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Double diffusive convection in a vertical rectangular cavity
Kassem Ghorayeb and Abdelkader Mojtabi
U.M.R. 5502 IMFT-CNRS-UPS, U.F.R. M.I.G. 118, route de Narbonne, 31062 Toulouse Cedex, France

�Received 30 May 1996; accepted 14 April 1997�

In the present work, we study the onset of double diffusive convection in vertical enclosures with
equal and opposing buoyancy forces due to horizontal thermal and concentration gradients �in the
case GrS /GrT��1, where GrS and GrT are, respectively, the solutal and thermal Grashof
numbers�. We demonstrate that the equilibrium solution is linearly stable until the parameter
RaT�Le�1� reaches a critical value, which depends on the aspect ratio of the cell, A . For the square
cavity we find a critical value of Rac�Le�1��17 174 while previous numerical results give a value
close to 6000. When A increases, the stability parameter decreases regularly to reach the value
6509, and the wave number reaches a value kc�2.53, for A→� . These theoretical results are in
good agreement with our direct simulation. We numerically verify that the onset of double diffusive
convection corresponds to a transcritical bifurcation point. The subcritical solutions are strong
attractors, which explains that authors who have worked previously on this problem were not able
to preserve the equilibrium solution beyond a particular value of the thermal Rayleigh number,
Rao1. This value has been confused with the critical Rayleigh number, while it corresponds in fact
to the location of the turning point.
�S1070-6631�97�01608-5�

I. INTRODUCTION

The basic feature of double diffusive convection is that
two components with different rates of diffusion affect the
fluid density. The origin of this field arises from
oceanography1 �heat and salt in water� but its applications
are wide and include geology and crystal growth.2–4 In the
present work, we study the onset of convection in vertical
enclosures with constant temperatures along the vertical
sidewalls. Various convection modes exist depending on
how the initial concentration gradient is imposed.

The instability of a stably stratified infinite fluid layer
bounded by two rigid differentially heated vertical plates has
been investigated intensively over the last three decades. As
in the case of the Rayleigh–Bénard convection, a certain
minimum requirement must be satisfied in order that a sys-
tem of roll-cells may develop. Thorpe et al.5 were the first to
perform the linear stability analysis of a vertically un-
bounded fluid layer. They analytically predicted the onset of
counter rotating pairs of rolls but experimentally observed
corotating rolls. Following the original work of Thorpe
et al.5 several papers have dealt with this problem. All the
experimental investigations concerning the sense of rotation
of the rolls have confirmed the observations of Thorpe et al.5
Among the more recent experimental works, we refer to
Tanny and Tsinober,6 Jeevarag and Imberger,7 and Schladow
et al.8 Hart9 and Thangam et al.10 refined the analysis of
Thorpe et al.5 taking into account the exact boundary condi-
tions. They obtained the full marginal stability diagram that
clearly illustrates the destabilizing effect of an initially stable
salinity gradient in a laterally heated slot. Their works were
pursued by Hart11 who considered the nonlinear behavior of
disturbances and revealed the existence of a subcritical insta-
bility of finite amplitude. Kerr12,13 investigated the stability
of a fluid flow subjected to a vertical salinity gradient and
heated from a single vertical wall. He also showed that a

subcritical bifurcation is responsible for the onset of convec-
tive layers.13

Recently, Tsitverblit and Kit14 and Tsitverblit15 have nu-
merically investigated steady-state solutions for a vertical
rectangular enclosure. They show that this situation is char-
acterized by complex steady bifurcation phenomena.
Tsitverblit15 studied the flow for several values of the salinity
Rayleigh number around the borders of the double diffusive
region. He reported that, when the thermal Rayleigh number
is either very small or sufficiently large, the steady solution
is unique, while for intermediate values of the thermal Ray-
leigh number, there exists a great variety of multiple steady
flows.

The above works5–15 dealt with the flow when the solutal
gradient is vertical. In these works, the solutal boundary con-
ditions on the vertical sidewalls are no-solutal flux. Another
important form of the solutal boundary conditions is where
the solutal gradient is horizontal instead of being vertical.
The problem of the natural convection induced by buoyancy
effects due to horizontal thermal and solutal gradients has
received considerable attention in recent years. This situation
occurs in some horizontal crystal growth techniques �e.g.,
horizontal Bridgman�.16 During the growth of a crystal, the
profound influence of the transport process in the fluid phase
on the structure and the quality of the solid phase requires a
good understanding of the buoyancy convective flows in this
problem. Several experimental investigations �Kamotani
et al.,16 Ostrach et al.,17 Jiang et al.,18,19 Lee et al.,20 Han
and Kuehn,21 and Weaver and Viskanta22� and numerical in-
vestigations �Béghein et al.,23 Mahajan and Angirasa,24
Hyun and Lee,25 Lee and Hyun,26 Han and Kuehn,27 Ben-
nacer and Gobin,28 Gobin and Bennacer,29 and Bergman and
Hyun30� have been reported in this field. Depending on the
parameters involved, experimental observations and numeri-
cal investigations show the existence of one-cell or multicell
regimes. Table I shows the range of parameters used in some
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of the recent papers devoted to horizontal thermal and solutal
gradients.

