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Sequential Emboli Detection from Ultrasound 
Outpatient Data

Blaise Kevin Guépié, Matthieu Martin, Victor Lacrosaz, Marilys Almar, Benoı̂t Guibert, Philippe Delachartre

Abstract—This paper addresses the detection of emboli from 
signals acquired with a new miniaturized and portable transcra-
nial Doppler ultrasound device. The use of this device enables 
outpatient monitoring but increases the number of artifacts. 
These artifacts usually come from the patient voice and motion 
and can be superimposed to emboli. For this reason and because 
of the scarcity of emboli compared to artifacts, reliably detect 
emboli is a challenging task. As an example, the 11809 s of signal 
used in this study contained 0.06 % of embolic events and 10.14 
% of artifacts. Herein, we propose an automatic and sequential 
approach. The method is based on sequential determination of 
high intensity transient signal. We also define e fficient features 
to describe emboli in the time frequency representation. On our 
database, the number of artifacts detected as emboli is divided 
by more than 10 compared to the other algorithms reported in 
the literature.

Index Terms—Emboli detection, transcranial Doppler, ultra-
sound, time-frequency approach, artifact removal, outpatient 
data monitoring.

I. INTRODUCTION

Emboli are solid or gaseous objects that circulate in the
bloodstream until they become lodged in a blood vessel. The
presence of emboli is related to the risk of strokes [1] and can
cause body damage at several levels.

There are many techniques such as magnetic resonance
imaging (MRI) and computed tomography (CT) [1] to detect
emboli. Nevertheless, these techniques are expensive, invasive
and they cannot be used to monitor the blood flow o ver a
long period of time (half an hour to several hours). This last
point is very important because emboli are usually events
with a low occurrence. In this study we work with ultrasound
data acquired with a portable transcranial Doppler technique.
This technique is particularly interesting because it enables
outpatient monitoring over several hours and is cheap and
noninvasive compared to MRI and CT. On this type of
data, emboli or artifacts are characterized by a high intensity
transient signal (HITS). Thus, detecting emboli first requires
the detection of HITSs, and then the discrimination of HITSs
into emboli and artifacts.

Many authors have investigated the detection of emboli
from transcranial Doppler ultrasound signals. In [2] and [3],
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[4], authors have worked on autoregressive modeling (AR) 
or short time Fourier transform (STFT) of acquired Doppler 
signals and, they use high order statistics to detect emboli. 
Other authors have also worked with STFT, fractional Fourier 
transforms or wavelet transforms and their derivatives [5], [6]. 
In papers [6], [7], [8], [9], [10], [11] and [12], [13], [14], [15], 
authors extracted features from large signal blocks in order to 
separate emboli and artifacts events. Herein, artifacts include 
high intensities due to the stochastic nature of the blood flow 
(or Doppler speckle).

Because of the scarcity of emboli, it is necessary to monitor 
the blood flow o ver a  l ong p eriod o f t ime. Traditionally, 
monitoring is done in hospital setting. In this setting, few 
artifacts contaminate the signals acquired and the above-
mentioned methods work relatively well. Today, thanks to 
the TCD-X device (Atys Medical, France) which is a new, 
miniaturized, mono-gate and portable device with a robotized 
probe, it is possible to monitor patients outside the hospital 
setting. Therefore, it reduces the hospital resources needed 
(rooms and medical staff) and more patient can be moni-
tored. Nevertheless, because the patient are free, numerous 
artifacts (voice and motion) are superimposed on the acquired 
signals. These artifacts, like those appearing in other types of 
biomedical signals such as electroencephalography (EEG) and 
functional near-infrared spectroscopy [16], [17], affect signal 
interpretation and must be removed. The above-mentioned 
studies were designed for inpatient data which contains few ar-
tifacts. Therefore, they are not perfectly suited to our database 
which contains a large number of artifacts.

To the best of our knowledge, only [18] addresses emboli 
detection through artifact rejection for transcranial Doppler 
ultrasound outpatient data monitoring. It has proposed a 
procedure using parametric assumption (the spectral kurtosis 
approach) to detect a high-intensity transient signal (HITS), 
and a nonsequential threshold estimation (because estimating 
probability density function requires large blocks of data to 
work properly) to remove artifacts.

