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a b s t r a c t

Health monitoring data are increasingly collected and widely used for reliability assessment and lifetime pre- 
diction. They not only provide information about degradation state but also could trace failure mechanisms of
assets. The selection of a deterioration model that optimally fits in with health monitoring data is an important
issue. It can enable a more precise asset health prognostic and help reducing operation and maintenance costs.
Therefore, this paper aims to address the problem of degradation model selection including goals, procedure and
evaluation criteria. Focusing on continuous degradation modeling including some currently used Lévy processes,
the performance of classical and prognostic criteria are discussed through numerous numerical examples. We
also investigate in what circumstances which methods perform better than others. The efficiency of a new hybrid
criterion is highlighted that allows to take into account the information of goodness-of-fit of observation data
when evaluating prognostic measure.

1. Introduction

Degradation modeling in the presence of health monitoring data is
extremely important for lifetime prognosis and maintenance planning.
Complex models permit to take advantage of all available information
and describe precisely the dynamics of degradation. However, these
models are not easily tractable, and their calibration in the presence
of data is a burdensome task. On the other hand, a very simple model
which can be easily fitted to data but can underestimate or overstate
the uncertainty around the lifetime prediction. This latter can induce
risks and additional costs in prognosis based decision making and
maintenance. A useful and suitable degradation model leads to a
balance between accuracy and tractability, [1,2] .

The degradation considered as a random phenomenon often has
a gradual time-continuous trajectory. Regarding the system under
consideration, the degradation can take values in discrete or contin- 
uous space. For instance, in a crack growth phenomenon, the crack
length can take infinite possible values as soon as it begins to grow.
Similarly, a deteriorating production process can have several quality
states which will impact the production and result of gain or losses. In
these two cases, the modeling procedure should take into account the
phenomenon under consideration, see for instance [3–5] .

This paper focuses on the gradual degradation modeling and progno- 
sis with health monitoring data. When data is available, the important
issue is to select the model which describes the underlying degradation
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phenomenon in the best possible way. The data are collected under
given environmental conditions and may not represent the average
behavior of the deteriorating system. A suitable model is one who
can take into account the possibility of extreme behaviors during data
collection without losing in perspective the real average degradation
behavior. The final use of the degradation model can largely impact the
way data is handled, and a model is favored. If the result of modeling
has a large impact on safety issues, the choice and the procedure are
not carried out in the same way as if only economic profits or losses
are taken into account. Similarly, the cost induced by decision policies
based on different models may influence the model selection. Regarding
statistical properties, the best candidate is well characterized from data
trajectories. It can permit fast calibration and straightforward lifetime
estimation. For more details and examples, refer to [6,7] .

To be able to discard irrelevant models it is necessary to have some
prior knowledge about the degradation phenomenon under considera- 
tion. In the presence of such information and degradation data, the goal
of degradation modeling is to select one model from a set of competing
models that best captures the underlying degradation process. As it is
mentioned before the selection criteria depend mainly on the specific
purpose for which the model can be used, see for instance [5,8] .

This paper deals partly with Lévy processes [9] and focuses on the
most commonly used which are Wiener and Gamma processes. Model
calibration and data fitting of these models have been widely addressed
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in the fields of finance, biology and engineering [10,11] . However,
the model selection criteria in the finance and biology field have some
differences with engineering domain where maintenance and safety
constraints are significant concerns [5,12,13] . The model selection for
engineering prediction problems is an important issue but has not been
generalized and extensively addressed, [14] .

This paper proposes different criteria for model selection, to avoid
system failure and with the most reasonable calculation time. First,
an overview of the considered stochastic processes is given, and their
use in degradation modeling is underlined. Afterwards, to provide a
first selection criterion and to continue to outline a methodological
guide, some widely addressed and well known statistical data fitting
criteria are pointed out. Their limits and performances are highlighted,
and new prognostic basis criteria are introduced. To complete the
methodological task, the proposed procedure is applied to different
simulated data sets. The behavior, weakness, and performances of the
model selection are analyzed and discussed.

The remainder of the paper is as follows. Section 2 describes the
set of models under consideration. In Section 3 , the criteria for the
data-based model selection are exposed. Section 4 gives some prognosis
criteria. Eventually, in Section 5 the proposed models and criteria are
tested on simulated data.

2. Stochastic degradation modeling and parameter estimation

This section focuses on the considered Levy processes in the
framework of degradation modeling, [12,15,16] . A Lévy process is
a stochastically continuous process with stationary and independent
increments. It can be decomposed into the sum of a drifted Brownian
motion and a jump process such as Gamma or Poisson process. These
properties make this class of processes a good candidate for degradation
modeling. In this paper, the widely used Levy processes, particularly
Brownian and Gamma family, are the models under consideration to
describe the degradation behavior. They are presented in the following.

Let us introduce some notations. Let X t be the degradation level of the
system at time t . Let L be the failure threshold in the sense that the sys- 
tem is supposed to be failed if the degradation level exceeds the level L .
Let t ps ( L ) be the first passage time of the degradation process to level L :

t ps ( L ) = inf { t ∈ ℝ + , X t ≥ L } . (1) 

The residual useful life time (RUL) at time t given X t = x denoted by
RUL ( x, t ) is the time duration before the first passage time t ps ( L ) starting
from the degradation level x at t . In the following t ps ( L ) will be denoted
t ps except in case of ambiguity.

2.1. Lévy type diffusion process

To consider a general degradation modeling framework and take
into account the possible existing physical models, it is natural to
introduce stochastic differential equations (SDE) based on a standard
Brownian motions B t :

d X t = m ( X t , t ) d t + �( X t , t ) dB t ,

( m, �) ∶ ℝ ×ℝ + ↦ ℝ are respectively the drift and the diffusion co- 
efficient. These equations appear at the beginning of 20th century
in statistical mechanics and have been thoroughly formulated by Itô
[17,18] . Such equations can be derived directly from existing physical
models by adding Gaussian “white noises ” on measurements. They
permit a wide range of degradation modeling due to the flexibility of
the structure and functional parameters.

In this section, some specific Levy diffusions processes are presented,
and their interest in degradation modeling is underlined. For each case,
the differential equation, the related distribution functions, and some
statistical properties are exposed.

2.1.1. Wiener process
The Wiener process is very popular deterioration modeling when

observations increments vary non-monotonically. The statistical prop- 
erties of the failure time in the case of a Wiener process are studied
in [19,20] . It has been considered in reliability and lifetime analysis
widely since the 1970s. Authors in [21] used the Wiener process with
drift to model accelerated life testing data. In [22,23] the impact of
measurement errors on the Wiener degradation model of self-regulating
heating cables is analyzed. Authors in [24–26] also focused on the
stopping time (failure time) of Wiener deterioration models and ex- 
panded the existing theoretical results in this domain. The Brownian
motion with non-linear drift has attracted more attention in engineering
problems and residual lifetime estimation, see for example [27–29] .

More precisely, a diffusion process in Brownian motion family has
the following properties. The increments are independent, X t is solution
of the SDE d X t = �( t ) d t + �dB t , where �( t ) is a function of t and B t
is a standard Brownian motion. The transition probability to X t = x

knowing that X s = y is given by:

p ( x, t |y, s ) = 1 
√
4 ��( t − s ) 

exp 

(
− 
( x + M( t, s ) − y ) 2 

4 �2 ( t − s )

)
, (2) 

where M ( t, s ), ( t, s ) are given by:

M( t, s ) = − ∫
t 

s 
�( u ) du, (3) 

The mean and variance values of X t are given by:

E [ X t ] = − M( t, 0) , Var [ X t ] = �2 t (4) 

M 1 : Wiener process with linear drift. This process is the special case of a
Wiener process when the drift and the variance are not time dependent
( �( t ) = � is constant). This diffusion process which is also a Lévy process
is suitable for fluctuating degradation records linearly increasing in
time. It will be referred as M 1 in Section 5 .

The RUL cumulative distribution function (cdf) for a drifted Brown- 
ian motion given the observation value X t = x at the observation time
t are given as follows [30] :

F RUL ( x,t ) 
( u ) = Φ

( 

− L + �u + x

�
√
u 

) 

+ e 
2

�

�2 
( L − x ) 

Φ

( 

− L − �u + x

�
√
u 

)
(5) 

where Φ( · ) is the standard normal cumulative distribution function.