Given that convective flows are often undesirable in
crystal growth processes,2 the challenge is to minimize
double diffusive convection in the fluid phase. In the special
case where the ratio N* of solutal to thermal Grashof num-
bers is equal to �1 (N*�GrS /GrT��1), the purely dif-
fusive regime is stable up to a critical value of the thermal
Rayleigh number. In this situation, the instability in the fluid
is induced by the difference between solutal and thermal dif-
fusivities. Such a situation, although difficult to produce ex-
perimentally, is an important step towards better understand-
ing of the situation where GrS /GrT is close to �1. None of
the papers mentioned so far16–30 have considered the situa-
tion where N*��1 �Table I�. However, two recent papers
were devoted to this situation. Krichnan31 numerically stud-
ied the transition from the purely diffusive regime to the
steady convective regime and time-dependent regimes in the
case of a square cavity. The numerical study indicates that
the onset of convection occurs at a critical Rayleigh number
Rac�3000 �Rac(Le�1)�6481� a limit below which the
purely diffusive steady-state solution is stable. Gobin and
Bennacer32 studied the onset of double diffusive natural con-
vection. Their analytical study concerned an infinite vertical
layer with impermeable and slip boundary conditions. The
analytical solution they proposed for the linearized system
corresponds to that used by Thorpe et al.5 for the case of an
initially stratified vertical layer of fluid. They showed that
the critical Rayleigh number and the Lewis number satisfy
the relation: Rac(Le�1)�6122 for an infinite vertical layer
with slip boundary conditions. It is reported that an aspect
ratio A�2 minimizes the critical Rayleigh number, a result
which differs from our theoretical and numerical observa-
tions. In the present work we establish that the stability pa-
rameter Rac(Le�1) decreases with the aspect ratio.

The main goal of the present work is to study the linear
stability of the motionless solution in a vertical enclosure
with constant temperatures and concentrations on the vertical

sidewalls. Our interest will be focused on the case where
N*��1. The linear stability analysis is developed for both
the case of an infinite vertical layer and the case of a vertical
rectangular enclosure. We plot the marginal stability diagram
showing the dimensionless stability parameter Rac�Le�1�
versus the aspect ratio of the enclosure. We also performed
direct numerical investigations near the onset of double dif-
fusive convection that we compare to the analytical results.
The numerical investigations were carried out for Lewis
numbers varying between 2 and 151 for the aspect ratios 1,
2, 4, and 7. The Prandtl number is fixed at the value 1. The
thermal Grashof number values considered in the numerical
study satisfy 0�GrT(Le�1)�3�104.

II. MATHEMATICAL FORMULATION

The system of equations is assumed to be unsteady state
with no heat generation, viscous dissipation, chemical reac-
tions, or thermal radiation. The Oberbeck–Boussinesq ap-
proximation is assumed to be valid, thermophysical proper-
ties are constant except in the buoyancy term where

��T ,C ���0„1�	T�T�T0��	C�C�C0�….
Here �0��(T0 ,C0), 	T�(�1/�0)(
�/
T)C , and
	C�(�1/�0)(
�/
C)T are, respectively, the density at tem-
perature T0 and concentration C0, the thermal expansion co-
efficient, and the solutal expansion coefficient. The conser-
vation equations for momentum, mass, energy, and species
in dimensionless form are


U

t ��U•��U���P��2U��GrTT�GrSC �k, �1�

�•U�0, �2�


T

t �U•�T�

1
Pr �2T , �3�

TABLE I. Range of parameters used in some of the recent papers that have been devoted to enclosures with horizontal thermal and solutal gradients.