Detecting emboli from ultrasound outpatient data remains a 
challenging task. The main difficulty is related to the presence 
of numerous artifacts coming from patient motion or voice. 
These artifacts complicate the task of estimating nominal 
blood flow power because any part of signal has a high 
probability to contain an artifact. Moreover, After estimating 
the nominal blood flow power and then extracting HITSs, the 
presence of numerous artifacts also makes HITSs classification 
difficult. The difficulty comes from the fact that in many 
situations emboli and artifacts appear at the same time. This 
paper proposes an algorithm able to reliably detect emboli
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despite the presence of numerous artifacts (voice, motion) 
related to the use of a portable and miniaturized transcranial 
Doppler ultrasound system, which provides greater mobility 
for a patient during the monitoring. Our algorithm is sequential 
and it is also more reliable (no parametric assumption is used) 
than the ones presented in [10], [11], [18]. It is composed 
of three main parts. Firstly, an adaptive HITS-to-blood ratio 
(HBR) is calculated to detect HITSs. Secondly, eight features 
are calculated using the HITS signals, the region of the 
spectrogram corresponding to the HITS called the HITS region 
(see the spectrogram region between the green band Fig. 1) and 
the most nonsymmetrical part of the HITS region spectrogram 
which is called the region of interest (ROI, see the red square 
Fig. 1). Finally, the features are given to a classification 
algorithm to discriminate emboli and artifacts.

The major contributions of this paper with respect to the 
previous ones [7], [9], [10], [11], [18] are the following :
• A nonparametric and robust estimation of the HBR. The

new approach does not make any assumption on the
distribution of the spectrogram values. It also avoids the
calculation of the maximum velocity of the blood flow.

• The definition of six additional features based on the
spectrogram that improve the discrimination of emboli
and artifact. They are able to describe complex situations
such as an embolus superimposed on nonsymmetrical
voice harmonics.

• A sequential emboli detection procedure. In the previous
papers, large blocks of signal were needed to estimate an
artifact removal threshold. Thus, it was not possible to
realize the emboli detection sequentially. The processing
steps of our algorithm such as HITS detection and feature
extraction are sequentially achieved.

This paper is organized as follows. Section II describes the
proposed approach. The experimental results and the discus-
sion are given in Section III. Conclusions are drawn in Section
IV.

II. PROPOSED METHOD

A. Procedure Description

As outlined in Fig. 1, the procedure used to detect emboli
is hierarchical. Firstly, HBR is calculated in the time domain.
When its value exceeds a prescribed threshold h1 a HITS is
detected. We considered as a HITSs the contiguous events for
which the HBR exceeds h1. Secondly, for the time ranges
where HITSs are detected, STFT is calculated and the least
symmetrical part of the spectrogram (ROI) is extracted. It
corresponds to the part of the spectrogram that has the highest
probability of being a HITS. Eight features are then extracted
from the HITS signal, the ROI and the HITS region. These
features are particularly interesting to make the difference
between emboli and artifacts. They describe the ROI and
compare the HITS region with the ROI. Finally, using the
previous features, a classification is achieved and it can be
decided which HITS is an embolus and which one is an
artifact.

B. Sequential Calculation of the HITS-to-Blood Ratio

In this subsection, we propose a method to sequentially 
calculate the HBR. The idea behind HBR is to calculate 
the ratio of the signal instantaneous power to the blood 
flow average power. Because cardiac cycle has a periodicity 
approximately equal to 1 s, we calculated the average blood 
flow power over 1 s in order to reduce its variability.

Let us define x(n) the value of the received demodulated
complex signal x at the discrete time n ∈ N∗, (ξn)n∈N∗ a 
sequence that contains values corresponding to blood flow. Let
K be the number of observations in 1 s and (P Favgn)n>K a 
sequence that contains the blood flow a verage p ower values.
For all n ≥ K + 1, P Favg(n) is defined as follows :

PFavg(n) =
1

K

n−1∑
`=n−K

|ξ(`)|2 (1)