M 2 : Wiener process with time-dependent drift. This process is the par- 
ticular case of a diffusion process when the degradation process is
exponentially increasing in time ( �( t ) = at b ). It will be referred as M 2
in Section 5 . In this case, the ratio between its drift and diffusion is
not a constant and also depends on the time. Therefore, it is difficult
to derive the explicit expression of the RUL distribution. Its evaluation
requires solving a non-singular Volterra Integral Equation. It can be
done numerically, see e.g. [31] .

2.1.2. M 3 : diffusion process with purely time-dependent drift and diffusion
This process is the particular case of a diffusion process when �( t )

and �( t ) are time dependent functions independent of X t ). This is suitable
for a degradation process including random walks with time-dependent
drift and diffusion terms. In this paper, we consider a special case of the
purely time dependent drift and diffusion Brownian motion: �( t ) = cat b

and �( t ) = 

√
2 at b . It will be denoted as M 3 in Section 5 . As the power-law

drift is proportional with drift, according to [32] , the RUL CDF of the
process at time t given a degradation level at time t , X t = x, is derived:

F RUL ( x,t) ( u ) = Φ

( 
− L − c( t ps , t ) + x

√
2 ( t ps , t )

) 

+ e c( L − x ) Φ

( 
− L − c( t ps , t ) + x

√
2 ( t ps , t )

)
(6) 

where ( t ps , t ) is given by Eq. (3) .
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2.1.3. M 4 : Ornstein–Uhlenbeck process
A time-dependent Ornstein–Uhlenbeck (OU) Process is widely

used to describe physical dynamics of systems which stabilize at its
equilibrium point. In the field of reliability modeling, OU process could
be a good candidate for modeling the degradation process when the
drift is time-dependent and also depends on the degradation state
[31,33] . Indeed for commonly used processes such as drifted Brownian
motion [30] , the mean or the drift trend can be chosen quite freely,
but the variance strongly depends on the stochastic process properties.
To control the variance function independently of the mean tendency,
a time-dependent OU process is a good candidate. The increments of
Ornstein–Uhlenbeck process are independent, X t is solution of the SDE:
d X t =

(
�( t ) X t + �( t )

)
d t + �( t ) d B t , where �( t ), �( t ) and �( t ) are functions

in t . The transition probability density function from X s = y to X t = x

is given by:

p ( x, t |y, s ) = e �( t,s )
√
4 �( t, s ) 

exp 

(
− 
( xe �( t,s ) + M( t, s ) − y ) 2 

4 ( t, s ) 

)
(7) 

where �( t, s ), M ( t, s ), ( t, s ) are given by:

�( t, s )=− ∫
t 

s 
�( u ) du, M( t, s )=− ∫

t 

s 
�( u ) e �( u,s ) du, ( t, s )= ∫

t 

s 

�2 ( u ) e 2 �( u,s )

2 
du 

In this paper, we consider a special case of OU process, denoted as
M 4 and defined by:

�( t ) = a, �( t ) = m ′( t ) − a ⋅ m ( t ) , m ( t ) = bt c , c ≥ 1 , �( t ) = d (8) 

The remaining useful lifetime pdf of this OU process can be nu- 
merically evaluated as the solution of a non-singular Volterra integral
equation, see [33] .

2.2. Gamma process

The gamma process is a positive stochastic process with independent
increments. Hence it is useful to describe the deterioration caused by
the accumulation of wear [34] . This process is a jump process which
can be roughly considered as a succession of the frequent arrival of
tiny increments. This rough description makes it relevant to model
gradual deterioration such as corrosion, erosion, wear of structural
components, concrete creep, crack growth [35] . Moreover, the gamma
process has an exact probability distribution function which permits
feasible mathematical developments. This process has been widely used
in deterioration modeling for condition-based maintenance (see [12] ).

The increments of a gamma process ( X t ), X t − X s , are independent,
X t − X s ∼ Ga ( �( t ) − �( s ) , �) with the transition probability density
function from X s = y to X t = x as follows:

p ( x, t |y, s ) = ��( t )− �( s )

Γ( �( t ) − �( s )) 
( x − y ) �( t )− �( s )−1 e −( x − y ) � (9) 

where the shape function �( t ) is an increasing function defined on ℝ + .
Γ is the Euler ’s Gamma function. and � the scale parameter. The mean
and variance values of X t are given by:

E [ X t ] =
�( t ) 

�
, Var [ X t ] = 

�( t )

�2 
(10) 

The choice of �(.) and � allows to model various deterioration
behaviors from almost deterministic to very chaotic. Note that, based
on the form of �( t ), the Gamma process can be:

• Homogeneous Gamma Process if �( t ) is a linear function in t :
�( t ) = at . This process is denoted M 5 .

• Non-homogeneous Gamma Process if �( t ) is a non-linear function:
for instance �( t ) = at b , a > 0, b > 1 for the process referred as M 6 in
the following.

Given a degradation level X t = y at time t , the cumulative distribu- 
tion of the remaining useful life of a gamma process is given by [36] :

F RUL ( y,t ) 
( u ) =

Γ( �( u + t ) − �( t ) , ( L − y t )∕ �)

Γ( �( u + t ) − �( t )) 
; 

Γ( ⋅, ⋅) is the upper incomplete Gamma function. (11) 

2.3. Parameter estimation

Parameter estimation refers to the process of using sample data
(degradation records at observation times) to determine the values of
the model parameters that best fits the data. The parameter estimation
of Lévy processes is discussed in [37] . Among numerous parameter
estimation methods, the Maximum Likelihood Estimation (MLE) is one
of the most widely used [38] . It proposes a unified approach to select
the set of values of the model parameters through the maximization
of the likelihood function. Intuitively, this maximizes the matching
between the chosen model and the observed data.

Suppose that the degradation records have been obtained from n
identical independent components. Let m l be the number of records
collected on the l th component (1 ≤ l ≤ n ) and assume m l ≥ 2. Then, x lj
is the degradation records of the l th component at the j th observation
time (1 ≤ j ≤ m l ). Recall that p �( x lj , t l,j |x lj−1 , t lj−1 ; �) is the transition
probability density function of the degradation process knowing that �
is the vector of model parameters. The log-likelihood function for the
whole uncensored sample data set is given by:

L ( �) = 

n∑

l=1

log ( p �( x l1 , t l1 |X 0 , 0); �)) +

n∑

l=1 

m l∑

j=2 

log ( p �( x lj , t lj |x l( j−1) , t l( j−1) ; �))

The objective of MLE method is to find the parameter vector which
maximizes the log-likelihood function: �∗ = arg max � log L ( �) . Deriving
analytical treatment is difficult. The optimization problem is usually
solved by numerical algorithms. In this paper, we propose to use the
Nelder–Mead (NM) method to estimate the model parameters.

3. Degradation model selection criteria

The degradation process is considered as a random phenomenon,
presented by time-continuous trajectories. The criteria considered for
model selection have to take into account the stochastic characteristics
of the degradation process variability. The problem is posed on the
choice of the best model among a class of competing models given a
data set according to different goals. The primary objective of model
selection is to choose the model that best fits a particular observation
data, i.e., with maximal goodness-of-fit. However, for some reasons
such as constraints about the time of parameter estimation or the model
manageability a sub-optimal simple model could be favored. In these
cases, the aim of the model selection is to balance goodness-of-fit and
model complexity. Thus, a simple slight model can be preferred to
an unnecessarily complicated one. On the other hand, the purpose of
model selection should also include the ability to predict the future
degradation behavior and assess its associated uncertainty from a
particular degradation path. For this purpose, errors of predictions have
to be taken into account in the selection criteria. In summary, selection
criteria for degradation modeling and prognosis can take into account
three different objectives which are the goodness-of-fit, the complexity
level and the relevance for prognosis.

3.1. Goodness-of-fit

The goodness of fit measures characterizes the model ’s ability to
match the observation data. They describe the discrepancy between ob- 
served values and the values expected under the considered model. For
regression analysis of deterministic models, goodness-of-fit measures
are typically based on the evaluation of residual values, such as the
mean squared errors (MSE), the mean absolute errors (MAE), between
theoretical values generated by the model and observation values.

For a degradation process characterized by stochastic models (for
example, the models presented in Section 2 ), goodness-of-fit measures
are typically dedicated to the distribution of degradation data. In
detail, the goodness-of-fit tests are introduced to assess whether a
specific distribution is matched to a frequency data set. Among them,
Pearson ’s Chi-squared test and Kolmogorov–Smirnov test are widely
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used in the statistics. For more details about the goodness-of-fit test for
Lévy processes, refer to [39] . However, these tests are not relevant to
select a model among a list of competing models. Then the distribution
error measure (Pearson ’s Chi-square or Kolmogorov–Smirnov error) is
introduced as one of the different model selection criteria.