Experimental works
Authors A Pr Le GrT GrS N

Kamotani et al.16 0.13–0.55 7 300 0–1.9�106 (�)1.4�105–1.0�107 (�)4 –40
Jiang et al.19 0.13–0.5 7 400–425 5.7�103–3.3�106 �1.7�107 to �1.1�105 �102 to �2.8
Lee et al.20 0.2 and 2.0 4.0–7.9 60–197 (�)2.43�105–7.12�107 7.95�106–5.85�108 (�)2.7–72.3
Han and Kuehn21 1 and 4 7.8–8.8 261–333 (�)1.4�105–1.1�106 2.7�106–1.8�107 �24–13

Numerical works

Han and Kuehn11 4 8 250 �4�105–3�105 105 et 3�106 �10–550
Béghein et al.23 1 0.71 0.5–5 1.41�107 �1.41�108 to �2.8�105 �0.02 to �10
Hyun and Lee25 1.97�103–3.94�107 1.97�107 0.5–10000
and 2 7 100
Lee and Hyun26 0.28�106–1.97�107 �0.85�107 �0.5 to �30
Bennacer and Gobin28 1
and 7 1–1000 103–106 0.1–100
Gobin and Bennacer29 1–8
Bergman and Hyun30 1 0.02 7500 5�103 �0.1–10

2340 Phys. Fluids, Vol. 9, No. 8, August 1997 K. Ghorayeb and A. Mojtabi




C

t �U•�C�

1
Sc �2C , �4�

where GrT�(g	T�TL3)/2 is the thermal Grashof number,
GrS�(g	C�CL3)/2 the solutal Grashof number,
Pr�/� the Prandtl number, and Sc�/D the Schmidt
number. D , � ,  , and g , are the solutal diffusivity, the ther-
mal diffusivity, the kinematic viscosity, and the gravity ac-
celeration, respectively. The corresponding boundary condi-
tions �Fig. 1� are

U�0�x�0, x�1,�z and z�0, z�A ,�x �, �5�

T�C�1 �x�0,�z �, �6�

T�C�0 �x�1,�z �, �7�


T

z �


C

z �0 �z�0, z�A ,�x �. �8�

In the above equations, lengths are nondimensionalized by
L , velocity by /L , time by L2/ , temperature by
�T�T2�T1 , and concentration by �C�C2�C1. T1, C1,
T2 , and C2 are the temperature and the concentration at
x�0 and x�L , respectively. We assume that 	T	0 and
	C�0 (� increases with C and decreases with T) and that
T1	T2 and C1	C2. This assumption leads to GrT	0 and
GrS�0. The buoyancy ratio N*�GrS /GrT is fixed at the
value �1.

III. LINEAR STABILITY

We study the linear stability of the equilibrium solution
U0�0, T0�1�x , and C0�1�x obtained for
GrS /GrT��1. We denote (� , � , c) the perturbation quan-
tities for the stream function, temperature, and concentration.

If we assume that the principle of exchange of stability is
valid, we obtain the following linearized system of equa-
tions:

�2��GrT� 
c

x �


�


x ��0, �9�

��

Pr �

�


z �0, �10�

�c
Sc �


�


z �0, �11�

with the following boundary conditions:


c

z �


�


z �

�


x �

�


z �0�z�0, z�A ,�x �, �12�

c���

�


x �

�


z �0�x�0, x�1,�z �. �13�

Equations �10� and �11� together with the boundary condi-
tions �12� and �13� imply

c�Le� , �14�

where Le� Sc/Pr is the Lewis number. This result shows
that, near the bifurcation point, the perturbed parts of the
temperature and the concentration are similar, a result which
is in a good agreement with our numerical simulations.

Eliminating c in the system of equations �9� and �11�, we
obtain a fourth-order system of equations governing the vari-
ables � and �:

�2��GrT�Le�1 �

�


x �0, �15�

��

Pr �

�


z �0. �16�

We notice, by replacing � with Pr� in Eqs. �15� and �16�
that, the linear stability parameter is RaT(Le�1)
(RaT�PrGrT).

The condition for a nonzero solution for the system �15�
and �16� leads to Rac(Le�1)�
 f (A) with f (A)	0. This
last relation becomes Rac(Le�1)� f (A) and
Rac(Le�1)�� f (A) for Le	1 and 0�Le�1, respec-
tively. In the following, Rac(Le�1) is replaced by
Rac�Le�1�.

A. Infinite vertical layer

We consider an infinite vertical layer. Our attention is
focused on the value of the critical Rayleigh number, corre-
sponding to the onset of convection. This situation has been
studied by Gobin and Bennacer32 following the analysis car-
ried out by Thorpe et al.5 The analytical solution they used
only satisfies the impermeability condition at the boundary
planes. They have reported that the critical Rayleigh number
and the Lewis number are related by RaT�Le�1��6122.

We study the same situation in this section. Equations
�15� and �16�, with all the boundary conditions along the
vertical walls, are solved with both the Galerkin method and
the compound matrix method.

