
HAL Id: hal-01886690
https://hal.science/hal-01886690

Submitted on 23 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Tutorial on Performance Evaluation and Validation
Methodology for Low-Power and Lossy Networks
Kosmas Kritsis, Georgios Papadopoulos, Antoine Gallais, Periklis

Chatzimisios, Fabrice Theoleyre

To cite this version:
Kosmas Kritsis, Georgios Papadopoulos, Antoine Gallais, Periklis Chatzimisios, Fabrice Theoleyre. A
Tutorial on Performance Evaluation and Validation Methodology for Low-Power and Lossy Networks.
Communications Surveys and Tutorials, IEEE Communications Society, 2018, 20 (3), pp.1799 - 1825.
�10.1109/COMST.2018.2820810�. �hal-01886690�

https://hal.science/hal-01886690
https://hal.archives-ouvertes.fr

1

A Tutorial on Performance Evaluation and
Validation Methodology for Low-Power and Lossy

Networks
Kosmas Kritsis, Georgios Z. Papadopoulos, Member, IEEE, Antoine Gallais,

Periklis Chatzimisios, Senior Member, IEEE, and Fabrice Théoleyre, Senior Member, IEEE,

Abstract—Envisioned communication densities in Internet of
Things (IoT) applications are increasing continuously. Because
these wireless devices are often battery powered, we need
specific energy efficient (low-power) solutions. Moreover, these
smart objects use low-cost hardware with possibly weak links,
leading to a lossy network. Once deployed, these Low-power
Lossy Networks (LLNs) are intended to collect the expected
measurements, handle transient faults and topology changes,
etc. Consequently, validation and verification during the protocol
development are a matter of prime importance. A large range
of theoretical or practical tools are available for performance
evaluation. A theoretical analysis may demonstrate that the
performance guarantees are respected, while simulations or
experiments aim on estimating the behaviour of a set of protocols
within real-world scenarios. In this article, we review the various
parameters that should be taken into account during such a
performance evaluation. Our primary purpose is to provide
a tutorial that specifies guidelines for conducting performance
evaluation campaigns of network protocols in LLNs. We detail the
general approach adopted in order to evaluate the performance
of layer 2 and 3 protocols in LLNs. Furthermore, we also specify
the methodology that should be adopted during the performance
evaluation, while reviewing the numerous models and tools that
are available to the research community.

Index Terms—Low-power Lossy Networks; Internet of Things;
Protocols; Algorithms; Performance Evaluation; Validation; Ex-
periments; Simulation; Testbeds; Models

I. INTRODUCTION

After many decades of research, wireless networks have
evolved from Ad Hoc Wi-Fi technology to low-power and
large-scale Wireless Sensor Networks (WSNs). This miniatur-
ization extended de facto their usage, and enabled the design
of radically new applications that follow the modern concept
of Internet of Things (IoT). For instance, Smart Cities are
expected to rely heavily on a myriad of devices, able to
measure their surrounding environment and take decisions in
order to manage the city efficiently [1], [2]. Moreover, sensors

K.Kritsis is with the Research and Innovation Center Athen (ATHENA
RC), Institute for Language and Speech Processing (ILSP), 15125 Marousi,
Athens, Greece (e-mail: kosmas.kritsis@ilsp.gr).

G. Z. Papadopoulos is with the IRISA, IMT Atlantique, 35510, Cesson-
Sévigné, France (e-mail: georgios.papadopoulos@imt-atlantique.fr).

A. Gallais and F. Théoleyre are with the ICube Laboratory,
CNRS / University of Strasbourg, 67412 Illkirch, France, (e-mail:
{gallais,theoleyre}@unistra.fr).

P. Chatzimisios is with the CSSN Research Lab, Department of Informatics,
Alexander TEI of Thessaloniki (ATEITHE), 57400 Thessaloniki, Greece and
with the Department of Computing & Informatics, Bournemouth University,
BH12 5BB, United Kingdom (e-mail: peris@it.teithe.gr).

may be used for counting the number of vehicles, such to
control optimally the street traffic lights and to reduce the
waiting time [3].

This type of sensor networks, due to their embedded nature,
often requires to operate with limited power, constrained mem-
ory and processing resources. Therefore, they require specific
approaches to make the wireless network energy efficient. To
do so, the wireless devices have to implement protocols to
reduce their energy consumption, e.g., by turning off their
radio interface for most of the time.

Furthermore, multiple environmental factors interfere with
the system, while adding extra noise and promoting high
variances in the communication links. Therefore, the Packet
Error Rate (PER) may be high for some of the radio links,
and requires to design robust algorithms and protocols. In
particular, we have to make the system reliable even if it
depends on unreliable radio links. The wireless infrastructure
has to deliver most of the packets to their destinations,
without duplicating them (energy efficiency), and by handling
transparently the packets losses at the link layer.

Actuators may also be part of the wireless infrastructure
(e.g., the heating system in smart buildings [4]). To avoid
any ambiguity, we adopt here the Internet Engineering Task
Force (IETF) terminology, which designates a Wireless Sensor
Network as a Low-power Lossy Network (LLN). A LLN
comprises routers, sensors and actuators, which use wireless
transmissions to exchange packets, possibly via multiple hops.

The great importance of LLNs becomes clear, considering
how they have affected the emergence of modern IoT applica-
tions, where information must be shared intact across different
platforms, while enhancing the data from a distributed network
of sensors and actuators.

Globally, the IoT paradigm encompasses a large variety of
devices connected to the Internet, including amongst others: (i)
multimedia objects (e.g., a video camera) that require a high
throughput and, thus, rendering them unable to save energy, (ii)
Radio-Frequency Identification System (RFID) and tags that
enable the tracking of any object, typically within a supply
chain context, (iii) small sensors and actuators, which are
mostly battery-powered wireless hardware platforms.

The number of embedded devices involved in a typical
LLN scenario varies from tens to thousands of nodes, which
introduces further density as well as scalability issues.

Validation and verification during the protocol develop-
ment has become a matter of prime importance. Envisioned

2

solutions must be intensively tested before being deployed
in a real-world environment, by employing either simula-
tors, emulators, or even conducting experimentations over
real physical testbeds [5]. More specifically, simulators have
allowed users to exploit available models (e.g., link quality,
radio propagation, medium interference, topologies) in order
to anticipate the behaviour of their proposals under real-life
conditions. Some open testbeds have also emerged, providing
access to pre-deployed low-power devices and, thus, a certain
level of repeatable experimental setups [6]. However, a great
number of issues, such as weather conditions, interference
from other wireless technologies or even obstacles, may have
an impact on the radio links among the sensor nodes. Thus,
before proceeding to the experimental evaluation of a network
protocol or an algorithm, apprehending the wireless links and
the overall topology is an essential step [7]. It is also manda-
tory to consider the correct energy models since preliminary
results must help end users to get a flavour of the ensued
energy consumption. We here detail numerous tools that shall
ease such investigations.

In order to initially validate their concepts or models,
researchers must be advised of the numerous constraints that
arise in order to define the scientific methodology that will lead
to pertinent experimental results. Theoretical and numerical
analysis, along with packet level simulation and emulation
appear as essential pieces of the long-term validation of a
whole solution.

In this tutorial, we review in depth various parameters
that should be taken into account during such performance
evaluation. We especially focus on the main networking layers
of the communication stack (e.g., Medium Access Control
(MAC), routing). Techniques related to the physical layer are
out of the scope of this document, since the performance
evaluation often uses specific hardware for the experiments, or
it is conducted based on specific models. The link and network
layers are rather based on protocols and algorithms, and form
a specific, distinct research subject, with different tools.

Our primary purpose is to provide a tutorial both with basic
and enhanced guidelines for evaluating the performance of
network protocols in LLNs.

The contributions of this paper are fourfold:
1) We detail the general approach for evaluating the per-

formance of networking protocols for LLNs;
2) We detail the methodology to be adopted, what should

be measured (i.e., metrics) and what should be taken
into account when evaluating the performance;

3) We provide a comprehensive view of the different
models (radio communication, interference, traffic) and
their typical characteristics and limitations. In particular,
we provide key use cases in which the protocols should
be evaluated;

4) Finally, we detail the existing tools, from theory to
experimentations, and their typical utilization.

The paper is organized as follows. In Section II, we expose
the suggested methodology that allows a complete and relevant
performance evaluation. Section III details the main require-
ments of a consistent performance evaluation process, ranging
the monitored parameters that are related to the accuracy of

NETWORK
(e.g. routing, IP address, self-

configuration)

MAC
(e.g. medium access, PHY addr)

PHY
(e.g. modulation, error code)

6LoWPAN

IEEE 802.15.4-2015
(e.g. TSCH, DSME, LLDN)

IEEE 802.15.4 PHY

RPL

CoAPTRANSPORT
(end-to-end, security)

Application
(e.g. periodic Traffic, Event-based)

home
automation HVAC intrusion

detection

N
et

w
or

ki
ng

IPv6

Fig. 1: Typical stack of protocols in the Internet of very
low-power Things.

the setup (e.g., reproducibility). We then describe the various
characteristics that may be present in various radio topologies
(Section IV), as well as we detail the traffic characterization
(Section V) and the different energy models (Section VI). We
then present most of the existing tools that may be used during
a performance evaluation campaign (Section VII). Finally,
Section VIII discusses the current related challenges, before
giving some concluding remarks in Section IX.

II. PERFORMANCE EVALUATION LIFE-CIRCLE

A LLN is a combination of software, network and embedded
engineering. These fields are well defined and therefore, devel-
opers should be aware of the currently employed technologies
and methods in the previously mentioned domains in order to
efficiently design new solutions.

However, some of these practices should be modified in
order to fit the specifications of wireless LLNs. There are
various methodologies that can be adapted, concerning the
development life-cycle of applications that incorporate LLN
technologies.

Most LLN solutions are built upon a modular stack of
protocols (Figure 1): the most accurate protocols / standards
may be chosen before the deployment, based on the require-
ments of the targeted specific application. To reduce the cost
of deployment, several applications (e.g., intrusion detection,
heating, ventilating and air-conditioning), may operate on
top of the same wireless infrastructure [8]. Transport layer
solutions dedicated to LLNs include CoAP and MQTT-SN,
which both rely on publish/subscribe mechanisms, while using
UDP as the underlying protocol [9], [10].

Agile methodologies are particularly appropriate for devel-
oping IoT research applications. Short and iterative develop-
ment cycles allow researchers to quickly correct an error in
the conception or in their assumptions [11], [12].

Our approach considers that research in LLNs follows the
life-cycle as illustrated in Figure 2. A certain number of steps

3

Theoretical Analysis

Proof of convergence,
Bounds, Correctness

Network Simulation
and/or Emulation

Packet level simulations

Numerical Analsis

typical input values, distributions,
monte-carlo simulations

idea

validation
Experimental Validation

Research testbeds, prototyping

Deployments

Real Life Applications

models (PHY layer): interference, packet losses, isotropic environment, etc.

Inputs Inputs Inputs
models

adaptation

iterations

Fig. 2: Typical long-term Validation of a whole solution.

are required to evaluate the performance of a protocol, an
algorithm or a whole networking stack. For instance, switching
too quickly from the idea to protocol experiments may be
prejudicial [105], [14].

A. Theoretical Analysis

We often bootstrap a performance evaluation by analysing
theoretically the proposed algorithm. While it is considered to
be a preliminary step, it proves that the algorithm convergence
was correctly designed.

Typically, we may prove the following main properties:
• Convergence: An algorithm is designed to get various

input and produce specific output. The convergence may
not be trivial in some cases, and a formal proof is
sometimes required;

• Self-stabilization: Whatever the initial state is, the algo-
rithm must converge to a legal state in a finite number of
steps [15]. This self-stabilization property is vital for self-
healing, while the network is able to correct the transient
errors autonomously;

• Complexity: The algorithmic complexity is of prime
importance for wireless LLNs, since they are composed
of embedded, low-cost nodes. The complexity is tightly
coupled with the resource allocation (e.g., memory, num-
ber of control messages) and hence with the energy
consumption;

• Approximation: Most of the interesting problems are
NP-hard in LLNs, thus requiring to propose heuristic
approaches, so that the problem is still tractable by small
devices with limited capabilities. In particular, we may
prove that an algorithm is an α-approximation, i.e., the
algorithm leads to a solution which differs by α from the
optimal one [16];

• Lower and upper bounds: When proposing an heuristic
solution, it is always relevant to provide upper and lower
bounds. While the average case might be of interest,
focusing on the worst case helps to answer which are
the guarantees that could be provided by the heuristic.

B. Numerical Analysis

Obtaining mathematical closed form expressions is prac-
tically complicated for most of the problems. A numerical

analysis uses different values as input to study practically what
the obtained results would be.

With Monte-Carlo simulations, we generate a set of different
input values, using a given distribution [17]. For instance,
a network should behave similarly, with a different random
location of each source node. Monte-Carlo simulations may
help to estimate the distribution of the different values (e.g.,
delay, packet losses) when the models are too complicated to
obtain the result analytically. Basically, the characteristics of
the sampled random values are close to the real distribution
of the values when the number of samples is very large (law
of large numbers).

Monte-Carlo simulations may use any mathematical tool to
pick random samples. Soua et al. use [18] GNU Octave to
evaluate the robustness of a scheduling algorithm for a LLN
scenario, while Palattella et al. [19] use Python scripts and
Keshavarzian et al. use Matlab [20] for the same purpose.

C. Simulation and/or Emulation
In this subsection, we first describe the tools that simulate a

whole network (e.g., energy consumption, radio propagation,
protocols). We then will detail the approach to emulate a whole
device, while simulating the radio environment only.

1) Network Simulation: Simulation has been widely used
for a few decades to validate the behaviour of a protocol.
Discrete event simulation is the most popular tool, where a
collection of events (packet reception, time-out) are handled
chronologically by the simulator. Typically, a pseudorandom
number generator is used to mimic uncertainty when prob-
abilities have to be respected (e.g., the Packet Error Rate
for a transmission). Thus, simulations help to improve the
reproducibility: providing the seed, the simulator version, and
the code is sufficient to re-obtain the same results.

For LLNs, the simulations have to integrate PHY models,
including the radio propagation. Unfortunately, these radio
characteristics are very complicated to capture [21], since
they may exhibit very different behaviour depending on many
properties (e.g., indoor vs outdoor, ISM band, modulation,
urban vs. rural). Similarly, most of the simulators are not
hardware specific, and do not model the fine-grained behaviour
of each device (i.e., instruction level). For instance, most
simulators do not model clock drifts while it may impact very
significantly the performance of a network [22].

4

A large variety of network simulators exists in the literature,
either as open source (ns-2 [23], ns-3 [24], OMNeT++ [25])
or proprietary (GloMoSim [26], Riverbed Modeler [27], Qual-
net [28]). Their respective interests and limits are detailed in
Section VII-B.

Unfortunately, no common API or framework exist for the
different simulators. This means that a network stack evaluated
on a given simulator cannot be transferred directly to another
one. All the protocols have to be rewritten, jeopardizing the
reproducibility.

Because reproducibility is now a major concern in the
networking community [29], [6], emulation appears as a very
relevant solution for a performance evaluation.

2) Emulation: Emulation uses a very fine-grained model of
the device to consider, and is consequently hardware specific.
Actually, most of the emulators for wireless networks comprise
two parts:

1) the node: the emulator mimics the exact instruction-
set processing. This way, we can also consider memory
and CPU constraints. Energy consumption tends to be
more and more accurately modelled if some criteria are
respected [30].

2) the PHY layer: most of the emulators simulate the radio
propagation. We can use here the same PHY models as
for simulators.

Thus, the same implementation can be used to execute the
code on both the real and the emulated hardware. It greatly
reduces the development costs.

The code is often specific to the hardware, at least for the
lower layers of the communication stack. Fortunately, there are
some very popular platforms which are frequently employed in
LLN scenarios (such as the TelosB motes [31]), thus creating
a de facto standard for experimenting a set of protocols.

Emulation tools such as Cooja [32] and OpenWSN [33] are
now very popular and concentrate most of the developments.
By using a limited set of emulators, the research community
also encourages code re-use, and reappropriation.

III. METHODOLOGY

In this Section, we propose a methodology to evaluate
the protocol performance. While this could be considered
as a straightforward problem, many research papers still do
not present their simulation or experimental results in an
accurate and detailed fashion. In this article, we focus on
protocols of layers 2 and 3, considering that physical layer
is a given parameter of simulations and experiments while
upper layers strongly depend on the target application. In our
humble opinion, MAC and routing protocols thus, constitute
the backbone of the communication stack of LLN devices.
Consequently, hereafter, we present the different metrics and
guidelines that appear specific to the thorough study of these
two aforementioned layers. We also highlight the importance
of conducting reproducible, robust and consistent performance
evaluations.

A. What should we measure?
The first thing a researcher should wonder when evaluating a

protocol / algorithm concerns the target metrics to be measured

(cf. Table I). Hereafter, we list some common criteria for each
network layer as follows.

1) Common metrics: Some metrics are not relative to a par-
ticular communication layer and should always be monitored
in wireless LLN scenarios.

a) Energy consumption: First of all, a LLN aims at
integrating low-power nodes using batteries. Thus, the radio
chipset has to be turned off to save energy [34].