3.1.1. Pearson ’s Chi-square error
Pearson ’s Chi-squared error (PCSE) is used to examine the discrep- 

ancy between the number of observations in each category with the
theoretical expectation number. It strictly depends on the sample data
size. In general, the PCSE is evaluated through the following steps
considering that the degradation process is time homogeneous and that
the inspections are periodic:

1. Divide observation data (increments of degradation) into k bins
(e.g. k regular intervals)

2. Let O i and E i be respectively the observed data frequency in bin i
and the probability that an increment is in bin i for the considered
model. The PCSE is given by:

�2 = 
1 

k 

k∑

i =1 

( O i − E i ) 
2

E i
(12) 

which follows asymptotically when the sample data size tends to
infinity a chi-square distribution with k − 1 degrees of freedom.

3.1.2. Kolmogorov–Smirnov error
The Kolmogorov–Smirnov error (KSE) characterizes the discrepancy

between the empirical distribution function (ECDF) and the theoretical
distribution estimated from a given model. The Kolmogorov–Smirnov
statistic is given by:

KSE = sup 
x 

||||

∑n

i =1 1 { x i ≤ x } 
n 

− F ( x ) 
||||

where 1 { x i ≤ x } = 1 if x i ≤ x and 0 otherwise and F ( x ) = ℙ (ΔX ≤ x i ) is
the cumulative distribution function obtained from the model for the
increments distribution. Under the hypothesis that the observed sample
comes from the distribution F ,

√
n KSE converges to the Kolmogorov

distribution.
Both of PCSE and KSE could be implemented for the selection

degradation model as goodness-of-fit measures. In fact, consider the
homogeneous degradation models, such as the drifted Brownian or
the homogeneous gamma model, the degradation increments are
independent of the time and the degradation state. Under periodic
observation policy, the degradation increases between two consecutive
observation times are identical and follow the same distribution having
the same parameters. Therefore, they could be divided into k bins
to evaluate the distribution error measures. However, it is difficult
to assess these distribution errors in the following cases when the
degradation increments between two consecutive observation are not
related to iid random variables i.e. when:

• degradation states are non-periodically inspected,
• degradation processes are assumed to follow non-stationary models,
such as non-homogeneous gamma process, time-dependent drift or
diffusion Brownian model, or OU process whose future increments
are also dependent on the current degradation state.

Therefore, it is necessary to introduce more general goodness-of-fit
measures that could be easily implemented for all type of parametric
models with periodic and non-periodic observation data.

3.1.3. Empirical average log likelihood function
The likelihood function is a most popular goodness-of-fit measure,

widely used in model selection because it can be evaluated from both
of periodic or non-periodic observation data for all type of models. The
likelihood function of the sample data is the probability measure that a
particular data set is obtained given the chosen probability distribution

model [40] . To compare the likelihood function values when consid- 
ering different sizes of data, it prefers to evaluate its empirical average
values. Besides, as the log is a monotonic transformation and allows
to easily evaluate the sum instead of the product of the likelihood,
the Empirical Average Log-Likelihood (EAL) is assessed in this paper.
However, its values are often negative, that ’s why in Eq. (13) we
add the minus sign to obtain the positive ones. Therefore, we use the
minimal log-likelihood instead of the maximal likelihood concept in
our code for the examples given later in the paper.

Let n be the total number of data observation points, x i be the
observation value at observation time t i , then the EAL measure of the
model defined by parameter set � is given by:

EAL = 
− log p �( x 1 , t 1 |X 0 , 0; �) −

∑n

i =2 log p �( x i , t i |x i −1 , t i −1 ; �)
n 

(13) 

where p � is the process transition probability from given state to
another state. As EAL could be easily applied for all type of parametric
models with periodic or non-periodic observation data, hereafter, we
chose this measure to quantify the goodness-of-fit.

3.2. Parametric complexity

The criteria presented in the Section 3.1 are only based on the
discrepancy between the given data set and the considered model.
It can lead to the choice of a complex model that overfits the data
set. In order to overcome this problem, criteria that take into account
complexity for model selection are introduced. The importance of
complexity in model selection is highlighted in [41] .

3.2.1. Minimum description length
Minimum Description Length (MDL) originates from the field

of information theory in computer science. It was firstly proposed
for model selection by Rissanen in 1978. It is based on the shortest
encoding length principle of the data and the model itself.

Let D, M represent respectively the observed data set and a model
from the list of models candidates to be selected. The “best ” model M ∗

can be chosen as that which minimizes the MDL measure defined by
MDL = L ( M) + L ( D|M) , [42] where:

• L ( M ) is given by (see [43,44] ):

L ( M ) = 
k 

2 
ln 
(

n

2 �

)
+ ln ∫

√
|I ( �) |d� (14) 

It depends on the number of parameters in the model k , on the
number of observations in the data set n and also on the Fisher
information I ( �). In the cases of universal priors where there is no
information on the distribution of data and model, the Eq. (14) is
simplified by Ramos [42] as follows:

L ( M) = ( k + 1) log 2 k + 
k 

2 
log 2 n (15) 

• L ( D | M ) is the log likelihood function of the data given the model M
with parameter �:

L ( D|M ) = − log p �
(
x 1 , t 1 |X 0 , 0; �

)
− 

n ∑

i =2 

log p �
(
x i , t i 

||x i −1 , t i −1 ; �
)

(16)

3.2.2. Akaike information criterion
Akaike Information Criterion (AIC) is based on information theory,

firstly introduced in [45] and widely used for model selection [46] .
It is dedicated to select the model with the closest distribution to the
true distribution in the Kullback–Leibler sense and having the smallest
number of parameter. In fact, considering the data set D , AIC of model
M having k parameters is given by:

AI C = 2 L ( D|M ) + 2 k (17) 

where L ( D | M ) is the logarithm of the model ’s maximum likelihood.
Given this criteria, among candidate models, the one with minimum
AIC will be chosen.
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3.2.3. Bayesian information criterion
Bayesian Information Criterion (BIC) firstly derived by Schwarz in

1978 is an approximation for the posterior distribution of Bayesian
methods using the assumption that the priors are equal. It provides
a measure for model selection that penalizes the model having more
parameters, refer to [47,48] . In fact, BIC is given by:

BI C = 2 L ( D|M ) + k ln ( n ) (18) 

where L ( D | M ) is the logarithm of the model ’s maximum likelihood.
According to the BIC criterion, the model having the lowest value of
BIC is the best. Besides the number of parameter k , the BIC also takes
into account the size of the data set n . When n increases, the model
having a smaller number of parameters k is favored by the BIC which
is not necessarily the case for the AIC.

The three criteria AIC, BIC and MDL deal with the trade-off between
the model goodness of fit and the model complexity, but only MDL con- 
siders the model ’s functional form given in (14) . Therefore, it is expected
to give the more accurate decision for model selection. However, it is
not always easy to evaluate the integral term of the Fisher information.

3.3. Robustness - generalizability

Three criteria AIC, BIC and MDL penalize the complexity of the
model and favor the simpler one. In fact, the effects of model complexity
on model fit strictly depend on the mutual influence of complexity and
generalizability. Generalizability is described in [49] as the “model ’s
ability to accurately predict future, as yet unseen, data samples from
the same process that generated the currently observed sample ”.
The concept of generalizability is close to the robustness which is
the insensitivity to outliers in the observed dataset. Considering the
generalizability, a model which does not only fit to a given data set
but also has the high ability to match other data generated by the
same underlying distribution will be prioritized. Therefore, in this
section, selection measures that characterize the robustness or the
generalizability of the model are considered.