FIG. 1. The geometry of a vertical rectangular enclosure showing the
boundary conditions.
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1. The Galerkin method
The Galerkin method has been used in several works

concerning convective instability problems. The linear stabil-
ity of a fluid contained in a vertical slot has been studied
using this method by Hart9 and Thangam et al.10 The success
of this method in these two investigations motivated its use
in the present problem of double diffusive convection in a
vertical fluid layer. The perturbation functions used here are

�� �
n�1

N

an sin��x �sin�n�x �eIkz, �17�

�� �
n�1

N

bn sin�n�x �eIkz, �18�

where k is the wave number and I is the pure imaginary
number (��1). The trial functions for � verify: U�0 for
x�0,1 whereas in the previous work of Gobin and
Bennacer32 only the condition U–x�0 for x�0,1 is satisfied.
The results show that, with only five terms in the truncated
series, convergence occurs. The results for N�4 differ by
less than 0.1% from those for N�5 �Table II�. This ap-
proach, based on the Galerkin method, gives the following
value for the dimensionless group: Rac�Le�1��6620 which
corresponds to the critical wave number kc�2.53. The math-
ematical complexity of the problem when N increases led us
to use another approach �the compound matrix method� in
order to obtain more accurate results for the critical stability
parameters.

2. The compound matrix method
Equations �15� and �16� lead to

�3��RaT�Le�1 �

2�


x
z �0. �19�

Using the equations �15� and �16� and the boundary condi-
tions �12� and �13�, we obtain the six boundary conditions
which are necessary to solve the sixth-order partial differen-
tial equation �19�:

��

2�


x2 �

3�


x3 �

3�


x
z2 �0�x�0,1,�z �. �20�

Assuming that

��eIkz �̄ �x �, �21�

Eqs. �19� and �21� imply that

� d2

dx2 �k2�3 �̄ �RaT�Le�1 �Ik
d �̄

dx �0. �22�

The corresponding boundary conditions are

�̄ � �̄ �� �̄ ��k2 �̄ ��0�x�0,1,�z �, �23�

where �̄ ��d �̄/dx , �̄ ��d2 �̄ /dx2, etc.
We used the compound matrix method to solve Eq. �22�

with boundary conditions �23�. A very clear description of
this method and its applications in hydrodynamic stability
problems is given by Drazin and Reid.33 Here, we show how
this method is used to find the critical Rayleigh number cor-
responding to the lowest eigenvalue of �22�. To solve the
problem �22� and �23� by this method, we let
�̄�( �̄ , �̄ �, �̄ �, �̄ �, �̄ (4), �̄ (5))T. To determine the lowest ei-
genvalue, we retain the three conditions at x�0. The bound-
ary conditions at x�1 on �̄ , �̄ �, and �̄ ��k2 �̄ � are replaced
in turn by ( �̄ ��1, �̄ (4)�0, �̄ (5)�0), ( �̄ ��0, �̄ (4)�1,
�̄ (5)�0), and then ( �̄ ��0, �̄ (4)�0, �̄ (5)�1), at x�0. The
boundary value problem is thus converted into an initial
value problem. Let the solution so found be written as a
linear combination of the three solutions so obtained, say,
�̄��1�̄1��2�̄2��3�̄3, where �̄1, �̄2 , and �̄3 are solu-
tions of �22� with values at x�0: (0,1,0,k2,0,1)T,
(0,0,0,0,1,0)T, and (0,0,0,0,0,1)T, respectively. �1, �2 , and
�3 are constants. A new 20 element vector
Y�(y1 ,. . . ,y20)T is defined as the 3�3 minors of the 6�3
solution matrix whose first column is �̄1, second �̄2 , and
third �̄3. By direct calculation from �22�, we obtain an initial
value problem for Y :

Y ��L�Y �, �24�

where L is a linear operator.
Problem �24� together with the conditions obtained from

the initial conditions on �̄1, �̄2 , and �̄3, is solved using a
fourth-order Runge–Kutta technique. The results obtained
for both the critical Rayleigh number and the critical wave
number are

Rac�Le�1��6509

and

kc�2.53.

B. Vertical enclosure

In their investigations on the influence of the aspect ratio
on the critical Rayleigh number, Gobin and Bennacer32 re-
ported that the critical Rayleigh number obtained numeri-
cally for a closed cavity with no-slip boundary conditions,
for all values of A	1, is below the analytical value obtained
for an infinite vertical layer. Here we present a more com-
plete analysis of the stability of the pure diffusive solution
for a vertical enclosure with boundary conditions �5�–�8�. As
in the case of the infinite vertical layer, the Galerkin method
is used. The perturbation functions used are

�� �
n�1

N

�
m�1

M

anm�nm , �25�

�� �
n�1

N

�
m�1

M

bnm�nm , �26�

TABLE II. Infinite vertical layer: results obtained for Rac�Le�1� and kc
for several orders of truncation of series.