We may measure the average duty cycle ratio that represents
a first approximation of the network energy consumption.
More precisely:

DCR =
Tactive
T

(1)

with T being the considered time-interval and Tactive the time
duration which the radio chipset of the node is set to active.
The popular CC2420 chipset typically consumes 18.8mA in
RX mode, between 8.5 and 17.4mA in TX mode, 0.4mA
in idle mode, and 0.02µA when sleeping. If we neglect the
difference between the idle, TX and RX modes, the duty cycle
ratio can be a good representation of the energy consumption
of a network node.

b) Network Lifetime: We may measure the network life-
time, which could be defined as [35]:

• First death: When the first node runs out of energy;
• Last death: When the last node dies [36]. However, such

definition assumes implicitly a single hop topology, with
all the sensors being equivalent (i.e., with no heterogene-
ity);

• Connectivity: The size of the largest connected compo-
nent exceeds a threshold value. However, this metric is
extremely dependent on the application, since it assumes
that the sensors are redundant, which may not hold in
practice;

• Coverage and Connectivity: A collection of regions
have to be monitored and, thus, a sensor is able to
measure a given phenomenon in a given geographic area,
i.e., it actually covers this area. Each area must be covered
by at least k sensors and these sensors are able to send
their measurements to the central sink (i.e., connectivity).

The energy consumption and the network lifetime are
closely related metrics. However, most of the researchers focus
on the primer because it is more convenient to measure,
while on the other hand, measuring accurately its lifetime,
the network has to operate and get monitored for very long
durations.

c) Overhead: A chatty protocol needs to exchange many
packets and consequently it consumes both bandwidth and
energy. Therefore, it is important to measure the network over-
head, expressed as the quantity of control packets generated
by all the nodes.

This overhead may be measured in:
• packets per second, when the cost to access the medium is

high (e.g., long preamble sampling, the data packet length
being small compared with the sum of the preamble and
the data frame);

• bits per second, when the transmitter and the receivers
have to stay awake only during the packet’s transmission;

5

Layer Metric Section Definition

Transversal Energy Consumption III-A1a Quantity of energy consumed by all the nodes
Network Lifetime III-A1b Time before the network stops doing its job

Overhead III-A1c Amount of control packets (bits or packets per second)

MAC Delay III-A2a Medium access delay, comprising also the retransmissions
Packet Delivery Ratio III-A2b Ratio of packets correctly received by the receivers

Fairness III-A2c Jain Index
Duplicates III-A2d Number of packets duplicated (i.e. forwarded in multiple

exemplars) by the MAC layer

Routing Delay III-A3a End-to-end delay, considering both medium access and buffer-
ing delays

Packet Delivery Ratio III-A3b End-to-end packet delivery ratio from the source to the final
destination

TABLE I: Definition of the different metrics.

Some researchers have proposed to divide the number of
control packets by the number of packets received by the
sink in order to measure network efficiency [37]. We consider
that this corresponds to two different criteria that should be
measured separately.

2) Medium Access Control (MAC): Medium access repre-
sents a key challenge in wireless LLNs. MAC layer is in charge
of determining when nodes should transmit, receive, listen
or simply remain idle. It thus handles all operations related
to the main source of energy consumption, which is packet
transmission and reception [38]. In particular, a node must
turn its radio off most of the time because it is the only way
to save a significant amount of energy in radio networks [34].
The lowest this duty cycle ratio is, the larger the network
lifetime will eventually be.

Similarly, the MAC protocol must solve the contention
amongst different interfering transmitters. This approach often
provides a trade-off between reducing the medium access de-
lay, while increasing the collision probability, and conversely.

In the literature, several MAC strategies have been proposed
for LLNs [39] (Figure 3):

• Preamble sampling: The transmitter sends a long pream-
ble, and the receiver has to turn its radio on periodically
to detect this preamble. Then, the receiver has to stay
awake in order to receive the data packet, which follows
the preamble [40].
Contiki-MAC [41] represents a widely used preamble
sampling protocol, which exploits several optimizations
for reducing the energy consumption.

• Synchronous protocols: The receiver and the transmitter
must agree on a common schedule to wake-up syn-
chronously so as to be able to exchange frames. The
transmitter maintains a guard-time before its transmis-
sions for compensating possible clock errors [42], [43]. In
its Time-Synchronized Channel Hopping (TSCH) mode,
IEEE 802.15.4 [44] uses a Time Division Multiple Access
(TDMA) matrix paired with slow channel hopping to
combat external interference;

• Wake-up radio: Each node must have two interfaces.
The (always on) wake-up radio is in charge of waking-
up the receiver [45]. The second radio provides higher
bit rates and exchanges data packets.
a) Medium Access Delay: Medium access delay corre-

sponds to the time separating the frame dequeued from the

buffer and its reception by the next hop. However, we need
to clarify that we do not refer to the buffering delay, since it
corresponds rather to a problem concerning higher layers.

We may consider the transmission successful as soon as
the data frame is received by the next hop. Unfortunately, the
transmitter is not certain if its transmission was successful, be-
cause the communication channel is half-duplex and the radio
link may be unreliable. Thus, the latency is often approximated
by the time difference between the data generation and the
reception of the corresponding received acknowledgement.

If we consider broadcast packets, the problem is more
complicated since we have to consider the following aspects:

• Time distribution: A broadcast packet may not be
received at the same time since some MAC layers im-
plement a duty cycle approach and, thus, a copy of the
same packet may be received by neighbours according to
their sampling frequency;

• Reliability: Only some neighbours may have received
the broadcast packet. In this case, for instance, we could
compute the time at which 75% of the neighbours have
correctly received the broadcast packet.
b) Reliability: Packets may be lost because of collisions

or link unreliability. Thus, it is mandatory to measure the
Packet Delivery Ratio (PDR) as:

PDR =
Nrx

Ntx
(2)

with Nrx the number of received packets, and Ntx the number
of transmitted packets. This approach is considered as a
layer 2 metric; if a packet is received after two consecutive
retransmissions, the PDR is considered equal to 1

3 . Since these
retransmissions are hidden to upper layers, measuring the PDR
at layer 2 is of primary importance. More retransmissions also
mean a higher energy and bandwidth consumption.

The throughput consists in the PDR of a given flow multi-
plied by the rate of the corresponding flow. Since it does not
reflect the actual pressure on the network (e.g., some packets
may be dropped at intermediary nodes), this metric is less
relevant for LLNs.

It is also important to distinguish the packet losses between
those that are caused by collisions, and those that emerged
from low quality radio links. In simulations, we can measure
accurately the number of packets that overlap at some receivers
(i.e., the collisions). In particular, the centralized scheduler

6

T

R

preamble data

ack

sleeping mode

listenningtx mode

rx mode

pr
ea

m
bl

e
sa

m
pl

in
g

sy
nc

hr
on

ou
s

(T
DM

A)

data

ack

W
ak

e-
U

p
Ra

di
o

data

ack

T

R

T

R

NIC 1

NIC 2

NIC 1

NIC 2

wake-up signal

Fig. 3: MAC approaches for low-power and lossy networks.

R

R1

data

sleeping mode

listenningtx mode

rx mode

R2

ack

ack

T

R2
R1

lost

Fig. 4: General of duplicates with an opportunistic MAC.

computes the signal strength of all frames in every receiver.
Unfortunately, isolating collisions in experiments is a much
more complicated task. Giustiniano et al. [46] proposed to
classify the source of packet loss for IEEE 802.11 networks by
measuring the loss. However, this technique has to be adapted
to each considered MAC layer.

Finally, we may also isolate the source of external in-
terference that results in packet loss. Techniques such as
SONIC [47] classify the source of interference (e.g., from
WiFi or Bluetooth networks) based on the variation of the
signal strength and payload corruption.

c) Fairness: Especially in wireless LLNs, we have to
guarantee a fair behaviour, which means that each transmitter
should receive the same amount of radio resources. We often
utilize the Jain Index [48] in order to measure fairness as
follows:

JainIndex(x1, .., xn) =
(
∑n

i=1 xi)
2

n ∗
∑n

i=1 x
2
i

(3)

where xi is the considered performance metric (i.e. PDR, delay
or throughput) achieved by the flow / source i.

A Jain Index equal to 1 means a perfectly fair solution. The
lower is the Jain Index, the more unfair the solution behaves.

d) Duplicates: Since transmissions are unreliable, data
packets may be correctly received and the corresponding ac-
knowledgement may be lost (due to an unreliable link) or even
may collide (due to the hidden terminal problem [66]). Asym-
metrical links [50] tend to exacerbate the loss probability of
this acknowledgement packet. When the transmitter does not

receive the acknowledgement, it schedules a retransmission,
leading to a duplicated packet. Mechanisms such as sequence
numbers help to limit the impact of such problems [51].

Furthermore, opportunistic forwarding in the MAC layer
exploits the broadcast nature of the radio transmissions in
order to alleviate unreliability problems [52]. A single packet
is transmitted using the anycast mode to a list of (ordered)
next hops (see Figure 4). R1 correctly receives the packet
and acknowledges it. The ack is received by T but not by
R2: the second receiver will also consequently send an ack
and will enqueue the packet. Since in this case duplicates are
generated in different nodes (R1 and R2), their detection is
more challenging to be achieved.

We usually measure the duplicate ratio (ratio of the number
of packets received by the destination and the number of
packets really generated by the source). We consider the
number of end-to-end duplicates because it captures both the
negative (higher overhead) and the positive impacts (higher
reliability).

3) Routing: Routing aims at deciding which node should
be used to relay the packets toward a given destination [53].
The main following approaches exist in the literature:

• Proactive: Routes are constructed a priori toward the
destination, thus, all nodes in the network are aware of
the routes to any destination at any time. Therefore, since
all routes are stored in the routing tables, a node may
transmit its data packets to the destination at very low
delay. To maintain the routing tables constantly updated,
periodic routing-related control packets are required to be
transmitted.
The Routing Protocol for LLNs (RPL) represents the
standardized proactive routing protocol for LLNs, speci-
fied by the IETF ROLL WG [54]. It is a distance vector
routing protocol and it is defined as link-layer agnostic.
Thus, RPL may operate over wireless or PLC networks.
RPL builds a Destination Oriented Directed Acyclic
Graph (DODAG) whereby each node chooses one or
more parent(s). Each node compute its rank representing
its virtual distance from the root. More precisely, the node
uses an Objective Function (OF) to derive its rank from
the rank and the link quality of its best neighbour (its
parent);

7

• Reactive: Routes are built on-demand, when the source
has packets to transmit, which means that it is not
necessary to maintain a route if there is no traffic.
Thus, reactive protocols do not require routing-related
information to be transmitted periodically. It relies on
a flooding mechanism to reach the destination, and to
construct the routes.
Lightweight On-demand Ad Hoc Distance-vector Routing
Protocol Next Generation (LOADng) [55] is reactive
routing protocol based on Ad Hoc On-Demande Distance
Vector Protocol (AODV). At its core, it floods the network
with a route request, and the destination unicasts a route
reply after having inserted the route in its routing table;

• Geographic: If all the nodes are aware of their geo-
graphic location, they may select greedily the next hop as
the neighbour closest to the destination. However, such
local rule leads sometimes to a cul-de-sac, not easy to
tackle [56].

A low-power lossy network may comprise multiple sinks,
connected to the rest of the Internet [57]. These different sinks
may be used for instance to balance the load, or to increase
the available bandwidth for each individual device. The sinks
may also be used to improve the robustness, each device
having several independent routes to the Internet (through each
different sink).

When considering a multihop network, we aim at focusing
on the end-to-end performance. To simplify this interpretation,
we often only consider the performance in the multihop
wireless part.

a) L3 End-To-End Delay: The layer 3 (routing) delay
corresponds to the multihop delay taking into account the
following:

• Medium access: The MAC delay (contention, possible
retransmissions, and reception of the acknowledgement);

• Queueing: A packet is received by a node and stored in
a temporary queue before being forwarded.

In particular, a routing protocol, which efficiently balances
the load may help to reduce queuing delay. In the same
way, different queuing strategies (e.g. FIFO, LIFO, Priority
Queuing) may impact the distribution of the end-to-end delay.

b) End-to-End reliability: The end-to-end PDR counts
the ratio of the number of packets received by the destinations
and transmitted by the sources. We often neglect the incurred
loss outside the wireless part.

High reliability is a requirement for many industrial LLN
applications [58]. Thus, achieving an almost perfect PDR
(close to 99.99%) may constitute an important requirement
that needs to be satisfied.

Since there is no need to receive all the measures when they
are redundant, reliability may also be application specific. For
instance, we consider that an intrusion detection system fulfills
its objective if the event was detected by the system, whatever
PDR is obtained. We then propose to measure both the Over
and Under Detection Ratios as follows:

OverDetectRatio =
NfalsePos

NPos
(4)

UnderDetectRatio =
NfalseNeg

NPos
(5)

y

+

+

+

+ +
+

+
+

++

+

+
+

+
+ +

+
+

++

+

+

+

+
+

+
+

++

+

+ + +
+

+
+

+
+

+
+

++
+ +

+

+

+
+

+

+

+

++

+

+

+

+

+

+
+

+
+

+ +

+
+

+

+

+

+

+

+

++
+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+
+

+
+

+

+

+

+

+

+ +

+

++

+

+ +
+
+

+
+

+

+
+

+

+

+

+ +

+
+

+

+

+

+

+ ++

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

average values
with conf. intervals

scatter plot box plots

+

+
+ +

+
+

+
+

++

+

+
+

+
+ +

+

+

+

+

+

+
+

+

+

+

++

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

+

+

++

+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+
+

+

+
+

+

+
+
+

+

+ +

+

+

+

+

+

+

+
+ +

+
+

+

+

+
+

+

+

+

+

+ +
+

+

+

+

+

+
+

+

+

+

+

+

+

+
+
+

++

+
+

+

+

+

+

+

+

+

+

+

+
+ +

+
+

+
+

++

+
+

+
+

+ +
+

+
+

+

+

+
+ +

+

+
+
+

+

+
++

++

+

+ +
+ + ++

+

+

+

+

+

+

+ +
+

+
+

++

+

+
+

+
+ +

+
+

++

+

+

+

+
+

+
+

++

+

+ + +
+

+
+

+
+

+

+

++
+ +

+

+

+
+

+

+

+

++

+

+

+

+

+

+
+

+
+

+ +

+
+

+

+

+

+

+

+

++
+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+
+

+
+

+

+

+

+

+

+ +

+

++

+

+ +
+
+

+
+

+

+
+

+

+

+

+ +

+
+

+

+

+

+

+ ++

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+ +

+
+

+
+

++

+

+
+

+
+ +

+

+

+

+

+

+
+

+

+

+

++

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+
+

+

+
+

+

+

++

+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+
+
+
+

+

+
+
+

+

+ +

+

+

+

+

+

+

+
+ +

+
+

+

+

+
+

+

+

+

+

+ +
+

+

+

+

+

+
+

+

+

+

+

+

+

+
+
+

++

+
+

+

+

+

+

+

+

+

+

+

+
+ +

+
+

+
+

++

+
+

+
+

+ +
+

+
+

+

+

+
+ +

+

+
+
+

+

+
++

++

+

+ +
+ + ++

+

+

+

+

+

+ +
+

+
+

++

+

+
+

+
+ +

+
+

++

+

+

+

+
+

+
+

++

+

+ + +
+

+
+

+
+

+

+

++
+ +

+

+

+
+

+

+

+

++

+

+

+

+

+

+
+

+
+

+ +

+
+

+

+

+

+

+

+

++
+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+
+

+
+

+

+

+

+

+

+ +

+

++

+

+ +
+
+

+
+

+

+
+

+

+

+

+ +

+
+

+

+

+

+

+ ++

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+ +

+
+

+
+

++

+

+
+

+
+ +

+

+

+

+

+

+
+

+

+

+

++

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+
+

+

+
+

+

+

++

+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+
+
+
+

+

+
+
+

+

+ +

+

+

+

+

+

+

+
+ +

+
+

+

+

+
+

+

+

+

+

+ +
+

+

+

+

+

+
+

+

+

+

+

+

+

+
+
+

++

+
+

+

+

+

+

+

+

+

+

+

+
+ +

+
+

+
+

++

+
+

+
+

+ +
+

+
+

+

+

+
+ +

+

+
+
+

+

+
++

++

+

+ +
+ + ++

+

+

+
++

+

Fig. 5: Representation of experimental data: average values,
scatter plot, boxplots.

where NPos is the number of times that the system detected
a phenomenon (e.g. an intrusion, a location with a pollution
higher than a threshold, etc.), NfalsePos is the number of
false positive detections (detected erroneously as true), and
NfalseNe is the number of false negative detections (not
detected at all).

We often target to achieve UnderDetectRatio ≈ 0 because
we cannot accept to miss detecting an event, while minimiz-
ing OverDetectRatio since it triggers useless actions (e.g.
network reconfiguration or human intervention).

B. How should we measure?

We here provide some general guidelines about measuring
the aforementioned metrics.