Where |·| represents the modulus.
To start HBR calculation, we must initialize the value of

the blood flow average power. The first K values of the signal
constitutes the initialization buffer of the blood flow (ξ(n) =
x(n) for n ∈ [|1,K|]). Beginning at n = K + 1 and for all
the discrete time n ≥ K +1, the following steps are realized,
firstly HBR(n) is calculated :

HBR(n) := 10 log10
|x(n)|2

PFavg(n)
(2)

Secondly a value is attributed to ξ(n) depending on the
value of HBR(n) :

ξ(n) =

{
x(n) if HBR(n) < h1
ξ(n−K) if HBR(n) ≥ h1

(3)

Finally PFavg(n + 1) is calculated in order to be able to
calculate the value of HBR(n+ 1) :

PFavg(n+ 1) = PFavg(n) +
|ξ(n)|2

K
− |ξ(n−K)|2

K
(4)

The interpretation of Eq. (4) is the following :
• If HBR(n) ≥ h1, PFavg(n + 1) = PFavg(n) since
ξ(n) = ξ(n − K), the blood flow average power is not
changed.

• If HBR(n) < h1, the term |ξ(n−K)|2
K is eliminated from

PFavg(n) and the term |ξ(n)|2
K is added, the blood flow

average power is changed.
Fig. 2 displays the number of artifacts per minute as func-

tion of the percentage of emboli detected for different values 
of h1 by using three subsets of patients. In Fig. 2, a satisfying 
tradeoff given by the Elbow method [19] is h1 = 3dB for 
each subset of patients. Then, we set h1 = 3dB the maximum 
tolerated HBR of blood flow power in the rest of the paper.

Let us know discuss about the effect of a bad initialization. 
Fig. 3 gives an example illustrating the HBR calculation. Fig. 
3a) shows an embolus outside the initialization period. Fig. 3b) 
displays an embolus signal present during the initialization 
period. The same embolus is put in the penultimate cardiac 
cycle in order to give its HBR value. It can be observed in
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Fig. 1: Framework of the emboli detection process. The first part achieves HITS detection in the time domain. The second
part concerns the features extraction from the HIT region and the ROI. The third part provides the HITS classification.

Fig. 2: Curves displaying the number of artifacts per minute as
function of the percentage of emboli detected for three subsets
of patients. The value h1 = 3dB is a satisfying tradeoff using
the Elbow method.

Fig. 3: a) no embolus is present during the initialization period, 
b) an embolus is present during the initialization period, c) 
HBR values over the time in both cases using our approach.

Fig. 3c) despite the presence of an embolus having high HBR 
value (approximatively 13dB) in the initialization period, the 
nominal value of the blood flow power is reliably estimated 
by our approach within less than 1 s.

C. Region of Interest in the Spectrogram

This part is very important to detect an embolus super-
imposed on an artifact in the time domain. According to 
[20], [21], emboli are unidirectional or nonsymmetrical in the 
spectrogram because they follow the same direction than the 
blood flow. It contrasts with several artifacts, particularly voice 
and motion, which are symmetrical. In this paper, the region 
of interest (ROI) is defined as the largest nonsymmetrical part

belonging to the positive frequencies of the HITS spectrogram.
The idea behind ROI is to separate emboli from symmetrical
artifacts due to human activity such as voice and motion, even
if they occur at the same time. In other words, the ROI is the
part of the spectrogram that can potentially be an embolus.
Three main cases can be observed in the HITS spectrogram.
• The current HITS is an embolus. Then, the extracted ROI

is this embolus.
• The current HITS is an artifact. Then, the extracted ROI

is the least symmetrical part of this artifact.
• The current HITS combines an embolus and an artifact.

Then, the extracted ROI is the embolus.
To summarize, the ROI corresponds to an unique event (an
embolus or an artifact) even if both are present in the spectro-
gram. The method to extract ROI from a HITS spectrogram
is given by Algorithm 1.

Algorithm 1 ROI Extraction

1: Compute, from the current blood flow spectrogram, the
ratio of the positive-frequency magnitude to the negative-
frequency magnitude.

2: Set a threshold h2 as the maximum of the previous ratio.
3: Compute, from the current HITS region spectrogram, the

spectrogram ratio of the positive-frequency magnitude to
the negative-frequency magnitude.

4: Threshold the previous ratio spectrogram by h2 and define
the largest part as the ROI.