3.3.1. Bootstrap method
The main idea of Bootstrap methods, introduced by Efron (1979),

is to draw repeated samples from the initial data set (that usually has
small size), a large number of times to create a great size of “phantom
samples ”. Then, based on these samples, the underlying distribution of
population of interest is studied, for more details see [50] . Following
the idea of using bootstrap method for model selection [51] , we present
the procedure to evaluate the bootstrap metric (BS) that characterizes
the generalizability and robustness of a proposed degradation model
( M ) given a data set D having n samples as follows:

1. For j ∈ K ∶ {1 , … , k } where k is a large number.
• Randomly draw m samples from the data set D , ( m < n ) to create
a bootstrap data set D j ,

• Estimate the model parameters from this data set D j , �̂( D j ) , by
maximizing the log likelihood L ( D j ),

• Evaluate the natural logarithm of the predictive model ’s
likelihood for the initial data set with �̂( D j ) : L ̂�( D j ) 

( D) ,

2. The average BS metric of model Mj is given by : BS =
1 
k 

∑k

j=1 L ̂�( D j ) 
( D) 

The BS method is suitable for the small size data set because its
implementation time is an issue. When the number of observation
points is large enough, the Cross Validation method is preferred than
the BS method.

3.3.2. Cross validation method
Cross validation (CV) method is a computer science technique for

assessing how accurately a predictive model will match to data in prac- 
tice [52] . Its principle is to split the data into subsamples including a

training sample set for estimation of model parameters and a validation
sample set for testing the performance of predictive model in order to
limit overfitting problem. Among CV techniques, k -fold CV presented
by Boyce et al. [53] is widely used for model selection [54] . In the
application of degradation model selection, we propose to evaluate the
k -fold CV measure of model M as follows:

1. Divide the data set D in to k folds
2. For j ∈ K ∶ {1 , … , k } :

• Estimate model parameters ( ̂�|D { K⧵j} ) using all data that do not
belong to fold j ,

• Evaluate the natural logarithm of the predictive model ’s
likelihood for data that belong to fold j : L ( D j |( ̂�|D { K⧵j} ))

3. The CV value of model M is given by:

CV = 

k∑

j=1 

L ( D j |( ̂�|D { K⧵j} ) (19) 

where n is the size of data set D .

The CV measure gives an idea of the robustness of the considered
model by examining how the model fits to an independent unknown
dataset. The model having the minimum CV will be chosen.

4. Prognostic metrics

In the above section, the model selection criteria have introduced
that measure how candidate models are close enough to available
degradation data. In reliability engineering, one of the primary pur- 
poses of degradation modeling is to predict the system reliability. The
Residual Useful Lifetime (RUL) is considered extensively for mainte- 
nance decision and planning. Therefore, the degradation models can
be selected based on their lifetime prognostic performance. Authors in
[55] introduced a set of metrics to assess the prognostic ability of a given
model when degradation data and true failure time ( t F ) are known.
Inspired by this work we consider, in this section, three measures to
evaluate the prognostic performances for degradation model selection.

4.1. Prognostic horizon

The Prognostic Horizon (PH) is introduced in [56] . Let t be the last
observation time and RUL t be the predicted RUL of component at t . Let
t F be the actual failure time. For two given values � > 0 and � > 0, let
define t �, � by:

t �,� = inf
{
t, ℙ 

{
(1 − �) t F − t ≤ RUL t ≤ (1 + �) t F − t 

} ≥ �
}

The Prognostic Horizon is defined as P H = t F − t �,� . For model se- 
lection, the model having the greatest PH will be chosen. In other
words, the prognostic horizon criterion ( PHC ) is also characterized by
the minimal value of the observation time, P HC = t �,� such that the
estimated RUL distribution satisfies the above requirement. The model
having the minimal value of t �, � , can be chosen as it estimates faster
and more precisely the failure time.

4.2. Prognostic accuracy

Let L be the failure threshold and t � be the first time the degradation
level exceeds the threshold L � = � ⋅ L with � ∈ [0, 1]. The prognostic
accuracy criterion ( PAC ) is defined in this paper as a prognostic measure
that evaluates the probability mass of predicted RUL of component at
time t � within the �-bounds �

+ = (1 + �) t F − t � and �
− = (1 − �) t F − t � .

The model having the maximal value of PAC is the best one. Then, the
PAC is given by:

P AC = ℙ 
{
�− ≤ RUL t �

≤ �+ 
}

(20) 

For PHC and PAC metrics, the choice of �, � , and � depend on
the operation requirements of the considered system. Note that, the
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Table 1 
Summary of the model selection criteria investigated in numerical examples. 

Purposes Selection criteria Features 

To assess how candidate models are close enough to 
available degradation data. 

Empirical Average Log-Likelihood ( EAL ) Classical selection criteria to quantify the goodness-of fit. 

To assess how candidate models are close enough to 
available degradation data. 

Akaike Information Criterion (AIC) Classical selection criteria to quantify the goodness-of fit and the 
model complexity. 

To assess how candidate models are close enough to 
available degradation data. 

Bayeisan Information Criterion ( BIC ) Classical selection criteria to quantify the goodness-of fit and the 
model complexity, taking into account data size. 

To assess how candidate models are close enough to 
available degradation data. 

Minimum Description Length ( MDL ) Classical selection criteria to quantify the goodness-of fit and the 
model complexity, taking into account data size and model 
formality. 

To assess how candidate models are close enough to 
available degradation data. 

Cross Validation ( CV ) Classical selection criteria to quantify the goodness-of fit and the 
generalizability. 

To assess the prognostic ability of candidate models 
when degradation data and true failure time are 
known. 

Prognostic Horizon Criterion ( PHC ) Prognostic criterion to investigate which model could predict an 
acceptable RUL distribution as soon as possible. 

To assess the prognostic ability of candidate models 
when degradation data and true failure time are 
known. 

Prognostic Accuracy Criterion ( PAC ) Prognostic criterion to investigate the precision of the RUL 
prediction of candidate models. 

To assess the prognostic ability of candidate models 
when degradation data and true failure time are 
known. 

Hybrid Criterion ( HyC ) New criterion to taking into account the goodness-of-fit 
information of the observation data when investigating the 
precision of the RUL prediction of candidate models. 

( P AC) �=30% characterizes the value of PAC criterion when the degrada- 
tion data is observed until � = 30% of the failure threshold ( � · L ). The
predicted RUL distribution is evaluated by the mathematical formulas
as given e.g. in Eqs. (5) , (6) , or (11) .

4.3. Hybrid criterion

In this subsection, we propose a new criterion called Hybrid Crite- 
rion ( HyC ) to take into account the goodness-of-fit information of the
observation data when evaluating the prognostic measure. In fact, HyC
is calculated by the weighted sum between the weighted probability
mass of predicted RUL at time t � (as defined in the previous section)
and the log-likelihood of the observation data that does not excess the
threshold L � (defined in the previous section).

HyC = − w ⋅ log 
(
ℙ 
(
�− ≤ RUL t �

≤ �+ 
))

+ ( w − 1)
{
log p ( x 1 , t 1 |X 0 , 0; �)

+ 

n �∑

i =2 

log p ( x i , t i |x i −1 , t i −1 ; �)
}

(21) 

where n � = max { n, x n ≤ � ⋅ L } and w ∈ [0, 1] is the weight parameter
for the prognostic measure. In this paper, w is proposed to be the ratio
between the number of observation periods from the last observation
time to the failure time and the total number of observation periods
from initial moment to the failure time. As a consequence, it increases
with the prognostic horizon. For model selection, the model having
the minimal value of HyC will be chosen. Similar to PAC , ( HyC) �=30%
characterizes the value of HyC criterion when the degradation data is
observed until � = 30% of the failure threshold ( � · L ).

Table 1 summarizes the features of the selection criteria that are eval- 
uated and discussed in numerical examples. These criteria are applied to
choose the best model for degradation data generated by one among the
Brownian motion ( M 1 , M 2 , M 3 , M 4 ) and the Gamma ( M 5 , M 6 ) family.

5. Numerical experiments

5.1. Design of numerical experiments

Consider six models presented in Section 2 which are respectively
M 1 a drifted Brownian motion, M 2 a time-dependent drifted Brownian
motion, M 3 a time diffusion-dependent drifted Brownian motion, M 4
a particular OU process as presented by Eq. (8) , M 5 a homogeneous
gamma process and M 6 a non-homogeneous gamma process. These
models are classified into two principal groups: diffusion processes
(Brownian and O.U.) and Gamma processes. In detail, M 1 is a particular

case of M 2 and M 4 while M 5 can be nested into M 6 (when choosing ap- 
propriate parameters). Corresponding to the classic criteria introduced
in Section 3 and to the prognostic criteria introduced in Section 4 , the
best model is chosen for given simulated data set.

The selection procedure follows the following steps:
Data generation One of above models is chosen to generate data.