1) Average value: In order to obtain robust results, we
have to verify that they are representative. Thus, we often
run a simulation / experiment several times by utilizing the
same input. We then present the average value x̄ for all
the experiments / simulations with the same input values.
Alternatively, the median value is less sensitive to outliers and
provides an accurate manner to synthesize a set of different
experiments.

However, we have also to appreciate the distribution of the
different values, particularly when we compare different solu-
tions. The confidence interval helps to quantify the variability
and to verify that a difference is significant. Let us assume
that the values follow a normal distribution. The typical 95%
confidence interval is defined as:[

x̄− 1.96
σ(X)√
|E|

, x̄+ 1.96
σ(X)√
|E|

]
(6)

where x̄ represents the average value, σ(X) is the standard
deviation of the random variable and |E| is the number of
experiments carried out. A 95% confidence interval means that
if we pick randomly an experiment, it has 95% probability to
perform within the computed interval (see Figure 5).

2) Distribution and worst case: While the average value
provides to us an overview of the average case, we should
also consider the best and worst cases.

Boxplots are a convenient way to plot the distribution of
the values as well as the minimum and maximum values. We

8

 0

 5

 10

 15

 20

 25

 30

 35

1000200030004000500060007000800090001000011000120001300014000150001600017000180001900020000210002200023000240002500026000270002800029000300003100032000330003400035000360003700038000390004000041000420004300044000450004600047000480004900050000510005200053000540005500056000570005800059000600006100062000630006400065000660006700068000690007000071000720007300074000750007600077000780007900080000810008200083000840008500086000870008800089000900009100092000930009400095000960009700098000

N
um

be
r o

f p
ac

ke
ts

Time (in ASN)

lost
received

0 9000030000 60000
Time (in ASN)

C
um

ul
at

iv
e

nu
m

be
r o

f p
ac

ke
ts

lost received
35

30

25

20

15

10

 5

0
0 30,000 60,000 90,000

Fig. 6: Convergence of a distributed scheduling algorithm in
a 6TiSCH stack [60].

may also use a beanplot [59] to compare two protocols, two
by two. Thus, we are able to quantify visually the difference in
the distribution. This visual representation is complementary
to the Jain Index presented in Section III-A2c.

Let us now consider Figure 5 in which one boxplot repre-
sents the measurements for a given x coordinate interval. Each
box represents the median value, the first and third quartiles
for all these measurements. The whiskers here represent the
minimum and maximum values. We are able to detect tenden-
cies and to estimate more accurately the scattering.

Particular attention has to be given to the outliers, i.e.
measures distant from other observations. They may mean:

• Measurement error: The metric was erroneously mea-
sured (e.g. due to inaccuracy in the sensor device);

• Bug: The protocol was erroneously implemented;
• Algorithm: The algorithm was badly designed and it

does not converge under certain situations;
• Heavy-tailed behaviour: The values do not follow a

normal distribution and certain situations lead to a very
bad case.

Depending on the situation, researchers will have to identify
the exact cause(s) and if possible to patch the solution.

3) Initialization vs. steady-state: We make a distinction
between the following two steps:

• Initialization: The node just booted and has not joined
the network since it has to acquire an address (e.g. local,
global), the cryptographic keys (security), a route (routing
protocol) or a parent (MAC and topology control).

• Steady-state: The node has finished its configuration and
can now send and receive packets.

Let us consider Figure 6 that illustrates the PDR of a
6TiSCH stack [60], with a distributed scheduling approach,
during 30 minutes. The bars represent the volume of packets
generated during a time window. The violet (bottom) part
depicts the packets that are never received by the sink. We
can identify the initialization period (before the slot 50, 000)
and the steady-state period (i.e. the algorithm has converged).

4) Time Dependency and Stability: Surprisingly, most pro-
tocols and algorithms are evaluated under stable conditions.

regular grid mixed: grid and random

random deployment

relay node

device

Fig. 7: Common topologies for performance evaluation.

For instance, the simulation model is assumed to remain
unchanged for the whole simulation period. Unfortunately,
node failure [61] or link quality changes [62] are practically
very common.

A routing protocol may even not converge under stable
topologies when stochastic metrics are used [63]. Some sta-
tistical estimators such as a Kalman Filter have often to be
used [64].

Thus, these time variations have to be carefully studied
during a long time period.

IV. RADIO TOPOLOGY

Many papers evaluate their proposition in a random topol-
ogy, using a synthetic model to mimic the radio characteristics.
We propose here a comprehensive view of the possible key
scenarios and their respective limits. We make a distinction
between:

• Network topology: It provides a high-level view of the
set of motes which can directly communicate with each
other. Too many papers focus uniquely on a random
topology, which complicates the interpretation and which
may hide the pathological situations;

• Communication model: It describes formally the rules
which enable a pair of nodes to communicate with each
other. We often associate the Bit Error Rate (BER) metric
to each radio link; it denotes the probability that a given
bit in a frame is erroneously received;

• Interference model: If two transmissions start simultane-
ously and the receivers are close from both transmitters,
the signals will probably collide, wasting the radio band-
width. The interference model defines formally in which
case a transmission undergoes a collision.

A. Network Topologies
The topology strongly impacts the performance of the

network. We make a distinction between the following devices:

9

A sensor measures a physical phenomenon (e.g. temperature,
wind) and sends these measurements to a processing
entity;

An actuator has a physical action on the environment (e.g.
open a door/window, control of HVAC);

A relay node just forwards the packet via a low-rate radio
interface;

A sink (or border router, or gateway) connects the low power
wireless network to the Internet and is often considered
plugged in.

All these devices are not involved similarly in the traffic
process (see section V). For instance, an actuator consumes
most of the time a command while a sensor generates a
measure.

Some scenarios have been identified in the literature to
create some specific problems. Thus, they should be studied
in isolation, to verify that the protocols and algorithms work
accurately in these situations. We distinguish the scenarios
common to any protocol for LLNs, and those specific to a
particular layer, where a particular problem may arise.

1) Common metrics: Some scenarios are layer-agnostic,
and should be studied regardless of the protocol.

a) Regular grid: The easiest large scale topology to set-
up consists of a regular 2D or 3D grid (Figure 7). A node is
a radio neighbour with the closest nodes in the grid (with an
almost perfect link quality). This ensures that only good links
are used to forward the packets.

b) Mixed Grid: Alternatively, the regular grid would
consist of the relay nodes (i.e. they don’t generate traffic but
just forward the packets of others) and the devices (sensors
and actuators) are placed randomly in the area. In this way, we
guarantee a network-wide connectivity, while also considering
a heterogeneous deployment of the clients.

c) Random: The random topologies are the most com-
mon scenario; a fixed number of devices is randomly placed
in the considered area. If we distribute a sufficient number of
nodes, the topology is connected with a high probability [65].

2) MAC layer:
a) Star topology: The simplest topology is the star

topology in which all the devices send their packets to a central
node (Figure 9). We are able to evaluate the performance of
the MAC layer under the most basic scenarios, where all the
devices hear each other and the radio links are perfect (due
to the fact that all devices are sufficiently close to the central
node).

Throughput and fairness performance should be optimal in
this case.

b) Hidden terminal: The hidden terminal problem is
known for a long time in radio networks [66]. When two
transmitters do not hear each other and send their packets
to the same receiver, collisions are very frequent. A modern
MAC layer should address this problem.

Isolating this particular situation helps to focus on the
hidden terminal problem, proving that the protocol deals
efficiently with this unwanted situation.

c) Line: A line represents the atomic pattern of a multi-
hop network; packets are forwarded along a path from a source

to its destination. Unfortunately, this simple topology has been
proved to perform poorly with random access [67].

For medium access, we should evaluate the behavior of the
MAC protocol in the following situations:

• Unidirectional: One of the extremities send frames to the
other extremities. This models well a sensor that sends
its measurements in the cloud via the sink;

• Bidirectional: Both extremities exchange frames with
each other. Indeed, communication with actuators or
mote’s reconfiguration require a bidirectional exchange
to make reliable the transaction.
d) Heterogeneous radio link qualities: The evaluation

should also consider heterogeneous radio link quality. In
Figure 9, we consider a star where two radio links present
a large Packet Error Rate (PER); a frame has a non negligible
probability to not be received correctly.

The MAC protocol may adopt one of the following ap-
proaches:

• Transmission opportunity fairness: Each transmitter has
the same probability to access the medium. The receiver
with the poorest radio link quality will have the lowest
bit rate;

• Bandwidth fairness: Each receiver has the same goodput
(bit rate of frames correctly received).

3) Routing protocol: At the routing layer, we should con-
sider the fairness among different flows, and its ability to
support load-balancing.

a) Ladder (path quality): The simplest scenario consists
of a ladder in which the source sends packets to the sink and
several redundant paths exist. All the radio links experience
different quality (i.e. PER). Thus, the different paths provide
different end-to-end reliability and latency.

We can consequently evaluate the ability of the routing
protocol to exploit the most efficient route.

b) Ladder bi-source (load-balancing): An efficient rout-
ing protocol should be able to balance the network load
for congestion avoidance. If the objective corresponds to
maximizing the network’s lifetime (see Section III-A1b), we
must balance the energy consumption. More precisely, all the
nodes should consume an equivalent quantity of energy, while
minimizing the maximum energy consumption [68].

With a ladder of two sources, we can validate the ability
of a routing protocol to optimize the load/energy-balancing
property under the simplest scenario.

c) Synchronous vs. Gradual Bootstrapping: In a syn-
chronous scenario, all the nodes boot simultaneously and start
to execute the algorithm / protocol. While most of the perfor-
mance evaluation focus on this particular scenario, its practical
interest is limited. Indeed, it assumes that all the nodes are
first deployed and then the operator commands remotely their
start-up. The trigger of this start-up is never described, while it
actually represents a key challenge. Indeed, even the flooding
of a startup control packet may be insufficient since a blind
flooding is expensive and unreliable [69].

It seems that the gradual bootstrapping is far more realistic.
The sinks are first deployed and then new devices are gradually
inserted in the network. This scenario models a network where

10

star hidden terminal (bi)-line

…

device

radio link
(good)

flow
(traffic)

radio link
(weak)

heterogeneous radio link qualities

Fig. 8: Benchmarking topologies for the MAC layer.

D

ladder
single source

S

device data flow radio link

S S’

D

ladder
bi-source (load-balancing)

Fig. 9: Benchmarking topologies for the routing layer.

new applications / nodes / services are iteratively deployed.
For instance, smart meters may be progressively deployed
in a given district [70]. Consequently, they start to generate
periodical measures as soon as they are installed (or replaced)
by the subscriber.

To avoid wasting the energy resource of the nodes, the new
devices should be able to join the network as soon as they start.
Thus, we may assume a gradual deployment with connectivity
preservation; a neighbour with a sufficient link quality already
exists in the vicinity of the new node.

Surprisingly, this gradual bootstrapping scenario is very
seldom studied. Most of the experiments focus rather on an
ideal case, where all the nodes wake-up and have to join the
network simultaneously.

B. Communication model

Simulation and theoretical analysis rely on a PHY layer
model and they try to mimic radio propagation. Such a
model often associates with each pair of nodes a success
probability (i.e. a packet would be received correctly or not).
In a asymmetrical link, this probability is different for the two
directions;

1) Unit Disk Graph (UDG) communication model: The
simplest model consists of a geometric communication model
in which two nodes can exchange packets only if they are
located at most 1 unit distance far apart. Furthermore, the

radio link quality is assumed to be perfect for any radio link
with a length inferior or equal to 1 unit.

Let G(V,E) be a graph G with the set of vertices V and
edges E. A UDG is defined by:

∀(u, v) ∈ E, d(u, v) ≤ 1 (7)
∀(u, v) /∈ E, d(u, v) > 1 (8)

where d(u, v) denotes the euclidean (geographical) distance
from u to v.

A variant of the UDG consists of using a fixed radio range
(6= 1). However, it just consists of rescaling the geographical
distance.

Comments: the UDG model is very simple and is still used
for this purpose. However, it has been proved to largely over-
estimate the performance achievable in realistic conditions.
Since they do not consider at all the unreliability problem
(radio link quality), we consider that the UDG model is
inappropriate, and should not be used for a performance
evaluation in multihop wireless networks.

2) Free space: The Free Space Path Loss (FSPL) model
estimates the attenuation of the signal when no obstacle is
present between the receiver and the transmitter (line-of-sight
scenario). Let Pt (resp. Pr) be the transmission power (resp
the reception power). We have:

Pr = Gt(u)Gr(v)Pt ∗
(

λ

4πd(u, v)

)2

(9)

with λ denotes the wavelength (fc), Gt(u) and Gr(v) respec-
tively the transmission and reception gain of u and v.

We can compute with this path loss the strength of the
received signals at the receivers and we can deduce the Signal
to Interference plus Noise Ratio (SINR). The SINR and the
modulation then define the BER which corresponds to the
probability that a bit is received in error.

Comments: This free space model considers an ideal sce-
nario, without obstacle. In conclusion, this model should not
be used for a performance evaluation since more sophisti-
cated models provide a better realism without decreasing the
tractability.

3) Two ray ground: The two ray ground model was widely
popularized by the NS2 simulator 1 and it considers both the
direct and ground reflection paths. When the transmitter and
receivers are close to each other, the path loss is defined by

1http://www.isi.edu/nsnam/ns

http://www.isi.edu/nsnam/ns

11

Equation 9 and the impact of the reflected wave is considered
negligible. In all cases, the received signal strength is denoted
by:

Pr = Gt(u)Gr(v)Pt ∗
h(u)h(v)

d(u, v)4
(10)

where h(u) is the height of the antenna of node u.
Comments: This model reflects more accurately the gray

zone in which the radio link is neither short nor long and
the radio link quality significantly varies even for a small
change of distance. However, it keeps on considering only
ideal environments, e.g. omnidirectional antennas, isotropic
and homogeneous environments. In particular, this model does
not capture the time variability which makes the radio link so
difficult to exploit [71].

4) Log-normal path loss model: The Log-normal path
loss model tries to empirically estimate signal strength. It
accurately estimates the path loss inside a building or in a
high-dense populated area (e.g. a smart city). The path loss in
Decibels is defined by:

PL0 + 10γlog10
d(u, v)

d0
+Xg (11)

where PL0 is the path loss measured at a distance of d0, and
Xg is a normal gaussian variable with zero mean modeling
the flat fading.

This constitutes, to our mind the most accurate model for
Wireless Sensor Networks. It is sufficiently generic to mimic a
common situation, while still considering heterogeneous and
unreliable radio links. More specific models, tailored for a
given scenario (forest, indoor, etc.) can rather be addressed
using a genuine dataset (see section IV-E).

5) Experimental measures to calibrate the models: The
parameters values strongly impact the characteristics of the
radio topology. Testbeds may have this purpose: measures
in realistic conditions may help to find the most accurate
parameters values.

For instance, Chen et al. proved that a Log-normal path
loss model is realistic to mimic indoor situations [72]. They
identified several scenarios for which they calibrated the
models appropriately.

Vazquez et al. [73] considered rather a smart city scenario,
using the 868MHz band, and estimated the path loss in
different situations, depending on the location of the antenna
(on top of a building vs. in the street).

C. Interference Model

If two transmitters simultaneously send a frame, both radio
signals may interfere at one of the receivers. This collision
consumes energy and bandwidth and, thus, should be avoided.
The interference models aim to reference the list of mutually
interfering radio links.

We have to carefully select the right interference model,
since it strongly impacts performance, whatever the stack of
protocols is [74]. We detail the most common models in
Figure 10.

1) Fixed range: Similarly to the UDG, see Section IV-B1,
we assume a fixed interference range. Any node that is located
in the interference area is not allowed to transmit or receive
any packet. This area is modeled by a disk, centered in
the transmitter, with a radius equal to the interference range
(typically twice the radio range).

Comments: This fixed range cannot model the capture
effect, where a signal can be decoded correctly only if the
transmitter is very close to the receiver. Furthermore, it also
assumes a circular interfering region, which leads to an homo-
geneous network topology, and tends to simplify the task of
the network algorithms. This model should not be considered
for a realistic performance evaluation.

2) k-hops interference model: This graph based model
expresses the interference rule as a hop distance condition.
Basically, a given transmission fails if another transmitter, lo-
cated less than k hops away from the transmitter or the receiver
is active at the same instant. Such model assumes implicitly
that the transmission (and interference) is bidirectional (the
data and acknowledgement frames).

Let consider the topology illustrated in Figure 10-b (1-hop
interference model). All the nodes neighbours of S and D
cannot neither transmit nor receive any packet.

Comments: This interference model is often used in the
algorithms executed to e.g. allocate resource. However, the
model does not capture the radio effect, nor heterogeneous
situations. Another more realistic interference model should
be preferred.

3) SINR: Since radio signals are additive, two pairs may
not collide but inserting a third one may create collisions.
The SINR estimates the radio signal strength at the receiver.
Depending on the modulation scheme, this level is then
translated into a BER.

Any of the previous radio propagation models may be used
to add up the signals received from the interfering nodes
and the ones from the transmitter: we have to compute the
ratio of the signal strength of the transmitter and those of
the interfering nodes at the receiver. Then, the radio chipset
specifications (with the modulation, the bitrate, etc.) provide
the corresponding Bit Error Rate (BER).