D. Features extraction

To classify HITS into emboli and artifacts, eight features
are extracted from the HITS signal, the ROI and the HITS
region. As we do not need other parts of the signal to calculate
the features, it can be done sequentially. The rationale and
definition of these features are given below.

a) Duration of HITS (D) : this feature is equal to the
duration of the event : HBR greater than h1 (see feature
x1 = D on Fig. 4). When this duration is short, the HITS
is likely an artifact, i.e., an outlier due to the stochastic nature
of the ultrasound scattering of the blood flow (Fig. 4f and
Table I). If the duration is long, we can not prejudge the type
of HITS. It can be an artifact (Fig. 4a and Table I) or an
embolus superimposed on an artifact (Fig. 4e and Table I).

b) HBRavg : this feature is calculated in the time-
domain. It corresponds to the average value of the HBR
calculated over the HITS signal (see section II-B). Its value is
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TABLE I: Value of features extracted from HITSs in Fig. 4.

Feature name
Time domain Time-frequency domain

HITS type Fig. D(ms) HBRavg(dB) DROI(ms) HBRROI(dB) Fmax (Hz) Fspr (Hz) RTF Hz/ms Rsiz

Artifact 4a 76.62 9.46 65.68 12.11 308.32 205.55 3.13 1.18
Artifact 4b 288.26 13 7.3 -0.39 376.84 137.03 18.78 5.5
Artifact 4d 456.1 13.65 36.49 4.24 479.61 137.03 3.76 0.03
Artifact 4f 29.19 4.93 18.24 3.37 993.48 171.29 9.39 2.11
Embolus 4c 36.49 10.23 14.6 11.48 1644.38 685.16 46.94 1.31
Embolus 4e 120.41 9.99 25.54 11.6 1096.25 274.06 10.73 1.59

Rsiz has no unit of measurement. It is defined, in the spectrogram, as the ratio of the HITS ROI size to the HITS size.

Fig. 4: Representation of the features for different types of
HITSs. a) a nonsymmetrical artifact, b) a symmetrical artifact
whose ROI corresponds to blood flow, c) an embolus, d)
a symmetrical artifact whose ROI corresponds to the less
symmetrical part of the artifact, e) an embolus superimposed
on an artifact, f) a blood flow outlier. Parameters shown:
x1 = D, x3 = DROI , x5 = Fmax, x6 = Fspr, RTF = x6/x3.

often high for symmetrical artifacts (Fig. 4b and Table I) and
emboli (Fig. 4c and Table I). This characteristic can be used
to eliminate many blood flow outliers (Fig. 4f and Table I).
For nonsymmetrical HITSs, the probability to be an embolus
increases as HBRavg increases.

c) Duration of the HITS ROI (DROI ) : this feature is
equal to the duration of the HITS ROI (see feature x3 = DROI

on Fig. 4). This value is particularly useful to analyze superim-
posed HITSs. As previously mentioned in section II-C, in this
situation, the ROI corresponds to the part of the spectrogram
with the highest probability of being an embolus. Therefore,
contrary to D, DROI is only designed to characterize events
that look like embolus. Thus, when DROI is higher or lower
than its common value for emboli, the HITS is potentially an
artifact [20] (see respectively Fig. 4a, Fig. 4b and Table I).

d) HBR of the HITS ROI (HBRROI ) : this feature is
defined as the ratio of the maximum magnitude in the ROI to
the maximum magnitude of the blood flow. It is used to remove
symmetrical artifacts. In fact, when a HITS is a symmetrical
artifact, its associated ROI almost always corresponds to blood
flow (Fig. 4b and Table I). In this case, HBRROI is lower
than its common value for emboli.

e) Maximum frequency of the HITS ROI (Fmax) : this
parameter corresponds to the maximum frequency inside the
ROI (see feature x5 = Fmax on Fig. 4). It is used to eliminate
artifacts corresponding to human activity such as voice (Fig.
4d and Table I) and motion. On the spectrogram, these artifacts
appear traditionally at a lower frequency than emboli.