Its parameters are chosen in order to have the mean degradation level
100 at time t = 100 : E [ X 100 ] = 100 with different values of coefficient of
variation at time 100, vc 100 ∈ {10%, 30%, 50%, 70%}. The maximum
simulation time t m is 500. For each simulation, the evolution of a degra- 
dation process from 0 to t m is generated with the time step Δt = 0 . 01 .

Data collection and parameter estimation Consider a failure
threshold L = 80 , the first time when degradation process exceeds this
threshold is the true failure time t F . The degradation data are recorded
until this time through periodic inspection policy (at every period
T = k ⋅ Δt ). Then, following the methods presented in Section 2.3 , the
recorded observation data are used to estimate parameters for all six
models.

Evaluation of comparison criteria and selection of the best
model corresponding to every criterion The comparison criteria are
evaluated for every model with their estimated parameters. Among cri- 
teria presented in Sections 3 and 4 , we only evaluate the characterized
criteria as follows:

• Empirical Average Log-Likelihood ( EAL ) that characterizes the
goodness-of-fit measures and could be used for all above 6 types
degradation models with periodic and non-periodic observation
data.

• Akaike Information Criteria ( AIC ) that takes into account the
goodness-of-fit measures and the model complexity presented by
the number of parameters.

• Bayesian Information Criteria ( BIC ) that does not only take into
account the goodness-of-fit measures, the number of parameters but
also the number of observation data.

• Minimum Description Length ( MDL ) that take into account the
goodness-of-fit measures, the number of observation data, the
model complexity presented through parameter number and model
formulation.

• Cross Validation ( CV ) that verifies the model robustness. In this
paper, the 5-fold-CV is considered. In detail, observation data are
divided into five subsets (four subsets for parameter estimation and
one subset for testing model).

• Prognostic Horizon ( PHC ) is a measure that considers which model
gives us an acceptable estimation of RUL in the best time (as soon
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Table 2 
Model selection for periodic observation data ( T = 0 . 2 ) of a degradation process generated by a Wiener process with drift ( M 1 ) with different coefficient of variation vc t . The numbers
in the table represents the percentage that M i is chosen according to every selection criterion .

vct = 10% vct = 30% vct = 50% 

CV EAL AIC BIC MDL PHC PAC HyC CV EAL AIC BIC MDL PHC PAC HyC CV EAL AIC BIC MDL PHC PAC HyC 

M1 22 23 76 98 100 42 45 38 1 5 43 92 100 10 26 25 3 1 43 92 100 6 21 19 
M2 48 23 5 1 0 13 17 17 4 5 3 3 0 4 31 33 12 20 3 2 0 3 44 51 
M3 7 16 4 0 0 37 36 42 0 12 9 1 0 6 36 34 5 8 9 0 0 4 27 23 
M4 23 38 15 1 0 6 2 3 95 78 45 4 0 56 7 8 80 71 45 6 0 21 8 7 
M5 0 0 0 0 0 2 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 54 0 0 
M6 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 12 0 0 

Table 3 
Model selection for periodic observation data ( T = 0 . 2 ) of a degradation process generated by a Wiener process with time-dependent drift ( M 2 ) with different coefficient of variation
vc t . The numbers in the table represents the percentage that M i is chosen according to every selection criterion.

vct = 10% vct = 30% vct = 50% 

CV EAL AIC BIC MDL PHC PAC HyC CV EAL AIC BIC MDL PHC PAC HyC CV EAL AIC BIC MDL PHC PAC HyC 

M1 0 0 0 1 19 0 2 1 0 0 9 69 97 1 10 8 0 0 20 84 99 0 9 11 
M2 88 83 90 97 81 71 46 49 7 12 23 24 3 43 36 42 30 26 37 12 1 34 43 44 
M3 0 1 1 1 0 1 33 32 1 2 1 1 0 1 33 31 0 4 4 1 0 0 20 21 
M4 12 17 9 1 0 4 19 18 92 86 67 6 0 38 21 19 70 70 39 3 0 28 28 24 
M5 0 0 0 0 0 18 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 28 0 0 
M6 0 0 0 0 0 6 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 10 0 0 

Table 4 
Model selection for periodic observation data ( T = 0 . 2 ) of a degradation process generated by a Brownian motion with time dependent drift and diffusion coefficient ( M 3 ) with different
coefficient of variation vc t . The numbers in the table represents the percentage that M i is chosen according to every selection criterion .

vct = 10% vct = 30% vct = 50% 

CV EAL AIC BIC MDL PHC PAC HyC CV EAL AIC BIC MDL PHC PAC HyC CV EAL AIC BIC MDL PHC PAC HyC 

M1 0 0 0 0 0 1 0 0 0 0 0 0 0 6 4 6 0 0 0 0 0 1 7 5 
M2 0 0 0 0 0 12 14 15 0 0 0 0 0 14 21 19 0 0 0 0 0 0 19 16 
M3 100 100 100 100 100 67 83 80 100 100 100 100 100 20 64 66 100 100 100 100 100 12 63 72 
M4 0 0 0 0 0 0 2 5 0 0 0 0 0 24 10 9 0 0 0 0 0 42 8 7 
M5 0 0 0 0 0 20 1 0 0 0 0 0 0 36 1 0 0 0 0 0 0 45 3 0 
M6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

as possible). In this section, we chose arbitrarily � = 0 . 1 , � = 0 . 7

(results with different value of � are discussed later).
• Prognostic accuracy criterion ( PAC ) is a measure that evaluates
the precision of RUL estimation corresponding to an amount of
accumulated observation data with a fixed observation period.
In this section, we chose arbitrarily � = 0 . 01 , � = 0 . 3 (results with
different value of � are discussed later).

• Hybrid Criterion ( HyC ) is a measure that allows us to take into
account the goodness-of-fit information of observation data in the
evaluation of the RUL estimation accuracy. The value of � and �
are chosen similar to the PAC (results with different values of � are
discussed later).

Repeat the procedure for N times, where N is an enough large
number, and analyze the statistical results

5.2. Analysis of numerical experiments

In this section, we consider a degradation process that is inspected
at every period T = 0 . 2 time unit (i.e k = 20 ). The model selection is
performed following the steps presented in the above section. For every
simulation case, the best model corresponding to every comparison
criteria is recorded to evaluate the percentage of simulation cases when
model M i is chosen. The results are then presented in Tables 1–6 .

5.2.1. Dissociation of the two families
When data are generated from one family (Gamma processes or

diffusion processes), the classical criteria chose very often a model
in the same family. In this sense, the classical criteria are better than
the prognostic criteria. For example, consider Table 2 , when data are
generated by M 1 with the coefficient of variation varying from 10% to

50%, all the classical criteria can identify that the data are generated by
a diffusion process while according to the prognostic criteria a Gamma
process could be chosen.

5.2.2. Identification within a family
Thanks to a good estimation of the model parameters, within the

same group the obtained models are similar to the model used for data
generation. Furthermore:

• In the first group, M 1 is a particular case of M 2 and M 4 (when
choosing appropriate parameters). Therefore, consider Table 2 ,
when M 1 is the true model, especially with high coefficients of
variation, M 2 and M 4 are also frequently chosen to be the best
model. In these cases, according to the estimated parameters, M 2
and M 4 are almost the same as M 1 .

• In the first group, M 2 could be nested into M 4 , and M 1 could be
considered as a simple particular case of M 2 . Table 3 shows that
when M 2 is the true model, M 2 and M 4 are chosen to be the best
model in almost all cases. However, with the high coefficient of
variation, according to BIC and MDL criteria, a simpler model as M 1
is more favorable. Each time another model ( M 1 or M 4 ) is chosen,
its estimated parameters make these models very close to M 2 .