Comments: The SINR model represents the most generic
model, able to capture realistic situations when it is coupled
with an accurate radio propagation model. This model is the
most realistic one for simulations or a theoretical analysis.

4) Graph of conflict: The conflict graph is a very con-
venient tool to identify colliding situations. Each radio link
consists of a vertex in the conflict graph and an edge exists
between the two vertices if the pair of radio links mutually
interferes. With a k-hop interference model, it corresponds to
the transitive closure of the line graph of the communication
graph. The radio links that are authorized to simultaneously
transmit without colliding form a Maximum Independent Set
in the conflict graph (i.e. they are not neighbours of the
conflict graph), (e.g. the radio links SD and BU1 in Figure 10).
However, this model is still unable to take into account the
capture effect

12

a) fixed range

S

interf.
range

D

B

U

S D

B

U

pair in transmission

blocked node

unblocked node

S

D

B1

U
1 U

2

B2

b) 1 hop interference model

conflict graph

SB
1

SB
2

SD

B1
U2

B1
U1

radio link

interfering radio links

U1
U2

blocked radio link

unblocked radio link

B1
U2

U1
U2

Fig. 10: Different interference models.

D. Key realistic characteristics

The characteristics of multihop wireless networks have been
extensively studied in the last years. The different experimental
studies have highlighted the existence of some key character-
istics which are often not captured by the different existing
synthetical models.

1) Time Variability: A multihop wireless network exhibits
in most cases a very large time variability. Srinivasan et al.
demonstrated the existence of a very short term radio link con-
sistency [75]. Basically, some links exhibit a strong burstiness:
packet losses are not independent, and the burstiness metric
denotes this conditional probability of correct reception.

Cerpa et al. studied long and short term temporal as-
pects [76]. They advocate the obligation for protocols to
consider the variations, and to not consider uniquely the
average case. Because a radio link may drop all the packets
during a given duration, a huge number of retransmissions
may be required during these bad periods.

To the best of our knowledge, no model succeeds to capture
such variability.

2) Asymmetry: Radio link asymmetry is frequent in
LLNs [50]; the Packet Reception Rate is different in both
directions. This asymmetry may come from different antennas,
transmission power, or the presence of external interference.
Radio irregularity impacts MAC and routing layers, but also
the accuracy for localization, or the coverage [77].

E. Datasets

Instead of defining synthetic models, probably unable to
capture all this complexity, we can also directly inject mea-
sures in the simulation / emulation. Typically, a set of packets
is generated to test all the radio links, to record their quality,
and the occurence of collisions.

Concretely, we have to test all the radio links. Let n denote
the number of nodes. Since signals are additive, we have
theoretically to test all the possible subsets of radio links to
estimate the amount of collisions:

n ∗ (n− 1) ∗ (n− 2)! (12)

which becomes quickly intractable. Padhye et al. proposed
some heuristics to reduce the number of probes [78].

Moreover, these probes have to be achieved continuously
for a very long time (i.e. days or weeks). The simulator will
then pick-up the experimental result which is the closest from
the simulation time.

Comments: this method is very powerful to mimic real-
istic conditions, while still providing reproducibility. It can
accurately model the capture effect, the time variability, etc.
However, a dataset if specific to a given scenario, and its
exhaustivity is very complicated to guarantee. Public datasets
such as soda2 or tutornet3 (buildings), hydrobionets4 (industrial
plant), or intel5 (lab) may be used.

V. TRAFFIC CHARACTERIZATION

As previously presented, LLNs support a large variety of
real-world use-cases, ranging from industrial to monitoring
applications. In this Section, we detail all possible traffic
patterns and profiles that LLN deployment may support.

Hereafter, we make a distinction between the following
different types of traffic:

• Flooding: A packet is generated by a node or the sink
and has to be delivered to all the nodes in the wireless
network. Blind flooding has been proved to perform
poorly in wireless multihop networks, leading to the
so-called broadcast storm problem [79]. Protocols such
as Gossiping [80] have been proposed to improve the
reliability while reducing the incurred overhead.

• Multicast: A packet has to be delivered to a group
of motes. Directed Diffusion [81] was one of the first
protocols to implement natively multicast: a node floods
its interest (a kind of multicast address). When a packet is
generated, it is forwarded along the gradient of interests
and, thus, delivered natively to all the interested nodes.

• Unicast: The most common scenario consists of generat-
ing packets with a specific unicast address. Alternatively,
a mote may specify an anycast address, e.g., any sink
connected to Internet.

During the previous decade, in most of the deployments,
the employed protocol addresses only one of the previously

2http://wsn.eecs.berkeley.edu/connectivity/
3http://anrg.usc.edu/www/tutornet/
4https://github.com/apanouso/wsn-indfeat-dataset
5http://db.csail.mit.edu/labdata/labdata.html

http://wsn.eecs.berkeley.edu/connectivity/
http://anrg.usc.edu/www/ tutornet/
https://github.com/apanouso/wsn-indfeat-dataset
http://db.csail.mit.edu/labdata/labdata.html

13

n

n

n

n

n

n

n n

S

(a) convergecast (all to a
sink, often connected to the

rest of the Internet).

n

n

n

n

n

n

n n

S

(b) any2Any (any device
with any other device).

a

n

n

n

n

a

n a

n

n

n

a

n

(c) localized (most of traffic is exchanged in a
geographical area between the sensors and

actuators)).

n

s sink

node
(sensor or actuator)

data flow

a actuator

Fig. 11: Model of traffic in low-power lossy networks, i.e. type of communications privileged in the topology.

mentioned scenarios. However, since the requirements for each
of them are often too heterogeneous to be fulfilled by a single
solution, the current standardization bodies and research lead
to design and developing standards that may provide solutions
for multiple applications over single deployments [82]. For
instance, having different traffic flows (i.e., tracks) for different
applications [60].

A. Traffic pattern

1) Convergecast: Most common use-cases comprise a low-
power devices connected to a cloud infrastructure. The sensor
nodes transmit their data packets to the cloud through the
sink. The term convergecast is used, since all multihop traffic
traverse through the border-router (Figure 11a).

Under convergecast traffic pattern, the heavily loaded area
is located around the boarder-router, forming the so-called
funnelling effect [83]. Thus, all traffic is forwarded by the
1-hop away from the boarder-router nodes, leading to the
formation of a congested zone [84]. Therefore, optimizing the
traffic pattern in the interfering zone is essential to improve
the network capacity [85].

The research community has been working on MAC and
routing protocols to particularly focus on addressing this
specific challenge. Indeed, the standardization community is
progressing to design an efficient time-slotted and frequency-
hopping MAC standard [44].

2) Up and Download: The download direction is often
not considered in the academic community although it is of
primary importance in most deployments. In particular, the
sink has to be able to send packets to the nodes in the following
scenarios:

• Actuator: Some motes may be able to have a physical ac-
tion on the environment. They must consequently receive
some commands, either from the sink or from another
node [86];

• Over-the-air reprogramming: Since the wireless in-
dustrial network has to support multiple applications or
to react after an event detection, some nodes may have
to be reconfigured [87]. These commands are transmitted
from the sink to the motes typically in multicast.

3) Localized: M2M traffic tends to be present in many
of the current deployments such as in smart homes [88]. In
this case, the considered topology does not rely on boarder-
routers to collect the measurements and push them in a
cloud. In fact, when data is not transmitted to a centralized
entity, the response time and the energy consumption may be
significantly reduced [89].

In Figure 11c, each actuator directly collects the measure-
ments of a group of sensors and take autonomously a decision.
On the contrary, in Figure 11b, the data flows do not traverse
into the whole network. Such application is more scalable, it
may multiplex more efficiently transmissions, without creating
bottleneck nodes.

Unfortunately, the traffic models are very specific to each
considered application. For instance, while a home automation
switch may command a neighbouring light, a boiler may
use the temperature measurements coming from the whole
building.

B. Traffic Profile

Finally, in this Section, we also define the traffic profile for
each traffic flow.

1) Constant Bit Rate (CBR): CBR flows represent the most
common traffic model in which a data packet is generated
periodically, possibly fragmented into several frames. This
models well the smart metering scenario, where some meters
measure a physical phenomenon and report regularly their
measurements. A CBR flow is defined by its period, i.e., time
interval between two packets and we often assume fixed length
messages.

In Figure 12, we consider five nodes generating CBR flows.
The inter-packet time may be fixed independently for each
node. In our scenario, S1 and S3 have the same CBR period
and generate their packets simultaneously. Thus, they will con-
tend and possibly collide for each one of their transmissions.
On the contrary, node S2 has the same period but the packet
generation is asynchronous. Similarly, node S5 has a different
CBR period and contends only for the first transmission.
Consequently, we have to carefully consider fairness (see
Section III-A2c) among the different flows.

14

S1

S2

S3

S4

S5

2s 2s

2s

2s

7.2s

5.3s

S1

S2

S3

S4

S5

packet
generation

event
occurence

5.3s inter packet
time

C
on

st
an

t B
it

Ra
te

 (C
BR

)
Ev

en
t b

as
ed

event 1

Fig. 12: Traffic profiles: Constant Bit Rate vs. Event based
packet generation.

2) Event detection: the LLN infrastructure may also be
employed for event detection [90]. Instead of executing com-
putations in the cloud, low-power devices may implement
more sophisticated techniques to process data. For instance,
a node may transmit a measurement only if the temperature
exceeds a specified threshold. By pushing the computations
close to the producers, less transmissions are required and,
thus, network lifetime is optimized.

The event-detection property has a direct impact on the
traffic profile since packets are not uniformly generated. In
Figure 12, the first event is detected by nodes S1, S2, S3 and
S5 that all generate a burst of transmissions. We can remark
that even if the global volume is similar to the CBR scenario,
collisions may be more frequent since all nodes will intend to
send their packets simultaneously.

Hereafter, we propose some potential approaches that can
be adopted:

• Real measurements may be collected in a real-life
deployment. These measurements can then be re-injected
in simulations, emulating a real sensor or a real phe-
nomenon.

• Models to mimic the physical environment are used in
simulations. The simulator computes the list of simulated
measurements acquired by each sensor. These measure-
ments may trigger a packet generation. However, the
models are very application specific, and require a very
precise knowledge of the physical phenomenon, compli-
cated to obtain in complex environments. Participatory
sensing represents a promising way to collect data and to
construct accurate models [91].

VI. ENERGY CONSUMPTION MODELS FOR WIRELESS
DEVICES

The network lifetime is a major requirement because most

of the participating nodes run on batteries. We already pre-
sented in Section III-A1a the different metrics that help to
estimate energy consumption and network lifetime in general.
A. Residual Energy Estimation

Measuring accurately the residual energy is practically a
complicated task [92]. Most techniques rely on measuring
the battery voltage, (non linearly) correlated with the residual
battery level. However, this correlation function depends on the
battery model, the temperature, etc. [93] making an inaccurate
estimation.

To estimate network lifetime would consequently require to
execute the application until e.g. the first node depletion. For
lifetime of months or even years, this approach is unrealistic.
Furthermore, many algorithms would operate more efficiently
if they are aware of the residual energy of each node, to
e.g. change routing decisions for a better load balancing.
Thus, most of the solutions rather try to estimate energy
consumption.

B. Packet Based Estimation

Heinzelman et al. [94] propose to focus uniquely on the
communication subsystem, because it represents the main
source of energy consumption. The energy drained by a
transmission takes into account:

• The joule per bit energy consumption;
• Fixed energy drained for any transmission, whatever the

packet length is;
• Distance: The euclidean distance between the transmitter

and the receiver. The authors consequently assume an
ideal radio propagation, without noise and interference,
with ideal radio chipsets.

Inversely, the energy to receive a packet is linear with the
packet size. The model has to be parameterized according to
the radio chipset.

Polastre et al. [95] also consider the energy for listening,
sampling and receiving. The radio state may be represented
by a state machine (sleep, TX, RX, etc.), and the transition
duration has also to be considered. For instance, almost 2ms
are required to initialize the radio before a reception when a
CC1000 chipset was in sleeping mode.

Wang et al. [96] use such a model to derive the whole
network lifetime, taking into account interference, multihop
routes, channel acquisition, etc. However, such analytical
models tend to under-estimate the impact of several environ-
mental parameters (such as temperature, radio link quality,
time variability, etc.)

Muller et al. [97] developed a specific circuit to measure the
battery voltage, from a home-made mote. The authors combine
this circuit with a packet-level method in order to estimate
more accurately the energy consumption.

C. Transmission power adaptation

In topology control, a node selects the list of neighbours
with which it will communicate. To reduce the level of
interference and its energy consumption, it may adjust its
transmission power so that the received signal strength is just

15

modules battery

accumulator
(e.g. Li-ion)

radio
chipsetconsumed

refill

device

!controler

solar

wind

kinetic

Fig. 13: Energy harvesting components.

above the threshold required to decode it correctly. Aziz et
al. [98] present a comprehensive view of the different topology
control techniques to prolong network lifetime.

D. Energy harvesting

Energy harvesting consists of incorporating a module into
a device that collects energy from the environment [99]. A
solar panel, a piezoelectric device or an anemometer provide
energy to the

device, which stores often this energy in its battery (Fig-
ure 13). Energy harvesting requires to redesign the stack of
protocols. Indeed, the routing decision should depend on the
level of battery of the relay nodes [100].

A super capacitor helps to temporarily store the harvested
energy [101]. Since it does not need a dedicated charging
circuit, it presents a better conversion ratio. However, sub-
stantial leakage power losses need to be considered since they
significantly impact efficiency.

The harvested energy depends on the source; solar energy
obviously is ineffective during the night. The level of charge
can be modelled by employing a discrete Markov Chain [102].
A transmission or reception consumes energy, while the har-
vesting source will fill the battery. Because the harvested
power is often much smaller than the transmission/reception
power, the communication is considered instantaneous.

VII. AVAILABLE TOOLS FOR PERFORMANCE EVALUATION

In this Section, we detail a variety of tools and methods
that can be utilized in order to evaluate the performance of
different LLN applications, algorithms or protocols. Usually
the researchers start with the numerical analysis, where they
test their ideas in a more theoretical approach, based on
mathematical formulas with realistic values. Next, the network
simulators can be used so as to evaluate those theoretical as-
sumptions, but with an essence of abstraction. However, there
are some advanced simulators known as emulators, which are
able to communicate with real network devices such to provide
more realistic simulations of hardware aspects (e.g., processor
performance during duty cycles, energy consumption). Fur-
thermore, due to the current low cost of acquiring simple
actuators, sensors, microprocessors and other modern IoT
hardware, the research community has developed numerous
open physical testbeds that allow for network experimenta-
tions. These testbeds can provide the ability to the scientists to
expose their solutions to the most realistic conditions possible,

prior to real deployment. Such deployments require to learn
about available operating systems and supported platforms.
This section thus provides an overview of existing emulators,
which help to provide more accurate results by hosting specific
lightweight OSs that run on top of specific target hardware.
We discuss to what extent emulators may become a mandatory
step for thorough evaluation of networking protocols.

A. Numerical Analysis

The simplest way to study the behaviour of an algorithm
consists of replacing its different inputs by realistic values.
For instance, a centralized algorithm can use a graph based
model, to define which nodes (aka vertices) have a common
radio (edge). To evaluate the dependency with the input
parameters, we often use Monte Carlo simulations; different
values are used and should lead to a similar behaviour. As an
example, 20 source nodes should generate approximately as
many collisions, wherever they are located.

Those numerical computations can be addressed with var-
ious programming languages, such as MATLAB, Python and
GNU Octave, where each one of them have their pros and
cons. The first difference someone can notice is that MATLAB
requires to purchase a licence in order to utilize its core
functions, while both Python and Octave are open and free pro-
gramming languages. Furthermore, additional packages and
libraries for MATLAB, such as SIMULINK, add extra charges
in the overall cost.

Regarding their syntax, MATLAB and Octave are high-
level languages. Also, Octave provides a MATLAB-like en-
vironment that facilitates the transition between the two lan-
guages. On the other hand, Python aims to be used as a full
scale programming language which can support OS specific
modules like process scheduling and multi-threading, as well
as networking and databases. Consequently, programming in
Python requires a longer learning curve to get familiar with
its core libraries and programming flow, but it is easy to
learn even from novice programmers. Additionally, a great
advantage of Python is that it can support fast prototyping
for different functionalities in LLN applications, considering
some recent efforts from the community to develop smarter
implementations of Python, like PyPy6, as well as tiny micro-
controllers that runs in Python7. A brief description of each
language follows up.

1) MATLAB: MATLAB (MATrix LABoratory) is a soft-
ware package and a high-level scripting language that enables
high performance numerical computation and visualizations of
new ideas. It represents one of the most popular software pack-
ages for scientific research. The mathematical framework can
provide solutions on a broad field of mathematical problems
such as matrix algebra, complex arithmetic, linear and non-
linear systems, differential equations, signal processing etc.

2) GNU Octave: GNU Octave8 is an interesting tool,
initially published in 1993 and is compatible with Matlab

6http://pypy.org/
7https://micropython.org/
8https://www.gnu.org/software/octave/

http://pypy.org/
https://micropython.org/
https://www.gnu.org/software/octave/

16

scripts, . In particular, it is used to validate algorithms using
the queueing theory and Markov chains9.