f) Frequency spreading of HITS ROI (Fspr) : this feature
is equal to the difference between the maximum and the
minimum frequency of the ROI x6 = Fspr. Its goal is to
reliably identify blood flow outliers. Blood flow outliers can
appear at any frequency. Therefore, Fmax can also be high
for several blood flow outliers. Nevertheless, the frequency
spreading of blood flow outliers (Fig. 4f and Table I) is lower
than the frequency spreading of emboli (Fig. 4c and Table I).

g) Ratio of frequency spreading in ROI over ROI du-
ration (RTF ) : the idea behind this feature is to use the
shape of the ROI. Fspr and DROI are respectively equal to
the height and width of the ROI. Therefore, the parameter
RTF = Fspr/DROI gives information about the ROI shape.
HITSs for which the parameter RTF is lower or higher than
its common value for emboli (Fig. 4c and Table I) can be
considered as artifacts (Fig. 4a and Table I).

h) Ratio of HITS ROI size over HITS size in spectrogram
(Rsiz) : this parameter is designed to eliminate partially
symmetrical artifacts. The ROI of a partially symmetrical
artifact is traditionally a small part of this artifact (Fig. 4d
and Table I). Therefore, for this kind of artifacts Rsiz tends
toward zero.

E. Feature selection

The previous section outlined eight features to make the
difference between artifacts and emboli. Nevertheless, it is
important to know if all the parameters are useful, i.e., if a
subset of parameters contains as much information as all the
parameters to describe HITSs.

Three main sets of algorithms can be used to select features
with respect to their importance in class prediction : Wrapper,
Embedded and Filter. Wrapper and Embedded algorithms car-
ried out a procedure of classification during feature selection.
Therefore, they are time-consuming depending on the classifier
used. Herein, to reduce computational time, we used Fil-
ter algorithms called minimal-redundancy-maximal-relevance
criterion (mRMR) and Relief-F [22]. These algorithms are
both based on the predictors intrinsic characteristics for the
ranking task. Therefore, the number of features chosen after
the ranking task depends on the classification algorithm used
in Section II-F.
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F. Machine Learning Algorithms

The three supervised learning algorithms we used to dis-
criminate between emboli and artifacts are described below.

1) Support Vector Machine (SVM): this algorithm is tra-
ditionally used to linearly separate binary-labeled data. Its
principle is to maximize the separation margin, the margin
being the distance between the closest observations of the
two groups. To address nonlinearly separable data, the trick is
to project them onto high-dimensional space. This projection
usually enables the linear separation of the data. In order to
deal with imbalanced classes, as in our case, the SVM can be
weighted [23].

2) Naive Bayes (NB): this algorithm is based on the Bayes
theorem. It considers that predictors are independent given an
observation class member. Nevertheless, even if this strong
assumption is not true, the NB classifier can work very well
[24].

3) Decision Tree (DT) [25]: This algorithm is an iterative
method that partition data. It realizes successive binary test,
using data characteristics, in order to build homogeneous
classes. DT rules are easy to understand because they can be
shown graphically.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Data Acquisition

Our database was composed of twelve patients with a
carotid stenosis. Carotid stenosis is a partial obstruction of
the carotid artery caused by atheromatous deposits (fat or
calcareous) on the wall of the artery. It increases the risk of
stroke because atheromatous deposits can break off and block
blood circulation into the middle cerebral artery. This event
is very serious knowing that 80% of the cerebral blood flow
circulates through this artery.

Patients were monitored with the TCD-X (Atys Medical,
France) device. The pulse repetition frequency (PRF) was
set between 4 and 5 kHz. The emitted waves had a central
frequency equal to 1.5 MHz and lasted 10 µs. A quadrature
demodulation was applied on the back-scattered signal giving
audible two-channel signals.

HITSs were labeled on the acquired signals by two experts.
They used the definition of embolus given in [20]. The steps
of the labeling procedure are the following. Firstly, the HBR
and DROI parameters of HITS are checked. If their values
are respectively lower than 3 dB or greater than 300 ms, the
HITS is labeled as an artifact. Then, the expert looked for
symmetry in the spectrogram and listened to the audio data. If
no symmetry was observable in the spectrogram and if a snap,
chirp, or moan sound was heard on the audio data, the HITS
was labeled as an embolus. If not, the HITS was labeled as
an artifact. Finally, the second expert confirmed or refuted the
HITSs labeled as emboli by the first expert. Table II gives the
number of emboli found for each patient.