N kc Rac�Le�1�

2 2.48 7230
3 2.52 6892
4 2.53 6622
5 2.53 6620
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where the trial functions �nm and �nm are

�nm�sin��x �sin�n�x �sin� �
z
A � sin� m�

z
A � ,

and

�nm�sin�n�x �cos� m�
z
A � ,

in which it can be seen easily that the trial functions �nm and
�nm verify all the conditions �12� and �13�. The order of
truncation of the series (N�14, M�14) is sufficient for con-
vergence in the case of a square cavity. The difference be-
tween the results for the approximations (N�14, M�14)
and (N�16, M�16) is less than 0.1%. The value of the
critical Rayleigh number obtained with the approximation
(N�14, M�14) is Rac�Le�1��17 198. However, the case
of a square cavity was investigated up to the order (N�22,
M�22) so as to find a value for Rac�Le�1� with high ac-
curacy. This approximation leads a value of Rac�Le�1� of
17 174. This value differs by less than 0.15% and 0.01%
from that obtained for (N�14, M�14) and (N�20,
M�20), respectively. It is therefore assumed that conver-
gence occurs for (N�14, M�14). It is noted that, even at
(N�8, M�8), the value obtained for Rac�Le�1� is within
0.6% of that obtained with (N�14, M�14).

In order to maintain the accuracy of the results, different
truncations of series have to be used depending on the aspect
ratio A . It is assumed that the ratio M /N must be close to
A . Such an assumption is deemed to be essential in view of
the numerical results obtained. In fact, the numerical results
show that the cell number increases with A . For example, in
the case A�4, there are three big cells and two other smaller
cells. However, for A�1, the supercritical solution is char-
acterized by only one big cell and two other smaller cells
�Fig. 2�. We investigate the problem up to the following
orders of truncation: (N�14, M�28), (N�14, M�32),
(N�14, M�56), (N�10, M�50), (N�10, M�70), and
(N�8, M�80) for A�2, A�3, A�4, A�5, A�7, and
A�10, respectively �Table III�. It can be shown that the
critical Rayleigh number obtained for A�7 differs by less
than 0.5% from the one obtained for A�10. This means that
the critical Rayleigh number converges, when A increases, to
the value obtained for an infinite vertical layer:
Rac�Le�1��6509 �Fig. 3�. Results show that, for all aspect
ratios, the value of the critical Rayleigh number is greater
than the value of the critical Rayleigh number obtained for

the case of an infinite vertical layer �Fig. 3�. These results
will be confirmed numerically in the following section.

IV. NUMERICAL RESULTS
A. Numerical scheme

The numerical method used here is based on the projec-
tion diffusion algorithm developed by Batoul et al.34 for
solving two-dimensional unsteady incompressible Navier–
Stokes equations. The temporal integration consists of a
semi-implicit second-order finite differences approximation.
The linear �viscous� terms are treated implicitly by the
second-order Euler backward scheme, while a second-order
explicit Adams–Bashforth scheme is used to approximate
the nonlinear �advective� parts. A high-accuracy spectral
method, namely, the Chebyshev collocation method, with the
Gauss–Lobatto zeros as collocation points, is used for the
spatial discretization �Khallouf35�.

B. Results and discussion

Figure 4 summarizes the terminology which was used in
this section: transcritical bifurcation point, turning point,
equilibrium regime �solution�, supercritical regime �solution�

FIG. 2. The supercritical solution for A�1, A�2, and A�4 corresponding
to RaT�1750, RaT�900, and RaT�700, respectively.

TABLE III. Enclosures: results obtained for Rac�Le�1� for several orders
of truncation of series. M�A�N .

N\A 1 2 3 4 5 7 10

6 17 426 8774 7427 7044 6947 6789 6637
8 17 299 8739 7399 7018 6854 6698 6614
10 17 243 8724 7387 7007 6844 6688
12 17 214 8716 7381 7002
14 17 198 8710 7377 6998
16 17 188 8709 7375
18 17 182
20 17 176
22 17 174

FIG. 3. Results obtained by the linear stability analysis for enclosures
�circles� and for the infinite layer both by the Galerkin method �dotted line�
and the compound matrix method �dashed line�.
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and subcritical regime �solution�. This section will be re-
stricted to values of the Lewis number larger than 1 which
correspond to a thermal diffusivity larger than the solutal
one.

The disagreement between the results obtained by our
linear stability analysis for an enclosure and those found nu-
merically by Krichnan31 and Gobin and Bennacer32 led us to
undertake this numerical study. In fact, in their studies,
Krichnan31 and Gobin and Bennacer32 have obtained, for a
square cavity, a value of Rac(Le�1) close to 6000. This
value differs greatly from that found by the Galerkin method
�17 174�. The numerical study that we undertook produces a
value for Rac(Le�1) which is very close to that obtained
by our linear stability analysis. The values of Rac(Le�1)
obtained numerically differ by less than 0.1% from those
obtained by linear stability analysis, for all values of the
aspect ratio which were studied.