3) Python: This language is now widely used for scientific
computing, in particular with the SciPy library10. In order to
evaluate network algorithms, the library NetworkX11 provides
routines for basic graph computation, simplifying the scien-
tific development. For instance, scheduling algorithms (e.g.
TASA [19]) often use Python to validate performance in an
ideal graph.

4) Limitations: Numerical analysis represents the first step
to validate an algorithm. However, results tightly depend on
the accuracy of the models. Unfortunately, the most realistic
models (interference, radio link quality) make the numerical
analysis quickly intractable. Thus, another tool to validate
performance should be employed in most of the scenarios.

B. Network Simulation

Large-scale testbeds are expensive to be developed and
need great effort to be managed [103]. Therefore, network
simulators have been designed with an aim to provide a
software platform which can address the key aspects of the
overall performance of different types of networks. However,
it is almost impossible to duplicate the exact same conditions
of real deployments. Simulations have been proved to not
estimate correctly the impact of physical phenomenon [104].

On the other hand, simulators can be considered essential
for exploring LLN applications, acting as a common ground
for the scientists to test their ideas [105]. In order to effectively
evaluate a study by employing simulation campaigns, it is
important to have a good knowledge of the existing simulators
and their capabilities.

Some examples of widely used simulators from the research
community, include the ns2[23] ns3[24], OMNeT++[25],
Riverbed Modeler[27], Qualnet[28] and WSNet[106]. How-
ever their individual capabilities and approaches on simulating
the different details and types of networks, are quite distinct.

1) Proposed services:: the event-discrete simulators may
propose some additional services to simplify the development.

• Topology generation: to mimic the different scenar-
ios, we have to simulate different topologies (see sec-
tion IV-A). The topology may be defined as a scenario
with a GUI (e.g. riverbed), or via a configuration file (e.g.
WSNet). To replay the same setup, flat configuration files
should be preferred since they simplify the distribution,
and can be easily converted into other formats;

• Mobility models: most simulators provide a way to
control the trajectories for some of the nodes. Because
of the discrete-event engine, the location of a device is
updated periodically, simulating a movement.

• Statistics collection: to measure the performance, the
devices have to be instrumented. Some of the simula-
tors provide proprietary API to collect statistics (e.g.
Riverbed, ns3). ns3 provides also a generic way to

9http://www.moreno.marzolla.name/software/queueing/
10Scientific Computing Tools for Python, http://www.scipy.org
11High-productivity software for complex networks, https://networkx.

github.io/

directly capture the different packets transmitted/received
by the nodes. By analyzing this packet capture, we
can compute e.g. the Packet Delivery Ratio, the end-to-
end delay (see section III-A) using the same scripts as
for experiments on real testbeds. Such method reduces
the development costs when moving from simulation to
experiments.

• Visualization tools are not required stricto sensu to mea-
sure the performance, but simplify greatly the debugging
tasks. For instance, ns3 relies on PyViz [112] to debug a
simulation, e.g. where a packet is dropped, the movement
of a specific device. To our mind, offline visualization
tools, which may exploit traces, should be preferred. They
allow to replay the simulation, and to detect and localize
a fault when an inconsistent result is obtained;

• Clock drifts: to the best of our knowledge, the simulators
do not mimic clock drifts while they may have a signif-
icant impact on the performance [113]. Some additional
modules or the engine have to be developed to quantify
the impact of clock drifts.

2) Solutions: We detail here the most popular simulation
tools used by the LLN community. Table II summarizes their
main characteristics.

• ns2 [23] (“Network Simulator”) is a discrete-event sim-
ulator mostly used for a research or educational purpose.
Since it was primarily designed to simulate the Internet,
it provides the full IP stack (TCP, IPv4, IPv6, etc.). Its
models (protocols) are written in C, while Tcl/Tk scripts
control the simulation (e.g. when a TCP flow starts).
However, ns2 requires a long learning curve and advanced
skills in order to conduct valuable and repeatable simu-
lations. Besides, ns2 does not target specifically LLNs,
and requires huge development effort to have a full LLN
compliant stack.

• ns3 [24] is the latest version of the Network Simulator.
Instead of an evolution, the team has re-wrote from
scratch the simulator, making it incompatible with its
previous version. The ns-3 scenarios and models are
implemented entirely in C++ with optional use of Python
and PERL bindings.
ns-3 provides an interesting hybrid mode, mixing em-
ulation and simulation to focus on a specific physical
phenomenon. Besides, it provides tools to measure the
performance of the network by analyzing the packets
captures by each device. This genericity is a strong
asset: the same tools can be used for simulations and
experiments, reducing the development costs, and making
the analysis more reproducible.

• OMNeT++ [25], is a component-based and discrete-event
framework, which was primarily developed for building
network simulators for wired and wireless networks.
Support for specific domain networks, such as sensor
networks has been provided through separate packages
such as Castalia [114] WSN simulator. Furthermore, its
core is totally implemented in C++, with tools for traffic
visualisations, packet tracing and debugging.
Most state of the art standards for LLNs are not na-

http://www.moreno.marzolla.name/software/queueing/
http://www.scipy.org
https://networkx.github.io/
https://networkx.github.io/

17

Simulator Type12 Language Models13 Specific features

M
ob

ili
ty

IE
E

E
80

2.
15

.4
-2

00
6

B
lu

et
oo

th

D
SM

E

T
SC

H

R
PL

C
oA

P

ns2 O C & Tcl/Tk y y y n n n n parallel processing for scalable simulation
ns3 O C y y n n n y [107] packet capture (libpcap) for statistics
omnet++ O C & XML y y n n n [108] n
riverbed
modeler

C C y y y n n n n GUI for a smoother learning curve

Qualnet C y y n n n [109] n Takes benefit from parallel architectures
WSNet O C & XML y [110] n n n [111] n dedicated for low-power nodes

TABLE II: Summarized characteristics of popular network simulators.

tively supported. For instance, an RPL implementation
is provided in [108], but some of the features such
as the Destination Advertisement Object (DAO) are not
supported.

• Riverbed Modeler is a commercial, object-oriented,
discrete-event network simulation software that is capa-
ble of operating in packet-level [27]. Riverbed Modeler
provides a powerful GUI for the designing of simulation
scenarios, which tends to reduce the learning curve for
beginners. Recent versions also provide a large set of
propagation models, with an implementation of the IEEE
802.15.4 and ZigBee standards.
However, Riverbed Modeler does not target specifically
the low-power devices. Thus, most of the protocols and
standards for LLNs are not supported natively.

• Qualnet is a proprietary simulator, supporting parallel
processing to make the simulation scalable [28]. It mimics
real communications networks, enabling to model the
whole propagation environment in a variety of complex
situations (e.g. a collection of buildings for smart cities).
It provides a library comprising a set of protocols (mainly
Zigbee).
As a descendant of GloMoSim[26], Qualnet simulator
was rather designed for ad-hoc networks and its usage
in LLN scenarios is not well recognized by the research
community.

• WSNet
WSNet [106] is an event-driven simulator dedicated to
WSNs, which has been extensively evaluated [115]. It
implements a large collection of radio propagation mod-
els, and the PHY layer can be modified easily (MIMO,
modulation, multiple radio interfaces). A node may be
mobile, and a physical environment may be simulated
(e.g. fire detection).
The simulator and its protocols are fully implemented
in C and XML. Unfortunately, each protocol requires
a specific implementation, and the current library and
packages are quite limited.

3) Limits: The limits of simulations correspond to the
limits of the simulation models. For instance, the most so-
phisticated radio propagation models should be preferred, but
their complexity has an impact on the computation time. To

maintain a reasonable computation time, we have consequently
to consider only simple radio propagation models or a small
number of nodes. Besides, Colesanti et al. [116] have high-
lighted that simulation results may differ significantly from
real experimental results.

Most of the simulators are not specialized and target the
large scale networks in general. Some of they provide a
wireless library but with a very limited (and not up-to-date)
set of protocols. Re-implementing the different standards and
protocols increase the development costs, and the number
of possible bugs. The reproducibility and the comparison of
different implementations are also problematic.

The emulation/experimentation community (e.g.,
COOJA/Contiki, OpenSim/OpenWSN) is much more active.
Most of the latest version of the IETF drafts and the latest
standards are often available. Thus, we recommend now
to skip this simulation step to go directly to emulation,
simulating only the PHY layer. Possibly, simulation may
still be used to study in depth a very specific phenomenon,
and not the whole behavior of a full stack.

C. Testbeds

As it was previously exposed, testing and verifying new
protocols and applications only over simulations may imply
simplified assumptions, given the absence of accurate energy
and radio simulation models, as well as considering the great
complexity of real deployments.

Therefore, performing experiments with real hardware al-
lows scientists to analyse performance of their applications
under realistic environments. Indeed, due to the recent tech-
nological advances, the cost of such hardware has been re-
duced, thus, allowing the deployment of various large-scale
controllable and manageable experimental testbeds.

Many testbeds are open to the research community for
conducting their experiments with different characteristics, as
they are summarized in Table III.

In order to ease the choice of the testbed and facilitate
the experiments, we propose some guidelines for users to use
repeatable setups and obtain reproducible results.

1) Characteristics: Existing testbeds present their own
characteristics that should be carefully studied before opting
for a given facility.

18

• Hardware requirements: They play a critical role for
conducting realistic performance evaluations. The testbed
of choice should correspond to the appropriate hardware
requirements of the tested application in order to enable
the researchers to investigate in depth its functionality
prior to real deployment. The hardware parameters of a
physical LLN platform include the network heterogeneity
and scalability, where the underlying devices play dif-
ferent roles and reserve various resources. According to
Yarvis et al. [117], heterogeneity can be distinguished
into three types. The first type is the computational
heterogeneity where some of the nodes have increased
computational abilities, such as the sink nodes. Another
type that could be considered is the link heterogeneity
where some of the nodes may have wired interfaces in
order to establish reliable communication links. The last
type is the energy heterogeneity where the nodes may
utilize different energy resources.

• Radio environment and physical topology: Radio prop-
agation necessarily depends on the environment of a
testbed (e.g., materials, thickness of ceiling and walls,
density of plants in case of outdoor platform). Users
may select a testbed whose deployment area presents
the more similarities with the one of the target applica-
tion. In addition, some facilities either offer only indoor
nodes (e.g., Indriya, FIT IoT-lab) while others include
outdoor devices (e.g., ORBIT, FLOCKLAB). Testbeds
also greatly differ in terms of number of devices that
are made available. As FLOCKLAB presents 40 sensors,
TWIST or Indriya involve more than 100 motes, while
FIT IoT-lab announces more than 2,500 nodes that can be
booked for experiments. Once again, those characteristics
should be studied carefully before choosing a platform.
Note that some testbeds may allow end users to book only
a subset of the available devices. Consequently, on some
facilities, various experiments may co-exist and exper-
imented solutions would then face noisy environments.
This may be considered as a perfect environment for
users aiming to test their solutions under unanticipated
interferences.

• Mobile nodes: Many LLN applications involve mobile
nodes that require special communicating schemes in or-
der to interchange sensory data and information. Testing
and executing mobile scenarios during an experimenta-
tion procedure requires to involve and combine advanced
and intelligent technologies such as robots. Consequently,
few of the widely popular open platforms do support
mobility [118], even though more and more modern
experimental facilities employ robotic and automation
systems (e.g., Emulab, FIT IoT-LAB, KANSEI). Numer-
ous challenges need to be addressed when having mobile
robots in a testbed, namely, charging, remote administra-
tion and maintenance of the robots. Indeed, robots must
be able to reach their docking stations automatically. They
must also be able to follow the assigned trajectories.
Thus, accurate positioning and path planning mechanisms
with obstacle avoidance should be supported by such
testbeds. Conversely, remote users must be able to interact

with robots over reliable links (e.g., WiFi).

2) Proposed services: In addition to these characteristics,
open testbeds may propose some services that would ease
the setup of experiments while guaranteeing uninterrupted
operations.

• Maintenance and configuration: Regular maintenance
is appropriate to verify that the hardware and the software
architecture of the testbed are still operational so as to
manage effectively the experimental queue. Additionally,
scheduled maintenance must take place in order to update
the provided services and hardware components like
the motes’ batteries, such to optimize the functionality
and extend the lifetime of the facility. End users would
expect such information to be available in order to select
the most appropriate facility. Furthermore, regarding the
configuration of experiments, existing platforms present
various tools that allow to design, conduct and analyse
the experiments in a convenient and reliable way. The
prime objective for end users is to finely configure their
experimental setup. This includes the communication
interfaces and protocols between the user and the underly-
ing hardware in the different network layers, the scenario
repeatability and possible simulation interoperability.

• Radio link characterization: In addition to the physical
topology (i.e., location of nodes), testbeds may expose the
radio topologies that can be tested. For instance, most of
routing and MAC protocols require bidirectional links so
that two nodes can exchange information (e.g., data and
acknowledgement frames). Due to the realistic environ-
ments in which testbeds are deployed, such assumption
may not hold. Thus, end users should be able to identify
the different radio links and their associated properties
(e.g., average bit error rate, distribution of radio link
quality over time) before running their solution. Some
dedicated tools would assist them to characterize the
used topologies and their associated trust level. The latter
would allow users to select the most appropriate nodes
and links for testing their own solutions and to compare
the obtained results against the existing ones.

• Topology control: Once the radio topology and link
characterization are known to the users, the topology may
be controlled. Some facilities would allow for topology
control with either basic selection of used nodes or
enhanced transmission power adaptations. Users may also
be able to impact wireless transmission by inducing
radio noise and interferences within the network. Some
testbeds have incorporated such features (e.g., FIT IoT-
lab). Even though a fine tuning of the jamming devices is
required to reproduce observed realistic radio conditions,
such a service could counterbalance the too idealistic
environments in which some testbeds would be deployed.
Additionally, the majority of LLN testbeds are equipped
with commercially successful motes that provide different
out-of-the-box functionalities such as to enable users to
conveniently test various types of applications. Another
option for addressing scalability and heterogeneity issues,
is the federated model, which enables local experimental

19

Testbed Nodes Description
Emulab
[119]

580 PC nodes with USRP
6 MICA2 robots
30 stationary MICA2

A combination of hardware and software tools. There are many instances of the Emulab
framework deployed in more than two dozens sites around the world.

FIT IoT-
LAB [?]

1144 MSP430-based motes
956 ARM Cortex M3 nodes
561 ARM Cortex-A8 nodes
108 open host nodes
50 wireless mesh routers
six robots (127 planned)

Over 2700 indoor wireless sensor nodes spread across six different sites in France. Fixed
and mobile nodes, embedding a variety of wireless sensors are available, with different
processor architectures (MSP430, STM32 and Cortex-A8), and different wireless chips
(802.15.4 PHY @ 800 MHz or 2.4 GHz). In addition, open nodes can receive custom
wireless sensors for inclusion in IoT-LAB testbed.

FLOCKLAB
[121]

30 Observers equipped with any four of
Tmote Sky, OpenMote, MSP430-CCRF,
TinyNode, Opal, and Iris motes

A mixed indoor/outdoor topology, able to support different services such as measuring
power consumption and time accurate tracing and actuation.

Indriya
[122]

139 TelosB Based on MoteLab. The nodes are powered over the USB backchannel and equipped
with light, temperature, acoustic, magnetometer, 2- axis accelerometer and infra-red
sensors.

Intel Mirage
[123]

97 MICA2
51 MICA2DOT motes

Based on a resource allocation system where the testbed resources are allocated,
according to a repeated combinatorial auction. The motes are equipped with pressure,
temperature, light and humidity sensors and powered over Ethernet.

KANSEI
[124]

210 stationary nodes with Stargates,
TmoteSky and Extreme Scale Motes
50 portable Trio motes
five robots

Heterogeneous, hybrid experimental LLN laboratory that combines hardware motes,
simulation engines and data generation devices

MAP [125] 32 static mesh routers
5 laptops and 16 PDAs

An experimental WMN laboratory. The testbed does not provide power consumption
awareness.

MoteLab
[126]

Fixed array of 30 MICAz
190 TelosB

One of the first open LLN testbeds, MySQL back-end server, a PHP web server, Java-
based data logger and a Job Daemon for assigning tasks to the motes, Wall-powered
with in-situ power measurement device in addition to temperature, humidity and light
sensors.

NetEye
[127]

130 TelosB motes
15 laptops

An open LLN experimental testbed equipped with light sensors and a mixed USB and
Ethernet backchannel.

ORBIT
[128]

400 nodes with more than 1,500 radio de-
vices

A radio grid network testbed that consist of a remotely accessible indoor testbed, in
addition to an outdoor trial network with mobile nodes.

Tutornet
[129]

13 Stargates
91 TmoteSky
13 MICAz motes

A simple three-tiered, clustered LLN testbed

TWIST
[130]

102 TmoteSky
102 eyesIFX

A central PostgreSQL server which is hierarchically organized in three layers, the
servers, the super nodes and the sensor nodes. USB powered with light and temperature
sensors. The super nodes are Network Link Storage Units.