B. Experimental Results

In this study, we used the following parameters. The STFT
was carried out with a 128 points Blackman window and had a

91% overlap. The DC component of the signals was eliminated
with a fourth-order butterworth highpass filter with a cut-off
frequency equal to 150 Hz. A Gaussian kernel was used for
SVM. Moreover, its kernel parameter pair and its constant of
tolerance were searched in a grid

[
10−3, 103

]
×
[
10−3, 103

]
containing 49 equidistant pairs. DT used Gini impurity.

1) Feature selection procedure:
Table III gives the combined score of the proposed fea-

tures. This score was obtained as follows. A training set was
associated to each patient. This training set was composed of
all the other patients. Then mRMR and Relief-F independently
established the rank of the features from each patient’s training
set. The addition of the attributed ranks for both methods
and all patients gave the combined score. The smaller the
combined score the more informative the feature is to classify
HITS.

After ordering the features, we sought if all of them
were useful to discriminate between emboli and artifacts. For
each patient, the same training set was used and the three
classification algorithms were independently trained on eight
feature subsets. The feature subsets were composed of the n
first features for n = 1, · · · , 8.

Table IV gives the average misclassification error of each
algorithm. The DT and NB algorithms had the best classifi-
cation performance when the first six features were used. The
SVM algorithm classification results were optimal with the
eight features.

Fig. 5: Comparison of the algorithms performance : Decision
Tree (DT), Naive Bayes (NB) and Support Vector Machine
(SVM).

2) Comparison of Machine Learning Algorithms:
Figure 5 shows the curves of the detected emboli percentage

versus the number of artifacts detected as emboli per minute.
The algorithms presented in this paper are better than the one
introduced in [18]. Our new method always gives a lower
number of artifacts for a same percentage of detected emboli.

C. Discussion

The fact that NB and DT algorithms have optimum per-
formance using six parameters out of eight can be explained
as follows. The parameter HBRavg is expected to enable
the elimination of nonsymmetrical artifacts with low inten-
sity such as blood flow outliers. Nevertheless, the database
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TABLE II: Database description.

Patients No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10 No.11 No.12
Signal duration (s) 323 480 111 157 1620 1121 3624 1100 601 300 1700 672
Number of emboli 65 16 27 36 25 9 5 7 41 12 13 7

TABLE III: Features ranking.

Feature name
HBRROI RTF Fmax Fspr DROI Rsiz D HBRavg

mRMR and Combined feature score 24 52 78 86 122 142 179 181
Relief-F Rank 1 2 3 4 5 6 7 8

TABLE IV: Error for each subset of features.

Subset of the n most informative features
n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

Average SVM 0.313 0.209 0.164 0.150 0.144 0.09 0.087 0.081
misclassification DT 0.205 0.154 0.108 0.101 0.08 0.069 0.073 0.074

error NB 0.35 0.215 0.189 0.211 0.162 0.111 0.128 0.123

TABLE V: Features values of the three misclassified HITSs in Fig. 6.

Feature name
Time domain Time-frequency domain

Fig. HITS type Prediction D(ms) HBRavg(dB) DROI(ms) HBRROI(dB) Fmax (Hz) Fspr (Hz) RTF Hz/ms Rsiz

6a) Embolus Artifact 32.84 5.41 10.95 2.26 719.41 205.55 18.78 1.91
6b) Artifact Embolus 58.38 8.54 54.73 8.81 548.13 376.84 6.89 1.63
6c) Embolus mislabeled Embolus 784.49 14.04 18.24 7.77 1541.6 376.84 20.66 1.65

Rsiz has no unit of measurement. It is defined, in the spectrogram, as the ratio of the HITS ROI size to the HITS size.