For a square cavity, two convective regimes were ob-
served. The purely diffusive regime forks to the supercritical
regime at the value Rac�Le�1��17 161 �or
Rac�Le�1��17 174 according to linear stability analysis�.
The supercritical regime is a three-cell one �Fig. 5�. The
principal �central� cell rotates counterclockwise. The two
other cells, induced by the principal cell rotate clockwise.
They are symmetric to each other with respect to the center
of the cavity �Fig. 5�. Their intensity is very small compared
with that of the principal cell. A physical illustration of the
sense of rotation of the three cells is now developed.

Let us consider two fluid particles p1 and p2 each of
which being near the middle of a vertical sidewall, in a
purely diffusive state corresponding to RaT�Rac��2

(�2�Rac). Suppose now that each of these particles is
slowly and infinitesimally displaced away from the vertical
side. The particle p1 near the warmer and higher concentra-
tion wall �left wall, x�0) will be cooled but its salinity will
not change very much, owing to a smaller value of the so-
lutal diffusivity (Le	1). Thus particle p1 becomes denser
than its surroundings and moves downward with very low
velocity toward the bottom. This downward motion contin-
ues until the particle density reaches the density of its sur-
roundings �because of thermal gain�. The downward motion

of particle p1 is then decelerated and it is deflected away
from the �left� wall because the temperature away from the
�left� wall is less than that of particle p1. In addition, due to
viscous effects, this motion generates a clockwise rotating
cell in the left bottom corner. The size of this cell depends on
the values of the thermal Rayleigh number and the Lewis
number. Particle p2 near the colder and low concentration
side �right wall, x�1) moves up.

The subcritical regime occurs for lower thermal Ray-
leigh numbers. For a Lewis number Le�11, for example,
this regime occurs for values of thermal Rayleigh number
larger than Rao1�676, which is nearly three times smaller
than the critical Rayleigh number (Rac�1716.1). The sub-
critical solution is a single clockwise rotating cell �Fig. 5�.
The simplest physical explanation of the direction of rotation
of this cell has been reported by Thorpe et al.5 in a similar
case. Let us consider two fluid particles lying at the same
horizontal level in a fluid only containing horizontal thermal
and solutal gradients which balance each other such that the
resulting density gradient vanishes. If the particles of fluid
are interchanged �finite disturbances�, the particle introduced
into warmer and more concentrated surroundings becomes
warmer but not very concentrated, since the thermal diffu-
sivity is greater than the solutal one (Le	1), and therefore
rises, being less dense than its concentration surroundings,
while the other particle sinks. Thus we generated a clockwise
rotating cell. This physical argument ignores the viscosity
which plays its part in providing a criterion for the onset of
convection.

However, our numerical investigations showed that the
onset of double diffusive convection corresponds to a tran-
scritical bifurcation point. Thus the values of the thermal
Rayleigh number obtained by Krichnan31 and Gobin and
Bennacer32 for the onset of double diffusive convection cor-
respond to the location of a turning point Rao1. Indeed, when
we gradually increase the thermal Rayleigh number starting
from the equilibrium solution, we observe that the solution
switches rapidly to the convective regime at the value ob-
tained by Krichnan31 and Gobin and Bennacer32 and identi-

FIG. 4. Stability terminology used in the text. The solid and dashed lines
designate stable and unstable branches of solution. FIG. 5. Square cavity: supercritical �top� and subcritical �bottom� regimes

corresponding to RaT�1750 and RaT�680, respectively, Le�11. The
dashed and solid lines designate the clockwise and the counterclockwise
rotations, respectively.

2344 Phys. Fluids, Vol. 9, No. 8, August 1997 K. Ghorayeb and A. Mojtabi



fied by them as the critical Rayleigh number. In order to
remain on the equilibrium solution for Rayleigh numbers
higher than the values given by Krichnan31 and Gobin and
Bennacer,32 it would be necessary to proceed cautiously with
the numerical solution since the subcritical solution is a
stronger attractor than the equilibrium solution.

These results are similar to those obtained by the weakly
nonlinear analysis reported by Hart11 and Kerr13 for the case
of a stably stratified vertical layer of fluid subjected to lateral
heating. They showed that the bifurcation from stability was
subcritical for the large range of parameters, and so the form
of the observed instabilities would not necessarily be similar
to the form of the linear disturbances predicted at marginal
stability.