UMass
DieselNet
[131]

40 buses with GPS devices
HaCom Open Brick computer with 3 radios

A vehicular DTN of 40 public transport busses and various throwboxes that work as
relays that promote the messages to the central repository.

WARPLab
[132]

Up to16 WARP nodes An experimental framework for experimentation of physical layer protocols controlled
by a single PC by interfacing WARP nodes directly with MATLAB.

TABLE III: Summarized characteristics of popular LLN testbeds.

platforms to interconnect under a common framework in
order to share their resources and provide more powerful
evaluations, similar to WISEBED [133] and FIT-IoT [?]
testbeds.

D. Which OS to choose?

Billions of sensor nodes, actuators smart meters and home
appliances will be interconnected by wireless networks or
Power Line Communication (PLC) [134], thus, giving birth
to the IoT. Therefore, it is essential to have a lightweight
operating systems that fulfills the requirements of such ultra
low-power and extremely constrained, in terms of computing
power and memory, devices.

In this subsection, we briefly introduce the operating sys-
tems for embedded and constrained devices that represent the
most promising approaches towards realizing industrial (and
not only) Low Power Lossy Networks. We focus on smart
things with sufficient autonomous capabilities (i.e. not RFID
tags) but which must also be energy aware (i.e. save energy).
Note that most OSs (if not all) are written in the C program-
ming language. Hereafter, we will detail the most popular

operating systems. Hahm et al. [135] provide a very detailed
and comprehensive survey about LLN operating systems.

1) TinyOS: TinyOS, based on event driven design, is so
far one of the most used open source OSs for LLN scenar-
ios [136]. It is written in the nesC programming language,
a dialect of the C language, as a set of cooperating tasks
and processes. TinyOS is designed for very low-power and
constrained devices, i.e., 8 bit and 16 bit platforms, and is
popular for its sophisticated design. Finally, it comes with
BLIP network stack, an implementation of the 6LoWPAN
stack.

2) Contiki OS: Contiki OS is one of the leading oper-
ating systems for embedded systems both in industry and
in academia. Contiki is developed in C language, while
some parts make use of macro-based abstractions (e.g., Pro-
tothreads [137]), and has been ported to a number of mi-
crocontroller architectures, including the Texas Instruments
MSP430 and the Atmel AVR [142]. Contiki is running on the
ESB platform [139] that uses MSP430 microcontroller with 2
kilobytes of RAM and 60 kilobytes of ROM running at 1 MHz.
Furthermore, Contiki comes with a number of network stacks
such as the uIP stack (with support for IEEE802.15.4-TSCH,

20

Emulator Language Models14 Specific features

M
ob

ili
ty

IE
E

E
80

2.
15

.4
-2

00
6

B
lu

et
oo

th

D
SM

E

T
SC

H

pr
ea

m
bl

e
sa

m
pl

in
g

R
PL

C
oA

P

Cooja C y y n n y y y y GUI interface
TOSSIM C & nesc n y n n n y y y complex learning curve for nesc
MSPSim C n n n n n n n n independent from the OS, reused by many

platform and OS specific emulators
WSim/WSNetC y y n n n n y n independent from the OS, to be plugged

with WSNet [106].
OpenWSN/
OpenSim

C &
Python

n n n n y n y y GUI (web-based) interface

TABLE IV: Summarized characteristics of popular network emulators (all of them are opensource).

IPv6, 6LoWPAN, RPL, and CoAP) and the Rime stack, which
provides a set of distributed programming abstractions.

3) FreeRTOS: FreeRTOS is developed since 2002 and is so
far one of the most used open-source and Real-Time Operating
Systems (RTOSs) for embedded and constrained devices. It
has been ported to a large number of micro-controllers, and is
the de-facto standard solution for micro-controllers and small
micro-processors. FreeRTOS is written mostly in the C lan-
guage, but there are a few assembly functions (i.e., mostly in
architecture-specific scheduler routines). Even though, it does
not come with its own full network stack, however, third-party
network stacks can be employed for Internet connectivity.

4) RIOT: RIOT is designed and developed since 2012, by
a growing, world-wide open-source community. RIOT is a
microkernel-based RTOS with multi-threading support, while
employing an architecture inherited from FireKernel [140].
The OS is written in C, while applications and libraries can
also be implemented in C++. Furthermore, RIOT comes with
several network stacks, such as the implementation of the
full 6LoWPAN stack (i.e., the gnrc stack), a port of the
6TiSCH stack OpenWSN, and a port of the information centric
networking stack CCN-lite15.

5) OpenWSN: The OpenWSN project16 was founded in
2010 (from the Berkeley Sensor & Actuator Center at UC
Berkeley) and is developed since then by a growing open-
source community that contributes to the Industrial Internet
of Things (IIoT). OpenWSN comes with an implementa-
tion of a fully standards-based protocol stack (i.e., 6TiSCH
network [141]) designed for capillary networks, rooted in
the new IEEE802.15.4-2015 TSCH standard, and providing
IPv6 connectivity to ultra-reliable and low-power industrial
networks. Moreover, OpenWSN comprises a Board Support
Package (BSP) i.e., a simple hardware abstraction.

In Table V, We here focus on most commonly available
platforms, as summarized in Table III.

E. Emulation

To complete our presentation of the available tools with
emulators since many solutions are tightly related with the

15http://ccn-lite.net
16http://openwsn.org/

OS and protocol stack to use. Only WSim and MSPsim are
independent from the OS, but some key features (such as phys-
ical communications, mobility support, high-level description,
etc.) are not emulated.

However, emulation is a very convenient tool for perfor-
mance evaluation. The whole hardware platform is emulated,
so that the same implementation may be used in testbeds or
even in real-life. By debugging the emulated mote, we can
also identify more efficiently the potential bugs.

Table IV illustrates a summary of the different characteris-
tics and protocols supported by the major emulators for LLNs.

1) COOJA: is an open source and flexible simulator for
the Contiki OS specialized for sensor nodes [142]. COOJA
supports a large variety of hardware, including the most
popular platforms (TelosB, Zolertia Z1, etc.) This emulator
is written in Java and is supported consequently on mist of
the OS.

2) MSPSim: MSPSim is an open source instruction set
emulator able to simulate complete motes such as Tmote Sky,
as well as custom motes based on Texas Instruments MSP430
microcontroller [143]. Extendibility is supported through a
variety of available build-in implementations of different pe-
ripheral devices as components, which are further simulated
based on a discrete-event approach.

3) TOSSIM: is a discrete event simulator and part of
the TinyOS project, which is an embedded operating OS
specialized for sensor networks [144]. Thus, TinyOS applica-
tions can be compiled directly into the TOSSIM framework.
Furthermore, TOSSIM replaces the low-level components of
a TinyOS system, such as the Analog-to-Digital Converter
(ADC), the Master Clock, the EEPROM and several of the
components in the radio stack in order to emulate their
real behavior. It also provides a GUI that enables handy
visualization, designing and debugging of running simulation
scenarios in a controlled and repeatable environment.

4) WSim: is a platform simulator that was developed as part
of the Worldsense framework [145]. It relies on cycle-based
simulations using microprocessor instruction-driven timings.
The simulator is able to perform a full simulation of hardware
events that occur in the platform and to give back to the
developer a precise timing analysis of the simulated software.
FreeRTOS, Contiki and TinyOS operating systems have been

http://ccn-lite.net
http://openwsn.org/

21

Operating
system

Latest release Supported
architectures

Stacks RAM / ROM
(min. required)

Real-Time
support

Emulator

A
tm

el
AV

R

PI
C

32

T
I

M
SP

43
0

ST
M

32

St
an

da
rd

T
C

P/
IP

6L
oW

PA
N

/
R

PL
/

C
oA

P

6T
iS

C
H

Contiki-NG 4.0 (Nov. 6th, 2017) x x x x x x 2kB / 30kB partial COOJA
FreeRTOS 10.0.0 (Nov. 28th, 2017) x x x x x x 1kB / 5kB full Windows FreeRTOS port
OpenWSN 1.8.0 (Oct. 5th, 2014) x x x x x 3,7kB / 31kB partial OpenSim
RIOT 2017.10 (Oct. 27th, 2017) x x x x x 1,5kB / 5kB full None official, even though

RIOT OS executables can
be simulated with Cooja.

TinyOS 2.1.2 (Aug. 20th, 2012) x x x 1kB / 4kB none TOSSIM

TABLE V: Summarized characteristics of popular and open-source operating systems.

successfully tested on Worldsense. WSim can be used in
standalone mode for debugging purpose, or interfaced with
the WSNet simulator to perform the simulation of a complete
sensor network.

5) OpenSim: is an open source emulator and simulator
which was tailored to work with OpenWSN [33]. It is written
in Python, and can be handled via a web-based interface to
control the devices, push some commands, change the link
quality, etc. Moreover, it can even mix emulated devices with
real devices. It supports currently a very large variety of
hardware platforms.

6) Conclusions: Emulating a device is CPU intensive,
while emulating a large-scale network requires a powerful
machine. Thus, emulation/simulation is limited to small scale
topologies for prototyping to focus on a given phenomenon
while large-scale evaluations may use a public testbed.

Emulators are often tied with a particular OS. Thus, the
communication stack will probably guide the choice for
the performance evaluation. For instance, COOJA seems the
most relevant platform for preamble sampling protocols while
OpenWSN is strongly recommended for a 6TiSCH stack since
it integrates the last updates from the IETF Working Group.

VIII. GUIDELINES AND DIRECTIONS

A. Reproducibility

An experiment has to be reproducible, leading to the same
results, when facing to the exactly same conditions [146]. With
simulation, it should be sufficient to provide a detailed descrip-
tion of the simulation setup and the implementation of the
algorithm/protocol. Unfortunately, such detailed description is
very infrequent in the literature.

According to our perspective, performance evaluation
should describe the following points:

• Exhaustive description of the setup: the authors have
to describe without any ambiguity their performance
evaluation setup (traffic, topology, models). The source
code should be ideally distributed, or at least the binary
(firmware) of the protocol’s stack used for the perfor-
mance evaluation;

• Scenario Replay: a set of scripts that permit to replay all
the experiments should be provided, so that anyone can
reply the same scenario on the same or different testbeds.

For scenarios considering the mobility, the testbeds
should provide a way to replay the same trajectory,
with the same signal quality. This represents currently
a key challenge since GPS is inaccurate for the indoor
environments. Currently, even with perfect localization
of all robots, trajectories are very difficult to replay,
especially due to the odometer drifts.

• A raw dataset should be available in order to provide
the whole set of results (before filtering). These measures
have to be stored durably, to guarantee a free access in
the next decades. This dataset can be easily re-interpreted
later, using the latest, up-to-date scientific knowledge, like
Raman et al. did with the MIT roofnet dataset [147].

• A public repository should collect all the traces, the
implementation and the scripts. Crawdad [148] aims to
collect a list of traces for different wireless networks
(mainly mobility traces). This good practice would sim-
plify the quantitative comparison against related work and
would also allow other researchers to analyse the results
in order to identify new phenomena/problems.

Regarding experimentations, we shall be able to replay the
same experimental setup over stable and finely controlled
hardware components. The real-world environment should
be controllable to provide exactly the same conditions. This
imposes to guarantee stability of hardware and environment
components over time. Similarly to Guix-HPC17, an effort to
optimize GNU Guix for reproducible scientific workflows in
High-Performance Computing (HPC), a future direction would
consist in designing building blocks that could be configured
and used within IoT testbeds (e.g., sets of topologies, mobility
and traffic patterns, interference maps) in order to conduct
repeatable setups and publish reproducible results.

B. Diversity and robustness

Performance evaluation may be very dependent on the
conditions. The testbed or the simulation models have to be the
most realistic as possible to predict the actual performance. An
experimental validation is even not the panacea since different
testbeds do not provide the same environmental conditions
(e.g. indoor vs outdoor, etc).

17https://guix-hpc.bordeaux.inria.fr/

https://guix-hpc.bordeaux.inria.fr/

22

In order to make the performance evaluation robust, we
have consequently to evaluate an algorithm that in the most
diverse situations it will have to take into account the following
aspects:

• Hardware: If a proposition is very closely related to the
hardware used, we should proceed to the performance
evaluation on top of different hardware (e.g. different
radio chipsets to verify the presence of asymmetrical
links);

• Topology: To verify that a solution performs well in any
situation, we should study its behaviour in various con-
ditions and to measure the impact of different parameters
(e.g. density, scalability, traffic intensity);

• External Interference: To make the experiments re-
producible, some nodes (with the same or different
technologies) may be used to generate an interfering
signal. Such experimental setup would maximize the re-
producibility, while estimating the robustness to external
interference [7].

Federated testbeds should make such comparison easier,
letting researchers to reserve several different testbeds [149].

C. Long term evaluation

While low power lossy networks expect to be deployed for a
long-term use, most of the performance evaluations focus sur-
prisingly on experiments which last for a few minutes. Many
papers even do not specify the duration of their experiments /
simulations [12].

To demonstrate the relevance of LLNs, solutions have
been deployed and monitored. Zebranet [150] and Sen-
sorscope [151] provide results over one month. However, they
often consist in real deployments, where the application is the
main concern.

To more accurately capture the actual performance of a low
power lossy network, we need to study more in depth the
following points:

• Convergence: Many papers propose to discard the first
minutes of the experiments / simulations and focus on
the steady state only. However, the bootstrapping phase
plays a major role in the convergence time and thus
appears of primary importance as well. For instance, with
RPL it is common that many routes may change initially,
consuming a large overhead [152]. Thus, we have to
study more carefully this phase in order to accelerate the
convergence of the solutions: waiting for a few hours may
be unacceptable for many deployments.

• Long-term evaluations: we need to start experiments
which should last at least for few days. Rare phenomena
may have significant impact to the performance of the
network, but can only be captured if the experiment lasts
long enough to capture all the situations. Furthermore, the
characteristics of the network may even be time-variant
(see Section IV-A3c).

D. Re-injection of real measures

Simulations are often far from the reality, since they are
based on simple models, concerning for instance the PHY

layer. Unfortunately, the interference model deeply impacts the
performance [74]. Even worse, the behavior of the network has
been proved to deeply depend on the simulator for wireless
networks [153]. On the contrary, experiments are complicated
to reproduce and interpret, because may external factors (e.g.,
external interference) impact the performance of the network.
Emulation seems a promising way to simplify the performance
evaluation, but it relies also on a synthetic PHY model to
mimic the transmissions.

A promising approach seems to combine experiments
through a testbed with simulation or emulation: the experi-
ments provide the PHY measures concerning the success of
each transmission, information re-injected in simulation or
emulation to mimic the behavior of a real radio medium.
The same measures may be re-injected to make the evaluation
reproducible.

A few initiatives already proposed a free access to such
datasets:

• the packet delivery ratio for 55 devices, over 16 frequen-
cies at USC18 [154].

• aggregated statistics (e.g., Packet Delivery Ratio, mean
LQI) for a testbed with 10 nodes executing RPL during
one day19.

• packet delivery statistics (i.e. packet received or not)
for 267 radio links, over the 16 IEEE802.15.4 channels,
during 1.5 hour20.

Having the raw (non aggregated) results should be preferred
to be the most generic as possible.

Unfortunately, probing each radio link individually to esti-
mate the level of interference, and the probability of collisions
is very expensive. Indeed, we have to test each subset of radio
links iteratively, with a train of probe packets [7]. Such an
exhaustive method is quickly inapplicable, and some heuristics
have to be proposed to mimic actually a real deployment.

E. Definition of Scenarii and Benchmarking

For low power and lossy networks, we have a profusion of
solutions which are evaluated in very different conditions [12].
Unfortunately, multiplying the conditions complicates signifi-
cantly the interpretation and the comparison. The IETF ROLL
WG has defined in the past the requirements for smart build-
ing [4], smart homes [155] and industrial [156] applications.
Similarly, the ETSI has defined the traffic profile for many
applications in smart cities, detailing the requirements in delay,
bandwidth, etc. [157].

We need to define clearly some scenarii:
• we need to define scenarii that each researcher should use

for a collection of different applications. The scenario
should be entirely defined (topology, link quality, vari-
ability, etc.) so that the different results are reproducible
and so that we can compare easily different algorithms /
protocols;

• we need to collect real data on large-scale testbeds
corresponding to these scenarii. These measures can then

18http://anrg.usc.edu/www/tutornet/
19https://github.com/apanouso/wsn-indfeat-dataset
20https://github.com/ftheoleyre/fitiotlab-multichannel-dataset

http://anrg.usc.edu/www/tutornet/
https://github.com/apanouso/wsn-indfeat-dataset
https://github.com/ftheoleyre/fitiotlab-multichannel-dataset

23

be re-injected to replay the same experiment, so that
emulation can then be used to automatize the comparisons
(cf section VIII-D).

IX. CONCLUSIONS

Validation and verification during the development of pro-
tocols are a matter of prime importance. A large variety of
practical and theoretical tools has been developed to assist
researchers to assess the performance of their solutions. This
tutorial aims at providing guidelines and a list of good prac-
tices for researchers involved in evaluating the performance of
protocols for low-power and lossy networks. Several papers
already provide a comprehensive view of existing testbeds
and network simulators, as well as describing some of their
individual pitfalls.