Fig. 6: Three misclassified HITSs. a) an embolus not detected,
b) an artifact classified as an embolus, c) a HITS labeled as
an artifact by the experts but that is undoubtedly an embolus.

contained few nonsymmetrical artifacts compared to emboli
and symmetrical artifacts. Therefore, this parameter contains
little information to classify HITS. Moreover, for most emboli
(i.e., which are not superimposed on artifacts), HBRavg
is highly correlated to HBRROI because in the presence
of an embolus, ROI and embolus region are the same. As
a result, for NB and DT algorithms, information provided
by HBRROI is useless, it is already given by HBRavg .
However, the information provided by HBRROI is useful for
the SVM algorithm because its performance is less sensitive
to correlated subsets of features. The fact that DROI is useless
for DT and NB algorithms can be explained the same way. For
nonsymmetrical artifact and emboli, DROI is highly correlated
with D.

No matter which classification algorithm was selected
among SVM, NB and DT, it gave better performance than
the algorithms presented in [10], [11], [18]. This reflects the
importance of the new processing introduced in this paper.
Moreover, the new features are able to describe more complex
situations than in the previous papers, including the superposi-
tion of an embolus and artifacts. In comparison, both features
used in [18], i.e., RTF and HBRavg , were respectively the

second and the last most informative features in this study.
Figure 5 shows that when the percentage of detected emboli

is 90%, the previous paper, which had up to that point the best
result among the other outpatient emboli detection algorithms,
gives six artifacts per minute. In this study, using the DT,
NB and SVM algorithms, we obtained respectively 0.6, 0.88
and 1.17 artifacts per minute for the same percentage of
emboli detected. Compared to [10], [11], [18], the gain is
considerable, the number of artifact detected per minutes is
divided by more than 10 using the DT separator.

It is not obvious to choose the best classifier among SVM,
NB and DT. On the one hand, if we want to maximize the
percentage of emboli detected (i.e, near 100%) and minimize
the number of artifacts, DT is the best. On the other hand, if
we want to obtain the lowest number of artifacts (i.e, near 0
per min) and the highest number of emboli, SVM is the best.
Nevertheless, if we consider the medical application, the aim
of the algorithm is to detect all the emboli with the minimum
number of artifacts. Therefore, DT is superior to NB which is
superior to SVM.

The algorithm presented in this paper also differs from [10],
[11], [18] because all its steps from the detection of HITSs up
to the ROI features extraction are sequential. As described in
Section II.B, a signal buffer updated at each sampling time is
the only thing required to detect an embolus and extract the
features used by the classification algorithm.

Let us finally discuss misclassified HITSs. Figure 4 shows
three different cases. On Figure 6a, we can see an embolus
classified as an artifact. If we look at the values of the
associated features in Table V, we can conclude that it is
a small or micro-embolus (HBRROI < 3 dB). It is often
tricky to differentiate micro-emboli from artifacts so it could
be an explanation of this false negative. On Figure 6b, an
artifact classified as an embolus can be seen. The values of
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the associated features presented in Table V are close to the 
values that characterize an emboli. This is probably why it was 
a false positive. The major difference between this HITSs and 
an emboli is that its main frequency is low. Its sound is not the 
snap, chirp, or moan characterizing an embolus as mentioned 
in [20]. Figure 6c) shows a HITS classified as an artifact by the 
human experts. This HITS is probably classified as an artifact 
because it is superimposed on a voice artifact and almost 
outside of the part of the spectrogram corresponding to the 
blood flow. The human experts cannot hear the characteristics 
sound of an embolus. However, the other characteristics of 
an embolus given in [20] which are, lasts less than 300 ms, 
is nonsymmetrical in spectrogram, has an HBR higher than 
3 dB, are verified. T his m eans t hat t he d efinition of  embolus 
given in [20] needs to be upgraded in order to improve emboli 
detection performance. We could introduce probabilistic labels 
in order to take into account uncertain cases.

IV. CONCLUSION

This paper presents an automatic emboli detection algorithm 
(i.e., no human intervention is required) designed for outpa-
tient transcranial ultrasound data. The new features introduced 
are reliable to eliminate most artifacts intrinsically related to 
outpatient data. The algorithm proposed outperforms the actual 
state of the art. Tested on patients with carotid steneosis, the 
number of artifacts detected per minute was divided by 10. Our 
method is also sequential. Therefore, it opens the possibility to 
make device able to detect emboli online (during monitoring). 
In a future work, attention will be paid to uncertain emboli 
(i.e, emboli with probabilistic labeling) in order to take into 
account small or micro-emboli.
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