• In the first group, M 3 is a particular case of the Brownian family
where the drift and the diffusion also depend on time. Therefore,
consider Table 4 , according to all of the selection criteria in the most
of cases (except the PHC in the case of high coefficient of variation),
M 3 is the best one that fits the data. This model is very flexible for
the parameter estimation and data fitting, even if this model is cho- 
sen for data generated from M i , i = 1 , 2 , 3 , the estimated parameters
of M 3 lead to a model which is very close to the original one.
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Table 5 
Model selection for periodic observation data ( T = 0 . 2 ) of a degradation process generated by a OU process ( M 4 ) with different coefficient of variation vc t . The numbers in the table
represents the percentage that M i is chosen according to every selection criterion .

vct = 10% vct = 30% vct = 50% 

CV EAL AIC BIC MDL PHC PAC HyC CV EAL AIC BIC MDL PHC PAC HyC CV EAL AIC BIC MDL PHC PAC HyC 

M1 0 0 0 3 37 0 2 2 0 0 14 74 98 0 7 7 0 0 15 86 99 1 6 10 
M2 1 1 13 63 63 14 31 33 5 6 18 19 2 0 47 44 5 4 20 10 1 0 64 57 
M3 0 0 0 1 0 27 44 45 0 2 1 1 0 3 27 32 0 1 4 1 0 0 20 22 
M4 99 99 87 33 0 46 23 20 95 92 67 6 0 69 19 17 95 95 61 3 0 52 10 11 
M5 0 0 0 0 0 10 0 0 0 0 0 0 0 21 0 0 0 0 0 0 0 38 0 0 
M6 0 0 0 0 0 3 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 9 0 0 

Table 6 
Model selection for periodic observation data ( T = 0 . 2 ) of a degradation process generated by a homogeneous gamma process ( M 5 ) with different coefficient of variation vc t . The
numbers in the table represents the percentage that M i is chosen according to every selection criterion .

vct = 10% vct = 30% vct = 50% 

CV EAL AIC BIC MDL PHC PAC HyC CV EAL AIC BIC MDL PHC PAC HyC CV EAL AIC BIC MDL PHC PAC HyC 

M1 0 0 0 0 0 7 16 0 0 0 0 0 0 1 33 12 0 0 0 0 0 10 26 19 
M2 0 0 0 0 0 21 13 3 0 0 0 0 0 6 19 2 0 0 0 0 0 10 14 4 
M3 0 0 0 0 0 21 21 8 0 0 0 0 0 6 12 5 0 0 0 0 0 9 22 4 
M4 0 0 0 0 0 6 6 5 0 0 0 0 0 17 6 3 0 0 0 0 0 9 10 8 
M5 46 0 89 99 0 17 16 47 66 5 63 85 98 55 19 44 91 35 65 80 90 52 13 33 
M6 54 100 11 1 100 28 28 37 34 95 37 15 2 15 11 34 9 65 35 20 10 10 15 32 

Table 7 
Model selection for periodic observation data ( T = 0 . 2 ) of a degradation process generated by a non-homogeneous gamma process ( M 6 ) with different coefficient of variation vc t . The
numbers in the table represents the percentage that M i is chosen according to every selection criterion .

vct = 10% vct = 30% vct = 50% 

CV EAL AIC BIC MDL PHC PAC HyC CV EAL AIC BIC MDL PHC PAC HyC CV EAL AIC BIC MDL PHC PAC HyC 

M1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4 5 0 0 1 2 2 4 2 5 
M2 0 0 0 0 0 52 29 6 0 2 0 0 0 29 10 1 0 2 1 0 0 21 15 4 
M3 0 0 0 0 0 21 13 6 0 0 0 0 0 3 6 1 0 0 0 0 0 0 9 1 
M4 0 0 0 0 0 1 14 6 0 0 0 0 0 20 15 3 0 0 0 0 0 30 9 4 
M5 40 5 5 5 5 0 3 3 5 1 4 6 15 0 17 25 21 1 2 7 14 2 32 41 
M6 60 95 95 95 95 26 41 79 95 97 96 94 85 46 48 65 79 97 96 91 84 43 33 45 

• In the first group, when data are generated by M 4 , see Table 5 ,
according to CV and EAL criteria, M 4 is the best model in almost
case, whereas AIC, BIC, MDL prefer a simpler model M 1 or M 2 .
Considering prognostic criteria, in the case of high coefficient of
variation, the PAC and HyC (with � = 30% ) also prefer M 2 while
according to the PHC , the gamma family ( M 5 , M 6 ) could be chosen
as the best one. With high variance the identifiability is difficult,
and the model simplicity and reactivity criteria take over.

• Among the Gamma family, M 5 is considered as a particular case of
M 6 when b = 1 . Therefore, for data generated by M 5 and according
to the classic criteria, either M 5 or M 6 is the best model that fits
the data, see Table 6 . When data are generated by M 6 , the classical
criteria can select the good model in almost all cases, see Table 7 .
However, according to the prognostic criteria that are based on
the predicted RUL, a model based on diffusion process could also
be chosen when data are generated by M 5 or M 6 . Because of
a good parameter estimation, the degradation process made by
Brownian/OU models are also close to the one generated by Gamma
models. Thus, the predicted RUL of Brownian/OU models is also
close to the real value of RUL.

5.2.3. Considering classical criteria
• Better data fitting for models with a high number of parame- 
ters: A model with many parameters which is consequently a more
complex model can fit an observation data set better than a simpler
model with few parameters, even if the latter has generated the data.
It is related to the well-known overfitting phenomenon. Therefore,
according to goodness-of-fit criterion ( EAL ), an excessively complex
model could be chosen more often than the true model. For example
consider Table 2 with the coefficient of variation 30%. According to

the EAL criterion, M 4 is chosen as the best model for 78 scenarios
while the true model M 1 is only selected for five scenarios. Similarly,
consider Table 6 with the coefficient of variation 30%. According to
the EAL criterion, M 6 is chosen to be the best model for 95 scenarios
while the true model M 5 is only chosen for five scenarios.

• Number of models parameters versus criteria: In most of the
cases, compared to EAL criterion the CV criterion promotes a general
model while AIC and BIC criteria favor a simpler model. For exam- 
ple, see Table 2 with the coefficient of variation 50%. According to
this CV and for 80% of the scenarios, M 4 is the best model while
according EAL, AIC and BIC, M 4 is the best model for respectively
71%, 45% and 6% of the scenarios. The model complexity is more
penalized by BIC measure than AIC measure. Therefore, according
to BIC , the simpler model is more favored ( M 1 is chosen for 92% of
scenarios with BIC instead of 43% of scenarios with AIC ).

• Prior knowledge in a criteria: Using hypothesis of universal priors
when there are not any knowledge about the distribution of the
data and the model, the MDL criterion given by Eq. (15) promotes
a simple model. For example, consider Table 3 . According to MDL,
M 1 is the best model that fits the observation data generated by M 2
in almost all scenarios, especially when the coefficient of variation
is high. Hence it is necessary to improve the formulation of MDL by
taking into account the prior information about the data distribution
and the model.

5.2.4. Considering prognostic criteria
The considered prognosis criteria are based on the RUL prediction

of the component.

• PHC and identification problem: It is difficult to identify the
underling model of the observed data based on the PHC , especially
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Fig. 1. Box plot of the estimated failure time t �, � for every model with data generated with M 3 with coefficient of variation 10%.

Fig. 2. Box plot of the estimated failure time t �, � for every model with data generated from M 3 with coefficient of variation 50%.

in the case of high coefficients of variation. In fact, an efficient
estimation parameter methods lead to obtaining very similar values
of PHC criterion for all the models.
For example, consider the case where data are generated by M 3
with a coefficient of variation equals to 10% (see Fig. 1 ). The box
plot of t �, � with model M 3 is quite lower than the ones with other
models. According to PHC when vc t = 10% , M 3 is chosen to be the
best model for 67% of scenarios (see Table 4 ). In the case of high
coefficient ( vc t = 50% ), the box plot of t �, � for M 3 is approximately
equal to the ones with other models (for � = 0 . 6 and 0.7) and is
quite higher than the ones of M 5 and M 6 (for � = 0 . 8 and 0.9), see

Fig. 2 . Therefore, according to PHC when vc t = 50% and � = 0 . 7 M 5
is chosen to be the best model for 77% of scenarios (see Table 4 ).

• Comparison of PHC and PAC : Compared to the PHC , the PAC gives
better results. Consider for example Table 4 . For a high coefficient
of variation (50%), the true model M 3 is detected for only 12% of
scenarios with PHC while according to PAC , this ratio is increasing
to 63%.

• Influence of the observation duration: A paradox result is rec- 
ognized. When the threshold of observation data � is increasing
(i.e., for more gathered data), a model that belongs to another
group could be selected to be the best model according to PAC .
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Fig. 3. Degradation processes generated (after parameter estimations from observation data generated by M 1 with vc t = 30% ) and failure time distributions estimated by models ( M 1 , ...
M 6 ) with different values of �.