The linear stability analysis and relevant numerical
simulations show, for cavities with large aspect ratios, a flow
with counterrotating convection cells. This is in good agree-
ment with the results obtained by the linear stability analysis
reported by Thorpe et al.,5 Hart,9 and Kerr.12

Numerical results show, for cavities with large aspect
ratio, that the first instability in the fluid leads to a flow
where the convection cells circulate in the same direction.
This result is similar to the experimental observations of
Tanny and Tsinober6 and were also predicted by the weakly
nonlinear analysis reported by Kerr.13

The numerical study, furthermore, shows a multiplicity
of subcritical solutions, whose number increases as the as-
pect ratio increases. To describe these multiple flows and
their stability, we are currently developing a continuation
method. For the present work, we only mention that this
problem has a great multiplicity of subcritical solutions de-
pending on the aspect ratio of the cavity. In the following
section, we develop a study on the influence of the Lewis
number and the aspect ratio on the behavior of the supercriti-
cal regime in a region of RaT close to the critical Rayleigh
number. The influence of the Lewis number on the subcriti-
cal regime will be studied only for the square cavity.

1. Influence of the Lewis number
In order to investigate the influence of the Lewis number

on both the supercritical solutions and subcritical regimes,
we selected several values of the Lewis number over the
interval �2-151�. The values studied were Le�2, Le�4,
Le�7, Le�11, Le�21, Le�41, Le�61, Le�81,
Le�101, Le�125, and Le�151. It should be noted that the
convergence is very slow when Le→1. Thus, our numerical
investigations have been restricted to the values of Le�2.

Near the purely diffusive solution, the numerical compu-
tations confirm the results obtained by the linear stability
analysis. The dimensionless group Rac(Le�1) is constant
for all values of Le used. We studied the flow for a cavity
with aspect ratios of A�1, A�2, and A�4. The results
obtained for those values of aspect ratio were
Rac(Le�1)�17 161, Rac(Le�1)�8700 and Rac(Le
�1��6992 respectively. In comparison, the linear stability
analysis yields: Rac(Le�1)�17 174 for A�1,
Rac(Le�1)�8709 for A�2, and Rac(Le�1)�6998 for
A�4. The difference between the numerical results and
those obtained by the linear stability analysis is less than

0.1%. Figure 6 shows this result in the case of a square
cavity.

With regard to the influence of the Lewis number on the
subcritical solutions, numerical results show that, qualita-
tively, we obtain the same flow regimes for all values of
Lewis number used. For the square cavity we find that
Rao1Le decreases asymptotically when Le increases. For
large values of the Lewis number, Rao1 reaches the value
7200. Figure 7 shows the behavior of Rao1Le as a function
of Le . The difference between the value of Rao1Le obtained
for Le�101 and for Le�81 is less than 0.15%, while a
considerable variation of Rao1Le occurs in the region
Le�21 �Fig. 7�. On a log-log graph, Rao1 decreases linearly
with Le for Le	21. The slope of this linear curve is equal to
�1.

FIG. 6. Comparison between the values of the critical Rayleigh number
obtained by the linear stability analysis �solid line� and those which have
been obtained numerically �circles�. The figure shows the critical Rayleigh
number as function of the Lewis number for a square cavity.

FIG. 7. Behavior of the values of the thermal Rayleigh number correspond-
ing to the onset of the subcritical regime for a square cavity as a function of
the Lewis number.
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2. Influence of the aspect ratio
In view of the ‘‘qualitative’’ independence of the flow

characteristics with respect to the Lewis number, the study
was restricted to the case of Le�11. This value of the Lewis
number will be used for all following investigations. The
aspect ratio used varies between 1 and 15.

a. Supercritical regime. The supercritical regime can be
considered as a quasi-static one �Fig. 2�. The corresponding
isotherms and isoconcentration lines look like the ones ob-
tained for the purely diffusive regime. For the case of a
square cavity, the extremum value for the stream function is
less than 0.1 in all the intervals of the thermal Rayleigh
number for which this solution exists �Fig. 8�. We notice that
�Figs. 8 and 9�, the extremum value of the stream function
�max varies linearly with RaT in the vicinity of Rac
(RaT�Rac). We also notice that the Nusselt number varies
quadratically over this range of Rayleigh numbers �Figs. 10
and 11�. Thus the linear variation of �max according to
RaT allows us to determine by extrapolation, with great ac-
curacy, the value of the critical Rayleigh number. For
A�1, the slope P of the linear curve �max(RaT):
d�max(RaT)/dRaT is equal to P�0.073�10�3. This slope
increases with A and becomes P�0.260�10�3 for A�2.
For A�4, the value of this slope is P�2.02�10�3. It
should be mentioned that, for large aspect ratios, it is diffi-
cult to obtain the supercritical regime. In the case of A�1,
the supercritical solution can be obtained only in the interval
�1715-3000� for RaT . This interval becomes �880-900� and
�699-701� for A�2 and A�4, respectively. For an aspect
ratio of A�7, for example, the convergence is largely related
to the initial conditions. In the case of A�7, convergence of
the supercritical solution was not obtained.

b. Subcritical regimes. Equations �1�–�4� together with
boundary conditions �5�–�8� are symmetric with respect to
the following symmetry operator:

L1� U
T
C
� �� �U�1�x ,1�z �

1�T�1�x ,1�z �

1�C�1�x ,1�z �
� .