Thus, we here adopted an approach focused rather on
the methodology and in particular what should a researcher
take into consideration when evaluating performance of an
algorithm. Therefore, we reviewed various parameters that
should be considered during such performance evaluation.

Furthermore, we detailed the general approach adopted to
evaluate the performance of networking protocols (i.e., layers
2 and 3) for low-power and lossy networks. In particular,
we have tried to provide detailed information that could
help answering questions like “How should a performance
evaluation be started?” or “What are the different choices
provided to evaluate performance and the different steps to
be followed in order to definitely validate a contribution?”.
Therefore, we especially surveyed numerous models and tools
that are available to the research community.

Typically, such a tutorial article makes sense for any re-
searcher (i.e., MSc or PhD student, engineer) starting in this
research area. By reading this paper, one could avoid the
common pitfalls that most of the researchers face when they
attempt to carry out a performance evaluation. The recent
huge attention drawn on the reproducibility of the related
research domain is nothing else but the willingness to adopt
a methodical approach by considering all the different key
aspects of LLNs.

REFERENCES

[1] J. M. Schleicher, M. Vögler, S. Dustdar, and C. Inzinger, “Application
architecture for the internet of cities: Blueprints for future smart city
applications,” IEEE Internet Computing, vol. 20, pp. 68–75, Nov 2016.

[2] B. Ahlgren, M. Hidell, and E. C. H. Ngai, “Internet of things for
smart cities: Interoperability and open data,” IEEE Internet Computing,
vol. 20, pp. 52–56, Nov 2016.

[3] B. Zhou, J. Cao, X. Zeng, and H. Wu, “Adaptive traffic light control
in wireless sensor network-based intelligent transportation system,” in
2010 IEEE 72nd Vehicular Technology Conference - Fall, pp. 1–5, Sept
2010.

[4] J. Martocci, P. D. Mil, N. Riou, and W. Vermeylen, “Building au-
tomation routing requirements in low-power and lossy networks,” RFC
5687, IETF, 2010.

[5] G. Z. Papadopoulos, J. Beaudaux, A. Gallais, T. Noel, and G. Schreiner,
“Adding value to WSN simulation using the IoT-LAB experimental
platform,” in International Conference on Wireless and Mobile Com-
puting, Networking and Communications (WiMob), IEEE, 2013.

[6] G. Z. Papadopoulos, A. Gallais, G. Schreiner, and T. Noël, “Importance
of Repeatable Setups for Reproducible Experimental Results in IoT,” in
Proceedings of the 13th ACM Symposium on Performance Evaluation
of Wireless Ad Hoc, Sensor, and Ubiquitous Networks (PE-WASUN
’16), pp. 51–59, 2016.

[7] V. Kotsiou, G. Z. Papadopoulos, P. Chatzimisios, and F. Theoleyre,
“Is Local Blacklisting Relevant in Slow Channel Hopping Low-Power
Wireless Networks?,” in Proceedings of the IEEE International Con-
ference on Communications (ICC), 2017.

[8] G. Gaillard, D. Barthel, F. Theoleyre, and F. Valois, “Service level
agreements for wireless sensor networks: A wsn operator’s point of
view,” in 2014 IEEE Network Operations and Management Symposium
(NOMS), pp. 1–8, May 2014.

[9] M. R. Palattella, N. Accettura, X. Vilajosana, T. Watteyne, L. A.
Grieco, G. Boggia, and M. Dohler, “Standardized protocol stack for
the internet of (important) things,” IEEE Communications Surveys
Tutorials, vol. 15, pp. 1389–1406, Third 2013.

[10] V. Karagiannis, P. Chatzimisios, F. Vázquez-Gallego, and J. Alonso-
Zarate, “A survey on application layer protocols for the internet of
things,” Transaction on IoT and Cloud Computing,, vol. 1, January
2015.

[11] R. C. Martin, Agile Software Development: Principles, Patterns, and
Practices. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2003.

[12] G. Z. Papadopoulos, K. Kritsis, A. Gallais, P. Chatzimisios, and
T. Noel, “Performance evaluation methods in ad hoc and wireless
sensor networks: A literature study,” IEEE Communications Magazine,
vol. 54, no. 1, pp. 122–128, 2016.

[13] I. Stojmenovic, “Simulations in Wireless Sensor and Ad Hoc Networks:
Matching and Advancing Models, Metrics, and Solutions,” IEEE Com-
munications Magazine, vol. 46, no. 12, pp. 102–107, 2008.

[14] K. Langendoen, A. Baggio, and O. Visser, “Murphy loves potatoes:
experiences from a pilot sensor network deployment in precision
agriculture.,” IPDPS 2006, p. 8 pp., 2006.

[15] S. Lohs, J. Nolte, G. Siegemund, and V. Turau, “Self-stabilization -
a mechanism to make networked embedded systems more reliable?,”
in Symposium on Reliable Distributed Systems (SRDS), pp. 317–326,
IEEE, Sept 2016.

[16] V. Vazirani, Approximation Algorithms. Springer, 2002.
[17] P. Bremaud, Markov Chains: Gibbs Fields, Monte Carlo Simulation,

and Queues. Springer, 2008.
[18] R. Soua, P. Minet, and E. Livolant, “Modesa: An optimized multichan-

nel slot assignment for raw data convergecast in wireless sensor net-
works,” in Performance Computing and Communications Conference
(IPCCC), 2012 IEEE 31st International, pp. 91–100, Dec 2012.

[19] M. R. Palattella, N. Accettura, M. Dohler, L. A. Grieco, and G. Boggia,
“Traffic aware scheduling algorithm for reliable low-power multi-
hop ieee 802.15.4e networks,” in Personal Indoor and Mobile Radio
Communications (PIMRC), 2012 IEEE 23rd International Symposium
on, pp. 327–332, Sept 2012.

[20] A. Keshavarzian, H. Lee, and L. Venkatraman, “Wakeup scheduling in
wireless sensor networks,” in Proceedings of the 7th ACM International
Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc
’06, (New York, NY, USA), pp. 322–333, ACM, 2006.

[21] X. Yin and X. Cheng, Propagation Channel Characterization, Param-
eter Estimation, and Modeling for Wireless Communications. Wiley &
Sons, 2016.

[22] D. Djenouri and M. Bagaa, “Synchronization protocols and implemen-
tation issues in wireless sensor networks: A review,” IEEE Systems
Journal, vol. 10, pp. 617–627, June 2016.

[23] “Network simulator 2 (ns-2).” https://www.isi.edu/nsnam/ns/.
[24] “Network simulator 3 (ns-3).” http://www.isi.edu/nsnam/ns/, 2011.
[25] “Omnet++.” https://omnetpp.org/.
[26] X. Zeng, R. Bagrodia, and M. Gerla, “Glomosim: A library for parallel

simulation of large-scale wireless networks,” SIGSIM Simul. Dig.,
vol. 28, pp. 154–161, July 1998.

[27] “Riverbed modeler.” https://www.riverbed.com.
[28] “The fastest, most scalable network modeling platform.” http://web.

scalable-networks.com/qualnet-network-simulator.
[29] L. Yan and N. McKeown, “Learning networking by reproducing

research results,” SIGCOMM Comput. Commun. Rev., vol. 47, pp. 19–
26, May 2017.

[30] C. Haas, J. Wilke, and V. Stöhr, “Realistic simulation of energy
consumption in wireless sensor networks,” in European Conference
Wireless Sensor Networks (EWSN), (Trento, Italy), pp. 82–97, 2012.

[31] J. Polastre, R. Szewczyk, and D. Culler, “Telos: enabling ultra-low
power wireless research,” in Proceedings of the 4th ACM/IEEE Inter-
national Conference on Information Processing in Sensor Networks
(IPSN), pp. 364–369, 2005.

[32] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-
Level Sensor Network Simulation with COOJA,” in Proceedings of
the 31st Annual IEEE International Conference on Local Computer
Networks (LCN), pp. 641–648, 2006.

https://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/
https://omnetpp.org/
https://www.riverbed.com
http://web.scalable-networks.com/qualnet-network-simulator
http://web.scalable-networks.com/qualnet-network-simulator

24

[33] T. Watteyne, X. Vilajosana, B. Kerkez, F. Chraim, K. Weekly, Q. Wang,
S. Glaser, and K. Pister, “Openwsn: a standards-based low-power wire-
less development environment,” Transactions on Emerging Telecommu-
nications Technologies, vol. 23, no. 5, pp. 480–493, 2012.

[34] L. M. Feeney and M. Nilsson, “Investigating the energy consumption
of a wireless network interface in an ad hoc networking environment,”
in INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE, vol. 3,
pp. 1548–1557 vol.3, 2001.

[35] I. Dietrich and F. Dressler, “On the lifetime of wireless sensor net-
works,” ACM Transactions on Sensor Networks (TOSN), vol. 5, pp. 1–
39, Feb. 2009.

[36] D. Tian and N. D. Georganas, “A coverage-preserving node scheduling
scheme for large wireless sensor networks,” in Proceedings of the
1st ACM International Workshop on Wireless Sensor Networks and
Applications, WSNA ’02, (New York, NY, USA), pp. 32–41, ACM,
2002.

[37] M. Saleem, I. Ullah, and M. Farooq, “Beesensor: An energy-efficient
and scalable routing protocol for wireless sensor networks,” Informa-
tion Sciences, vol. 200, pp. 38 – 56, 2012.

[38] G. Z. Papadopoulos, V. Kotsiou, A. Gallais, P. Chatzimisios, and
T. Noel, “Low-Power Neighbor Discovery for Mobility-Aware Wireless
Sensor Networks,” Elsevier Ad Hoc Networks, vol. 48, pp. 66–79, 2016.

[39] P. Huang, L. Xiao, S. Soltani, M. W. Mutka, and N. Xi, “The
evolution of mac protocols in wireless sensor networks: A survey,”
IEEE Communications Surveys Tutorials, vol. 15, pp. 101–120, First
2013.

[40] G. Z. Papadopoulos, J. Beaudaux, A. Gallais, and T. Noel, “T-AAD:
Lightweight Traffic Auto-ADaptations for Low-power MAC Proto-
cols,” in Proceedings of the 13th IEEE IFIP Annual Mediterranean
Ad Hoc Networking Workshop (MED-HOC-NET), pp. 79–86, 2014.

[41] A. Dunkels, “The contikimac radio duty cycling protocol,” Tech. Rep.
T2011:13, SICS, 2011.

[42] A. Mavromatis, G. Z. Papadopoulos, X. Fafoutis, A. Elsts,
G. Oikonomou, and T. Tryfonas, “Impact of Guard Time Length on
IEEE 802.15.4e TSCH Energy Consumption,” in Proceedings of the
13th Annual IEEE International Conference on Sensing, Communica-
tion, and Networking (SECON), pp. 1–3, 2016.

[43] G. Z. Papadopoulos, A. Mavromatis, X. Fafoutis, N. Montavont,
R. Piechocki, T. Tryfonas, and G. Oikonomou, “Guard Time Optimisa-
tion and Adaptation for Energy Efficient Multi-hop TSCH Networks,”
in Proceedings of the IEEE 3rd World Forum on Internet of Things
(WF-IoT), pp. 301–306, 2016.

[44] “IEEE Standard for Low-Rate Wireless Personal Area Networks (LR-
WPANs).” IEEE Std 802.15.4-2015 (Revision of IEEE Std 802.15.4-
2011), April 2016.

[45] L. Gu and J. A. Stankovic, “Radio-triggered wake-up for wireless
sensor networks,” Real-Time Systems, vol. 29, no. 2, pp. 157–182, 2005.

[46] D. Giustiniano, D. Malone, D. J. Leith, and K. Papagiannaki, “Mea-
suring transmission opportunities in 802.11 links,” IEEE/ACM Trans-
actions on Networking, vol. 18, pp. 1516–1529, Oct 2010.

[47] F. Hermans, O. Rensfelt, T. Voigt, E. Ngai, L. A. Norden, and
P. Gunningberg, “Sonic: Classifying interference in 802.15.4 sensor
networks,” in Information Processing in Sensor Networks (IPSN), 2013
ACM/IEEE International Conference on, pp. 55–66, April 2013.

[48] R. Jain, D. Chiu, and W. Hawe, “A quantitative measure of fairness
and discrimination for resource allocation in shared computer systems,”
Technical Report DEC-TR-301, Digital Equipment Corporation, 1984.

[49] F. Tobagi and L. Kleinrock, “Packet switching in radio channels: Part ii
- the hidden terminal problem in carrier sense multiple-access and the
busy-tone solution,” IEEE Transactions on Communications, vol. 23,
pp. 1417–1433, December 1975.

[50] R. P. Liu, Z. Rosberg, I. B. Collings, C. Wilson, A. Y. Dong, and S. Jha,
“Overcoming radio link asymmetry in wireless sensor networks,” in
Personal, Indoor and Mobile Radio Communications, 2008. PIMRC
2008. IEEE 19th International Symposium on, pp. 1–5, Sept 2008.

[51] G. Z. Papadopoulos, J. Beaudaux, A. Gallais, P. Chatzimisios, and
T. Noel, “Toward a Packet Duplication Control for Opportunistic Rout-
ing in WSNs,” in Proceedings of the IEEE Global Communications
Conference (GLOBECOM), pp. 94–99, 2014.

[52] S. Biswas and R. Morris, “Exor: Opportunistic multi-hop routing for
wireless networks,” in SIGCOMM, pp. 133–144, 2005.

[53] N. A. Pantazis, S. A. Nikolidakis, and D. D. Vergados, “Energy-
efficient routing protocols in wireless sensor networks: A survey,” IEEE
Communications Surveys Tutorials, vol. 15, pp. 551–591, Second 2013.

[54] T. Winter, et al., “RPL: IPv6 Routing Protocol for Low-Power and
Lossy Networks,” rfc 6550, IETF, 2012.

[55] T. Clausen, et al., “The lightweight on-demand ad hoc distance-vector
routing protocol - next generation (loadng),” draft 15, IETF, 2016.

[56] H. Huang, H. Yin, Y. Luo, X. Zhang, G. Min, and Q. Fan, “Three-
dimensional geographic routing in wireless mobile ad hoc and sensor
networks,” IEEE Network, vol. 30, pp. 82–90, March 2016.

[57] M. O. Farooq, C. J. Sreenan, K. N. Brown, and T. Kunz, “Design and
analysis of rpl objective functions for multi-gateway ad-hoc low-power
and lossy networks,” Ad Hoc Networks, vol. 65, pp. 78 – 90, 2017.

[58] A. A. K. Somappa, K. Øvsthus, and L. M. Kristensen, “An industrial
perspective on wireless sensor networks: A survey of requirements,
protocols, and challenges,” IEEE Communications Surveys Tutorials,
vol. 16, pp. 1391–1412, Third 2014.

[59] P. Kampstra, “Beanplot: A boxplot alternative for visual comparison
of distributions,” Journal of Statistical Software, 2008.

[60] F. Theoleyre and G. Z. Papadopoulos, “Experimental Validation of
a Distributed Self-Configured 6TiSCH with Traffic Isolation in Low
Power Lossy Networks ,” in Proceedings of the 19th ACM International
Conference on Modeling, Analysis and Simulation of Wireless and
Mobile Systems (MSWiM), 2016.

[61] S. Chessa and P. Santi, “Crash faults identification in wireless sensor
networks,” Computer Communications, vol. 25, no. 14, pp. 1273 –
1282, 2002.

[62] M. Eskola and T. Heikkilä, “Classification of radio channel distur-
bances for industrial wireless sensor networks,” Ad Hoc Networks,
vol. 42, pp. 19 – 33, 2016.

[63] O. Iova, F. Theoleyre, and T. Noel, “Stability and efficiency of rpl
under realistic conditions in wireless sensor networks,” in International
Symposium on Personal, Indoor, and Mobile Radio Communications
(PIMRC), pp. 2098–2102, IEEE, Sept 2013.

[64] M. Senel, K. Chintalapudi, D. Lal, A. Keshavarzian, and E. J. Coyle, “A
kalman filter based link quality estimation scheme for wireless sensor
networks,” in Global Telecommunications Conference (GLOBECOM),
pp. 875–880, IEEE, Nov 2007.

[65] E. Schiller, P. Starzetz, F. Theoleyre, and A. Duda, “Properties of
greedy geographical routing in spontaneous wireless mesh networks,”
in Global Telecommunications Conference, 2007. GLOBECOM ’07.
IEEE, pp. 4941–4945, Nov 2007.

[66] F. Tobagi and L. Kleinrock, “Packet switching in radio channels: Part
ii–the hidden terminal problem in carrier sense multiple-access and the
busy-tone solution,” IEEE Transactions on Communications, vol. 23,
pp. 1417–1433, Dec 1975.

[67] C. Chaudet, D. Dhoutaut, and I. G. Lassous, “Performance issues with
ieee 802.11 in ad hoc networking,” IEEE Communications Magazine,
vol. 43, pp. 110–116, July 2005.

[68] O. Iova, F. Theoleyre, and T. Noel, “Using multiparent routing in
{RPL} to increase the stability and the lifetime of the network,” Ad
Hoc Networks, vol. 29, pp. 45 – 62, 2015.