For example, consider Table 8 that presents the results of model
selection according to the PAC and PHC with different value of � for
data generated by M 1 . When � is increasing from 30% to 90%, the
percentage of the choice of Gamma family is increasing, especially
with high values of coefficient of variation.
In order to explain this paradox result, we consider an example in
which data are generated by M 1 with the coefficient of variation
30% (see Fig. 3 ). Based on the observation data with different values
of the threshold �, the parameters of every model are estimated.
Then, the corresponding degradation processes are generated (see
Fig. 3 (a), (c), (e)). Their corresponding RUL distributions are esti- 
mated (see Fig. 3 (b), (d), (f) for estimated failure time distribution).
When � is increasing (i.e., for more gathered observation data), the
RUL distributions are more precise. Whatever their shapes are, they
are more peaky, with a low variance and centered on the actual

failure time. Remark that this is mainly because the prognostic
horizon is getting shorter (i.e., the last observation time is closer to
the failure time) as the value of � increases. Even the degradation
process generated by Gamma models ( M 5 or M 6 ) give results which
are close to real data on a short time prediction horizon. It can be
observed e.g. on Fig. 3 (f). The first passage times of degradation
processes generated by M 5 and M 6 are close to the failure time.
Then the failure time distribution estimated by Gamma models are
the most accurate compared to the real failure time. For a short term
horizon, these processes give good lifetime estimation with low
variance. That is the reason why a Gamma model could be chosen
to be the best model according to PAC when more measurements
are obtained, and the prognostic horizon is short.

• Efficiency of the hybrid criterion: The HyC that takes into account
the goodness-of-fit of observation data is the best criterion among
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Table 8 
Model selection according to PAC and HyC with different thresholds of observed data 
generated by M 1 .

vc t Criteria M 1 M 2 M 3 M 4 M 5 M 6
(true model) 

10% ( PAC) �=30% 45% 17% 36% 2% 0 0 
( HyC) �=30% 39% 17% 41% 3% 0 0 
( PAC) �=50% 37% 14% 30% 19% 0 0 
( HyC) �=50% 33% 16% 34% 17% 0 0 
( PAC) �=70% 35% 21% 28% 16% 0 0 
( HyC) �=70% 34% 23% 27% 16% 0 0 
( PAC) �=90% 21% 8% 25% 35% 5% 6% 

( HyC) �=90% 25% 12% 29% 34% 0 0 

30% ( PAC) �=30% 26% 31% 36% 7% 0 0 
( HyC) �=30% 25% 33% 34% 8% 0 0 
( PAC) �=50% 25% 22% 23% 30% 0 0 
( HyC) �=50% 20% 30% 21% 29% 0 0 
( PAC) �=70% 11% 18% 16% 54% 1% 0 
( HyC) �=70% 13% 21% 16% 50% 0 0 
( PAC) �=90% 2% 9% 3% 35% 26% 25% 

( HyC) �=90% 3% 16% 13% 68% 0 0 

50% ( PAC) �=30% 21% 44% 27% 8% 0 0 
( HyC) �=30% 19% 51% 23% 7% 0 0 
( PAC) �=50% 7% 33% 36% 23% 0 1% 

( HyC) �=50% 9% 37% 32% 22% 0 0 
( PAC) �=70% 4% 33% 20% 37% 4% 2% 

( HyC) �=70% 3% 26% 23% 38% 0 0 
( PAC) �=90% 1% 11% 3% 7% 44% 34% 

( HyC) �=90% 1% 23% 18% 58% 0 0 

70% ( PAC) �=30% 14% 59% 22% 4% 0 1% 

( HyC) �=30% 13% 64% 19% 4% 0 0 
( PAC) �=50% 9% 60% 18% 8% 3% 2% 

( HyC) �=50% 11% 62% 19% 8% 0 0 
( PAC) �=70% 5% 37% 12% 8% 22% 16% 

( HyC) �=70% 8% 56% 23% 13% 0 0 
( PAC) �=90% 0 3% 0 2% 44% 51% 

( HyC) �=90% 1% 46% 22% 31% 0 0 

prognostic criteria. In fact, consider all the results on Tables 2–7 .
Based on HyC , the underlying model family (whether diffusion- 
based or Gamma-based processes) can be correctly identified in
most of the cases, even if when the coefficient of variation is high.
Moreover, the paradox result discussed for PAC is also bypassed.
Looking for example at Table 8 , it comes that the underlying model
family is well identified with the different thresholds of � even if
the coefficient of variation is high.

6. Conclusion

In this paper, we have discussed characteristics of selection criteria
for degradation models. The selection criteria are classified into two
groups: (1) classical statistical criteria that are based on the discrepancy
between observation degradation data and the values expected under
the considered model and (2) prognostic criteria that are based on
the relevance between failure time and its expected distribution under
the considered model. The advantages and disadvantages of these
criteria are considered through numerous numerical examples for
model selection between solutions of stochastic differential equations
and Gamma processes.

In general, the classic criteria is better than the prognostic criteria
for the purpose of dissociation of the two families (Gamma vs. Brown- 
ian/OU models). In detail among classical criteria, compared to EAL cri- 
terion, CV criterion favors general models with high parameters number
while AIC and BIC prefers a simple model having fewer parameters. As
the model complexity is more strongly penalized by MDL criterion with
the hypothesis of universal priors, then MDL criterion frequently favors a
simple model. Hence, it is necessary to improve the formulation of MDL
by taking into account the prior information about the data distribution
and the model formality. On the other hand, among prognostic criteria,

PHC is the worst criteria to identify the underlying model family of ob- 
served data. When model parameters are well estimated, the prognostic
measure assessment of each model is approximately equal. Considering
PAC , an interesting paradox result is recognized: the longer the obser- 
vation duration is, the more frequently a wrong underlying model is
selected. In fact, when the prognostic horizon is small it means that
the last observation time is close to the failure time. The degradation
process generated by another model can be close to real data during a
short period of time. Therefore, it may be counterproductive to increase
the observation time for a model selection based on the PAC criterion.
Thus, we proposed new criteria, HyC that allows taking into account the
goodness-of-fit of observation data when evaluating the prognostic mea- 
sures. Numerical experiments highlight the performance of HyC . Partic- 
ularly the underlying model family of an observation data set, whether
it is diffusion (Brownian/OU) family or Gamma family, can be correctly
identified in most of the cases, even if the coefficient of variation is high.

In summary, the classical statistical methods for model calibration
are very efficient. These methods are usually powerful with a large
set of data and they do not take into account the possible posterior
information on the system operation conditions. The prognostic criteria
are more strict and very sensitive to the coefficient for variation of
data and the decision parameters. Moreover, these criteria are more
useful when the operational conditions are different from the available
training degradation data. In this paper, the same degradation data are
considered for classical model selection and prognostic criteria. There- 
fore, the results of model selection bring out the interest of classical
methods. Regarding the sensitivity of the prognostic criteria and the
precision sought by the latter, they are more recommended when the
operational conditions after the last observation are very fluctuating.

The selection criteria presented in this paper primarily take account
of the sampling errors in parameter estimation. Further works will
consider the influence of confidence intervals of estimated parameters
on a model comparison. On the other hand, the impact of some
characteristic features of the observed data set on model selection will
be investigated, particularly such as the necessary amount of data, the
frequency of the observations, periodic or not. Moreover, new appro- 
priate criteria that allow comparing parametric and non-parametric
models efficiently could be developed. The set of models can also be
extended, and some other models such as Variance-Gamma or jump
diffusion models can be included.

References

[1] Liao CM , Tseng ST . Optimal design for step-stress accelerated degradation tests. IEEE
Trans Reliab 2006;55(1):59–66 .

[2] Xu Z , Ji Y , Zhou D . Real-time reliability prediction for a dynamic system based on the
hidden degradation process identification. IEEE Trans Reliab 2008;57(2):230–42 .

[3] Nikulin M , Limnios N , Balakrishnan N , Kahle W , Huber-Carol C . Advances in
degradation modeling: applications to reliability, survival analysis, and finance.
Birkhauser Boston; 2010 .

[4] Ye Z-S , Xie M . Stochastic modelling and analysis of degradation for highly reliable
products. Appl Stochastic Models Bus Ind 2015;31:16–32 .

[5] Zhou RR , Serban N , Gebraeel N . Degradation modeling applied to residual lifetime
prediction using functional data analysis. Ann Appl Stat 2011;5(2B):1586–610 .

[6] Kaipo J , Somersalo E . Statistical and computational inverse problems, theory and
methods for parameter estimation. New York: Springer; 2005 .

[7] Muller H , Zhang Y . Time-varying functional regression for predicting remaining life- 
time distributions from longitudinal trajectories. Biometrics 2005;61:1064–75 .