Over the interval 1�A�2.5, there is a unique subcritical
solution, which is the single clockwise rotating cell flow so-
lution. For an aspect ratio of A	2.5, multiple steady convec-
tive solutions were observed, for RaT�Rac , depending on
the initial conditions used in the numerical investigations.

In the case of a cavity with an aspect ratio of A�4, for
example, three steady solution types were obtained, two of

FIG. 8. Behavior of the extremum value of the dimensionless stream func-
tion as a function of the Rayleigh number for a square cavity, for both the
supercritical regime �circles� and the subcritical regime �squares�. The zoom
shows the supercritical regime in more detail. The dashed branch designates
predictive mapping of the unstable solution branch.

FIG. 9. Behavior of the extremum value of the dimensionless stream func-
tion as a function of the Rayleigh number for a cavity with aspect ratio
A�2, for both the supercritical regime �circles� and the subcritical regime
�squares�. The zoom shows the supercritical regime in more detail. The
dashed branch designates predictive mapping of the unstable solution
branch.

FIG. 10. Behavior of the Nusselt number as a function of the Rayleigh
number for a square cavity for both the supercritical regime �circles� and the
subcritical regime �squares�. The zoom shows the supercritical regime in
more detail.
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them presenting central symmetry and one being asymmetric
�Fig. 12�. Four steady solution types were obtained for the
cavity with an aspect ratio A�7, two presented central sym-
metry, while the two others were asymmetric �Fig. 13�.

It should be mentioned that the first subcritical instability
in the fluid is of type 3 �Figs. 12 and 13� where there are two
convection cells circulating in the same direction. This result
is similar to that observed experimentally6 and predicted
theoretically13 for the case of a stably stratified layer of fluid
differentially heated from its vertical side walls.

V. CONCLUSION

Theoretical calculations and numerical simulations of
double diffusive convection in a rectangular cavity, with
equal and opposing buoyancy forces due to horizontal ther-
mal and concentration gradients, were carried out in the case
2�Le�151, for several values of the aspect ratio. The linear
stability analysis developed in this work, for both an infinite
vertical layer and a rectangular cavity, shows that the physi-
cal problem has only one nondimensional linear stability pa-
rameter Rac(Le�1). The thermal Rayleigh number domain
corresponding to the beginning of convective flow was in-
vestigated. The dimensionless group Rac(Le�1) obtained

by the linear stability analysis, for the square cavity, is three
times higher than that given by earlier authors. Our stability
analysis results are compared, for many values of aspect ratio
and Lewis number, to the critical values determined from
direct simulations based on a spectral method. A very good
agreement between analytical and numerical results was ob-
tained.

Numerical results show the existence of a great variety
of subcritical regimes. Their number depends on the aspect
ratio A of the enclosure. For the square cavity, there is a
unique subcritical regime. The value Rao1 of the thermal
Rayleigh number, threshold of the subcritical regime, was
shown to be a turning point location. Numerical investiga-

FIG. 11. Behavior of the Nusselt number as a function of the Rayleigh
number for a cavity with an aspect ratio A�2, for both the supercritical
regime �circles� and the subcritical regime �squares�. The zoom shows the
supercritical regime in more detail.

FIG. 12. The multiplicity of subcritical solutions for a cavity with an aspect
ratio of A�4, all the three solutions correspond to Le�11, RaT�550. The
dotted lines designate clockwise rotation.

FIG. 13. The multiplicity of subcritical solutions for a cavity with an aspect
ratio of A�7, all the solutions correspond to Le�11, RaT�550. The dotted
lines designate clockwise rotation.
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tions show that, in the region of moderate Lewis numbers,
Le�21, there is the greatest influence of the Lewis number
on the onset of the subcritical flow. For large Lewis num-
bers, Le	81, Rao1Le converges asymptotically to a con-
stant value as Le increases. In the case of the square cavity,
this asymptotic value of Rao1Le is equal to 7200.
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directe �pseudo-spectrale� du problème de Stokes 2D/3D instationnaire.
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