Eq. (4), the cross-Kerr
coefficients follow the dispersion relation, and their values are reported on the right axis. A significant cross-Kerr coupling enables the observation of the
high-frequency spectrum up to the effective plasma frequency: photons populating the high end of the spectrum shift the low-lying eigen frequencies,
which can be monitored via standard RF transmission measurements (see Fig. 2d). b Martin–Puplett Interferometer (MPI) response of Hilbert-shaped
resonators made of 25-nm-thick Al, grAl with resistivity 80 μΩ cm (grAl#2), and grAl with resistivity 3000 μΩ cm (grAl#3). The illumination frequencies
generated by the MPI range from a few GHz up to 200 GHz, with a resolution of 1 GHz. The different superconducting gaps of the films are evidenced by a
strong MPI response due to quasiparticle excitation at 100 GHz for Al, at 150 GHz for grAl#2, and at 165 GHz for grAl#3. For the sample with the highest
resistivity and the lowest critical current density, grAl#3, we observe a peak around 65 GHz, in the vicinity of the ωp predicted from low-frequency
measurements on sample grAl#1, with a similarly high resistivity (4000 μΩ cm, see text for details). This MPI response can be seen as the summed
dispersive frequency shift due to cross-Kerr interactions K1n between the fundamental mode and all higher populated modes

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06386-9 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:3889 | DOI: 10.1038/s41467-018-06386-9 |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Methods
Experimental apparatus. The dispersion relation for grAl resonators spans up to
~100 GHz. To cover this wide frequency range, we employ two complementary
measurement setups, and we use the first mode as a link between them, via the
cross-Kerr effect.

Low-frequency setup. The low-frequency part of the spectrum (n= 1–3), up to
20 GHz, is measured using microwave transmission and reflection measure-
ments in a standard cQED setup12 (Fig. 2b). The grAl stripline resonators
(Fig. 2a) are mounted in a 3D waveguide (WG) sample holder, housed inside a
hermetic copper shield coated with infrared-absorbing material. In this low-
noise setup, all microwave lines are filtered above 8 GHz using commercial
low-pass filters, circulators, and infrared absorbers identical to the setup in
ref. 31 in order to reduce stray radiation. Even though the Hilbert-shaped grAl
resonators and their aluminum sample holder (Fig. 2c) are designed to operate
as kinetic inductance detectors (KIDs), which are required for the measure-
ment of their high-frequency spectrum by means of direct optical spectroscopy
(Fig. 2d), they were also measured by standard microwave transmission in the
low-noise, shielded setup of Fig. 2b. The high level of filtering and superior
shielding, offered by the measurement setup optimized for low frequencies, is
required for the protection of the fundamental mode against stray excitations,
which is essential for the measurement of its coherence and nonlinear prop-
erties (self-Kerr and cross-Kerr).

High-frequency setup. For the measurement of the effective plasma frequency, we
use the wide-frequency band setup of Fig. 2d, consisting of an optical access
cryostat coupled to a Martin–Puplett Interferometer (see Supplementary Discus-
sion). The fundamental mode is continuously measured via microwave transmis-
sion measurements, while its frequency is shifted by cross-Kerr interactions with
optically populated higher modes of the dispersion relation.

Data availability
All relevant data are available from the authors.
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