[8] Bousquet N , Fouladirad M , Grall A , Paroissin C . Bayesian gamma processes for opti- 
mizing condition-based maintenance under uncertainty. Appl Stochastic Models Bus
Ind 2015;31(3):360–79 .

[9] Bertoin J . Lévy processes, vol. 121. Cambridge University Press; 1998 . Part of Cam- 
bridge Tracts in Mathematics.

[10] Peng R , Li Y , Zhang W , Hu Q . Testing effort dependent software reliability model
for imperfect debugging process considering both detection and correction. Reliab
Eng Syst Saf 2014;126:37–43 .

[11] Peng R , Zhai Q . Modeling of software fault detection and correction processes with
fault dependency. Eksploatacja i Niezawodnosc Maint Reliab 2017;19(3):467–75 .

[12] van Noortwijk JM . A survey of the application of gamma processes in maintenance.
Reliab Eng Syst Saf 2009(1):2–21 .

[13] Lorton A , Fouladirad M , Grall A . Computation of remaining useful life on a
physic-based model and impact of a prognosis on the maintenance process. J Risk
Reliab 2013;227:434–49 .



K.T.P. Nguyen et al. 

[14] Cross RJ , Makeev A , Armanios E . A comparison of predictions from probabilistic
crack growth models inferred from Virkler ’s data. J ASTM Int 2006;3(10):1–11 .

[15] Li H , Pan D , Chen C . Reliability modeling and life estimation using an expectation
maximization based wiener degradation model for momentum wheels. IEEE Trans
Cybern 2015;45(5):955–63 .

[16] Tamura Y , Yamada S . Reliability analysis based on a jump diffusion model with two
wiener processes for cloud computing with big data. Entropy 2015;17(7):33–45 .

[17] Itô. Stochastic processes. Berlin Heidelberg New York: Springer; 2004 .
[18] Tseng ST , Peng CY . Stochastic diffusion modeling of degradation data. J Data Sci

2007;5:315–33 .
[19] Cox D , Oakes D . Analysis of survival data. Chapman & Hall; 1984 .
[20] Chhikara R , Folks J . The inverse Gaussian distribution as a lifetime model. Techno- 

metrics 1977;19(4):461–8 .
[21] Doksum K , Hoyland A . Models for variable-stress accelerated life testing experiments

based on Wiener processes and the inverse Gaussian distribution. Technometrics
1992;34(1):74–82 .

[22] Whitmore G . Estimation degradation by a Wiener diffusion process subject to mea- 
surement error. Lifetime Data Anal 1995;1:307–19 .

[23] Whitmore G , Scenkelberg F . Modelling accelerated degradation data using Wiener
diffusion with a time scale transformation. Lifetime Data Analysis 1997;3:27–45 .

[24] Padgett WJ , Tomlinson M . Inference from accelerated degradation and failure data
based on Gaussian process models. Lifetime Data Anal 2004;10:191–206 .

[25] Park C , Padgett WJ . Stochastic degradation models with several accelerating vari- 
ables. IEEE Trans Reliab 2006;55:379–90 .

[26] Whitmore GA , Ramsay T , Aaron S . Recurrent first hitting times in Wiener diffusion
under several observation schemes. Lifetime Data Anal 2012;18:157–76 .

[27] Wang X . Wiener processes with random effects for degradation data. J Multivariate
Anal 2010;101(2):340–51 .

[28] Si X , Wang W , Hu C , Zhou D . Remaining useful life estimation–a review on the
statistical data driven approaches. Eur J Oper Res 2011;213(1):1–14 .

[29] Wang W , Carr M , Xu W , Kobbacy K . A model for residual life prediction based on
Brownian motion with an adaptive drift. Microelectron Reliab 2011;51(2):285–93 .

[30] Baussaron J , Mihaela B , Léo G-R , Fabrice G , Paul S . Reliability assessment based
on degradation measurements: how to compare some models? Reliab Eng Syst Saf
2014;131:236–41 .

[31] Deng Y , Barros A , Grall A . Residual useful life estimation based on a time-dependent
Ornstein–Uhlenbeck process. Chem Eng Trans 2013;33:325–30 .

[32] Molini A, Talkner P, Katul GG, Porporato A. First passage time statistics of
Brownian motion with purely time dependent drift and diffusion. Physica A
2011;390(11):1841–52. doi: 10.1016/j.physa.2011.01.024 .

[33] Deng Y , Barros A , Grall A . Degradation modeling based on a time-dependent Orn- 
stein–Uhlenbeck process and residual useful lifetime estimation. IEEE Trans Reliab
2016;65(1):126–40 .

[34] Avramidis AN , L ’ecuyer P , Tremblay PA . Efficient simulation of gamma and vari- 
ance-gamma processes. In: Proceedings of the 2013 winter simulation conference,
vol. 1; 2003. p. 319–26 .

[35] Çinlar E , Ba ž ant Z , Osman E . Stochastic process for extrapolating concrete creep. J
Eng Mech Div 1977;103(EM6):1069–88 .

[36] Paroissin C , Salami A . Failure time of non homogeneous gamma process. Commun
Stat - Theory Methods 2014;43(15):3148–61 .

[37] Liptser RS , Shiryaev AN . Statistics of random processes: II applications. Applications
of mathematics. 2nd. Berlin, Heidelberg, New York: Springer-Verlag; 2001 .

[38] Myung J . Tutorial on maximum likelihood estimation. J Math Psychol
2003;47(1):90–100 .

[39] Barndorff-Nielsen O , Mikosch T , Resnick S . Lévy processes: theory and applications.
Basel: Birkhäuser; 2001 .

[40] Nishii R . Maximum likelihood principle and model selection when the true model is
unspecified. J Multivariate Anal 1988;27(2):392–403 .

[41] Myung IJ . The importance of complexity in model selection. J Math Psychol
2000;44(1):190–204 .

[42] Ramos AA . The minimum description length principle and model selection in spec- 
tropolarimetry. Astrophys J 2006;646(2):14–45 .

[43] Grünwald P . Model selection based on minimum description length. J Math Psychol
2000;44(1):133–52 .

[44] Myung JI , Pitt MA . Model comparison methods. In: Methods in enzymology, BT, vol.
383 of numerical computer methods, part D. Academic Press; 2004. p. 351–66 .

[45] Akaike H . A new look at the statistical model identification. IEEE Trans Autom Con- 
trol 1974;19(6):716–23 .

[46] Bozdogan H. Akaike ’s information criterion and recent developments in information
complexity. J Math Psychol 2000;44(1):62–91. doi: 10.1006/jmps.1999.1277 .

[47] Wasserman L . Bayesian model selection and model averaging. J Math Psychol
2000;44(1):92–107 .

[48] Busemeyer JR , Wang Y-M . Model comparisons and model selections based on gen- 
eralization criterion methodology. J Math Psychol 2000;44(1):171–89 .

[49] Liu CC , Aitkin M . Bayes factors: prior sensitivity and model generalizability. J Math
Psychol 2008;52(6):362–75 .

[50] Davison AC , Hinkley DV . Bootstrap methods and their application. Cambridge series
in statistical and probabilistic mathematics. Cambridge University Press; 1997 .

[51] Simon G, Lendasse A, Verleysen M. Bootstrap for model selection: linear approx- 
imation of the optimism. In: Mira J, Álvarez JR, editors. Computational methods
in neural modeling, lecture notes in computer science. Berlin Heidelberg: Springer;
2003. p. 182–9. doi: 10.1007/3-540-44868-3_24 .

[52] Browne MW . Cross-validation methods. J Math Psychol 2000;44(1):108–32 .
[53] Boyce MS , Vernier PR , Nielsen SE , Schmiegelow FK . Evaluating resource selection

functions. Ecol Modell 2002;157(2–3):281–300 .
[54] Wiens TS , Dale BC , Boyce MS , Kershaw GP . Three way k-fold cross-validation of

resource selection functions. Ecol Modell 2008;212(3–4):244–55 .
[55] Saxena A , Celaya J , Saha B , Saha S , Goebel K . Metrics for offline evaluation of prog- 

nostic performance. Int J PHM 2010;1(001):1–20 .
[56] Saxena A, Celaya J, Balaban E, Goebel K, Saha B, Saha S, et al. Metrics for evaluating

performance of prognostic techniques. In: International conference on prognostics
and health management; 2008. p. 1–17. doi: 10.1109/PHM.2008.4711436 .