[69] F. Stann, J. Heidemann, R. Shroff, and M. Z. Murtaza, “Rbp: Robust
broadcast propagation in wireless networks,” in International Confer-
ence on Embedded Networked Sensor Systems (SenSys), pp. 85–98,
ACM, 2006.

[70] C. H. Lo and N. Ansari, “The progressive smart grid system from both
power and communications aspects,” IEEE Communications Surveys
Tutorials, vol. 14, pp. 799–821, Third 2012.

[71] R. D. Gomes, D. V. Queiroz, A. C. L. Filho, I. E. Fonseca, and
M. S. Alencar, “Real-time link quality estimation for industrial wireless
sensor networks using dedicated nodes,” Ad Hoc Networks, vol. 59,
pp. 116 – 133, 2017.

[72] Y. Chen and A. Terzis, “On the implications of the log-normal path
loss model: An efficient method to deploy and move sensor motes,” in
Conference on Embedded Networked Sensor Systems (SenSys), pp. 26–
39, ACM, 2011.

[73] A. Anglès-Vázquez, X. Vilajosana-Guillèn, J. López-Vicario,
A. Morell-Pérez, P. Tuset-Peiró, and I. Vilajosana-Guillèn, “Generic
empiric propagation model for low power wireless networks operating
at the 868 mhz band in smart cities,” IET Microwaves, Antennas
Propagation, vol. 8, no. 14, pp. 1143–1153, 2014.

[74] A. Iyer, C. Rosenberg, and A. Karnik, “What is the right model
for wireless channel interference?,” IEEE Transactions on Wireless
Communications, vol. 8, pp. 2662–2671, May 2009.

[75] K. Srinivasan, M. A. Kazandjieva, S. Agarwal, and P. Levis, “The β-
factor: Measuring wireless link burstiness,” in Proceedings of the 6th
ACM Conference on Embedded Network Sensor Systems, SenSys ’08,
(New York, NY, USA), pp. 29–42, ACM, 2008.

[76] A. Cerpa, J. L. Wong, M. Potkonjak, and D. Estrin, “Temporal
Properties of Low Power Wireless Links: Modeling and Implications
on Multi-Hop Routing,” in International Symposium on Mobile Ad

25

Hoc Networking and Computing (MOBIHOC), (New York, New York,
USA), pp. 414–425, ACM Press, 2005.

[77] G. Zhou, T. He, S. Krishnamurthy, and J. A. Stankovic, “Models
and solutions for radio irregularity in wireless sensor networks,” ACM
Trans. Sen. Netw., vol. 2, pp. 221–262, May 2006.

[78] J. Padhye, S. Agarwal, V. N. Padmanabhan, L. Qiu, A. Rao, and B. Zill,
“Estimation of link interference in static multi-hop wireless networks,”
in SIGCOMM Conference on Internet Measurement (IMC), pp. 28–28,
ACM, 2005.

[79] Y.-C. Tseng, S.-Y. Ni, Y.-S. Chen, and J.-P. Sheu, “The broadcast
storm problem in a mobile ad hoc network,” Wireless Networks, vol. 8,
pp. 153–167, March 2002.

[80] J. N. Al-Karaki and A. E. Kamal, “Routing techniques in wireless
sensor networks: a survey,” IEEE Wireless Communications, vol. 11,
pp. 6–28, Dec 2004.

[81] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva,
“Directed diffusion for wireless sensor networking,” IEEE/ACM Trans.
Netw., vol. 11, pp. 2–16, Feb. 2003.

[82] P. Thubert, “An Architecture for IPv6 over the TSCH mode of IEEE
802.15.4.” draft-ietf-6tisch-architecture-11, July 2017.

[83] C.-Y. Wan, S. B. Eisenman, A. T. Campbell, and J. Crowcroft, “Siphon:
Overload traffic management using multi-radio virtual sinks in sensor
networks,” in Proceedings of the 3rd International Conference on
Embedded Networked Sensor Systems, SenSys ’05, (New York, NY,
USA), pp. 116–129, ACM, 2005.

[84] G. Z. Papadopoulos, N. Pappas, A. Gallais, T. Noel, and V. Angelakis,
“Distributed Adaptive Scheme for Reliable Data Collection in Fault
Tolerant WSNs,” in Proceedings of the 2nd IEEE World Forum on
Internet of Things (WF-IoT), pp. 116–121, 2015.

[85] A. Karnik, A. Iyer, and C. Rosenberg, “Throughput-optimal configu-
ration of fixed wireless networks,” IEEE/ACM Trans. Netw., vol. 16,
pp. 1161–1174, Oct. 2008.

[86] J. Chen, X. Cao, P. Cheng, Y. Xiao, and Y. Sun, “Distributed
collaborative control for industrial automation with wireless sensor
and actuator networks,” IEEE Transactions on Industrial Electronics,
vol. 57, pp. 4219–4230, Dec 2010.

[87] M. Szczodrak, O. Gnawali, and L. P. Carloni, “Dynamic reconfiguration
of wireless sensor networks to support heterogeneous applications,”
in 2013 IEEE International Conference on Distributed Computing in
Sensor Systems, pp. 52–61, May 2013.

[88] M. Chen, J. Wan, S. Gonzalez, X. Liao, and V. C. M. Leung,
“A survey of recent developments in home m2m networks,” IEEE
Communications Surveys Tutorials, vol. 16, pp. 98–114, First 2014.

[89] C. M. de Farias, L. Pirmez, F. C. Delicato, P. F. Pires, W. Li, A. Y.
Zomaya, E. N. de L. F. Jorge, and R. Juarez-Ramirez, “Grown: A con-
trol and decision system for smart greenhouses using wireless sensor
networks,” in Australasian Computer Science Week Multiconference
(ACSW), pp. 48:1–48:8, ACM, 2017.

[90] D. C. Harrison, W. K. G. Seah, and R. Rayudu, “Rare event detection
and propagation in wireless sensor networks,” ACM Comput. Surv.,
vol. 48, pp. 58:1–58:22, Mar. 2016.

[91] L. Wang, D. Zhang, Y. Wang, C. Chen, X. Han, and A. M’hamed,
“Sparse mobile crowdsensing: challenges and opportunities,” IEEE
Communications Magazine, vol. 54, pp. 161–167, July 2016.

[92] V. Shnayder, M. Hempstead, B.-r. Chen, G. W. Allen, and M. Welsh,
“Simulating the power consumption of large-scale sensor network
applications,” in Proceedings of the 2Nd International Conference on
Embedded Networked Sensor Systems, SenSys ’04, (New York, NY,
USA), pp. 188–200, ACM, 2004.

[93] J. Kim and D. K. Noh, “Voltage-based estimation of residual battery
energy in wireless sensor systems,” in SENSORS, pp. 1–4, IEEE, Nov
2013.

[94] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-
efficient communication protocol for wireless microsensor networks,”
in Proceedings of the 33rd Annual Hawaii International Conference
on System Sciences, pp. 10 pp. vol.2–, Jan 2000.

[95] J. Polastre, J. Hill, and D. Culler, “Versatile low power media access
for wireless sensor networks,” in Proceedings of the 2Nd International
Conference on Embedded Networked Sensor Systems, SenSys ’04,
(New York, NY, USA), pp. 95–107, ACM, 2004.

[96] Q. Wang, M. Hempstead, and W. Yang, “A realistic power consumption
model for wireless sensor network devices,” in Communications Society
on Sensor and Ad Hoc Communications and Networks (SECON), vol. 1,
pp. 286–295, IEEE, Sept 2006.

[97] I. Müller, J. Winter, C. Pereira, V. Brusamarello, and J. C. Netto,
“Energy consumption estimation for tdma-based industrial wireless

sensor networks,” in International Conference on Industrial Informatics
(INDIN), pp. 625–630, IEEE, July 2016.

[98] A. A. Aziz, Y. A. Sekercioglu, P. Fitzpatrick, and M. Ivanovich, “A
survey on distributed topology control techniques for extending the
lifetime of battery powered wireless sensor networks,” IEEE Commu-
nications Surveys Tutorials, vol. 15, pp. 121–144, First 2013.

[99] W. Ejaz, M. Naeem, A. Shahid, A. Anpalagan, and M. Jo, “Efficient
energy management for the internet of things in smart cities,” IEEE
Communications Magazine, vol. 55, pp. 84–91, January 2017.

[100] Y.-H. Chen, B. Ng, W. K. Seah, and A.-C. Pang, “Modeling and
analysis: Energy harvesting in the internet of things,” in International
Conference on Modeling, Analysis and Simulation of Wireless and
Mobile Systems (MSWiM), pp. 156–165, ACM, 2016.

[101] A. S. Weddell, G. V. Merrett, T. J. Kazmierski, and B. M. Al-
Hashimi, “Accurate supercapacitor modeling for energy harvesting
wireless sensor nodes,” IEEE Transactions on Circuits and Systems
II: Express Briefs, vol. 58, pp. 911–915, Dec 2011.

[102] A. Biason and M. Zorzi, “On the effects of battery imperfections in an
energy harvesting device,” in International Conference on Computing,
Networking and Communications (ICNC), pp. 1–7, IEEE, Feb 2016.

[103] A. Stajkic, M. D. Abrignani, C. Buratti, A. Bettinelli, D. Vigo, and
R. Verdone, “From a real deployment to a downscaled testbed: A
methodological approach,” IEEE Internet of Things Journal, vol. 3,
pp. 647–657, Oct 2016.

[104] D. Kotz, C. Newport, R. S. Gray, J. Liu, Y. Yuan, and C. Elliott,
“Experimental evaluation of wireless simulation assumptions,” in Inter-
national Symposium on Modeling, Analysis and Simulation of Wireless
and Mobile Systems (MSWiM), pp. 78–82, ACM, 2004.

[105] I. Stojmenovic, “Simulations in Wireless Sensor and Ad Hoc Networks:
Matching and Advancing Models, Metrics, and Solutions,” IEEE Com-
munications Magazine, vol. 46, no. 12, pp. 102–107, 2008.

[106] “Wsnet.” http://wsnet.gforge.inria.fr/.
[107] “ns3-coap.” https://github.com/maesoser/ns3-coap.
[108] H. Kermajani and C. Gomez, “On the network convergence process in

rpl over ieee 802.15.4 multihop networks: Improvement and trade-offs,”
Sensors, vol. 14, no. 7, pp. 11993–12022, 2014.

[109] V. Kathuria, G. Mohanasundaram, and S. R. Das, “A simulation study
of routing protocols for smart meter networks,” in International Confer-
ence on Smart Grid Communications (SmartGridComm), pp. 384–389,
IEEE, Oct 2013.

[110] N. Abdeddaı̈m and F. Theoleyre, “Implementation of a WSNet Module
to Simulate the IEEE 802.15.4 Beacon-Enabled Mode in Multihop
Topologies,” tech. rep., HAL, 2011. https://hal.archives-ouvertes.fr/
hal-00590853.

[111] L. B. Saad, C. Chauvenet, and B. Tourancheau, “Simulation of the
rpl routing protocol for ipv6 sensor networks: two cases studies,” in
SENSORCOMM, 2011. https://hal.inria.fr/hal-00647869.

[112] “Pyviz - ns3.” https://www.nsnam.org/wiki/PyViz.
[113] M. P. Uwase, M. Bezunartea, J. Tiberghien, J. M. Dricot, and K. Steen-

haut, “Experimental comparison of radio duty cycling protocols for
wireless sensor networks,” IEEE Sensors Journal, vol. 17, pp. 6474–
6482, Oct 2017.

[114] Castalia, “Castalia - Wireless Sensor Network Simulator.” https://
castalia.forge.nicta.com.au/index.php/en/index.html, 2013.

[115] E. Ben Hamida et al., “On the Complexity of an Accurate and Precise
Performance Evaluation of Wireless Networks using Simulations,” in
MSWiM, ACM, 2008.

[116] U. M. Colesanti, C. Crociani, and A. Vitaletti, “On the accuracy
of omnet++ in the wireless sensor networks domain: simulation vs.
testbed,” in Proceedings of the 4th ACM workshop on performance
evaluation of wireless ad hoc, sensor, and ubiquitous networks, pp. 25–
31, ACM, 2007.

[117] M. Yarvis, N. Kushalnagar, H. Singh, A. Rangarajan, Y. Liu, and
S. Singh, “Exploiting heterogeneity in sensor networks,” in Proceedings
IEEE 24th Annual Joint Conference of the IEEE Computer and
Communications Societies., vol. 2, pp. 878–890 vol. 2, March 2005.

[118] A.-S. Tonneau, N. Mitton, and J. Vandaele, “How to choose an
experimentation platform for wireless sensor networks? a survey on
static and mobile wireless sensor network experimentation facilities,”
Ad Hoc Netw., vol. 30, pp. 115–127, July 2015.

[119] University of Utah, “Emulab - Network Emulation Testbed.” http://
www.emulab.net/index.php3, 2017.

[120] O. Fambon, E. Fleury, G. Harter, R. Pissard-Gibollet, and F. Saint-
Marcel, “Fit iot-lab tutorial: hands-on practice with a very large scale
testbed tool for the internet of things,” in UbiMob, 2014.

http://wsnet.gforge.inria.fr/
https://github.com/maesoser/ns3-coap
https://hal.archives-ouvertes.fr/hal-00590853
https://hal.archives-ouvertes.fr/hal-00590853
https://hal.inria.fr/hal-00647869
https://www.nsnam.org/wiki/PyViz
https://castalia.forge.nicta.com.au/index.php/en/index.html
https://castalia.forge.nicta.com.au/index.php/en/index.html
http://www.emulab.net/index.php3
http://www.emulab.net/index.php3

26

[121] R. Lim, F. Ferrari, M. Zimmerling, C. Walser, P. Sommer, and
J. Beutel, “Flocklab: A testbed for distributed, synchronized tracing
and profiling of wireless embedded systems,” in Proceedings of the
12th International Conference on Information Processing in Sensor
Networks, IPSN ’13, (New York, NY, USA), pp. 153–166, ACM, 2013.

[122] M. Doddavenkatappa, M. C. Chan, and A. L. Ananda, “Indriya: A low-
cost, 3d wireless sensor network testbed,” in International Conference
on Testbeds and Research Infrastructures for the Development of Net-
works & Communities (TRIDENTCOM), (Shanghai, China), pp. 302–
316, EAI, 2012.

[123] B. N. Chun, P. Buonadonna, A. AuYoung, C. Ng, D. C. Parkes,
J. Shneidman, A. C. Snoeren, and A. Vahdat, “Mirage: A microeco-
nomic resource allocation system for sensornet testbeds,” in The Second
IEEE Workshop on Embedded Networked Sensors, 2005. EmNetS-II.,
pp. 19–28, May 2005.

[124] A. Arora, E. Ertin, R. Ramnath, M. Nesterenko, and W. Leal, “Kansei:
a high-fidelity sensing testbed,” IEEE Internet Computing, vol. 10,
pp. 35–47, March 2006.

[125] Purdue University, “Purdue University Wireless Mesh Network
Testbed.” https://engineering.purdue.edu/MESH, 2017.

[126] G. Werner-Allen, P. Swieskowski, and M. Welsh, “Motelab: a wireless
sensor network testbed,” in IPSN 2005. Fourth International Sympo-
sium on Information Processing in Sensor Networks, 2005., pp. 483–
488, April 2005.

[127] X. Ju, H. Zhang, and D. Sakamuri, “Neteye: A user-centered wireless
sensor network testbed for high-fidelity, robust experimentation,” Int.
J. Commun. Syst., vol. 25, pp. 1213–1229, Sept. 2012.

[128] Rutgers University, “ORBIT – Open-Access Research Testbed for
Next-Generation Wireless Networks.” http://www.orbit-lab.org, 2017.

[129] University of South California, “Tutornet: A Low Power Wireless IoT
Testbed.” http://anrg.usc.edu/www/tutornet/, 2017.

[130] V. Handziski, A. Köpke, A. Willig, and A. Wolisz, “Twist: A scalable
and reconfigurable testbed for wireless indoor experiments with sensor
networks,” in Proceedings of the 2Nd International Workshop on Multi-
hop Ad Hoc Networks: From Theory to Reality, REALMAN ’06, (New
York, NY, USA), pp. 63–70, ACM, 2006.

[131] H. Soroush, N. Banerjee, M. Corner, B. Levine, and B. Lynn, “A
retrospective look at the umass dome mobile testbed,” SIGMOBILE
Mob. Comput. Commun. Rev., vol. 15, pp. 2–15, Mar. 2012.

[132] N. Anand, E. Aryafar, and E. W. Knightly, “Warplab: A flexible
framework for rapid physical layer design,” in Proceedings of the 2010
ACM Workshop on Wireless of the Students, by the Students, for the
Students, S3 ’10, (New York, NY, USA), pp. 53–56, ACM, 2010.

[133] I. Chatzigiannakis, S. Fischer, C. Koninis, G. Mylonas, and D. Pfisterer,
Sensor Applications, Experimentation, and Logistics: First Interna-
tional Conference, SENSAPPEAL 2009, Athens, Greece, September
25, 2009, Revised Selected Papers, ch. WISEBED: An Open Large-
Scale Wireless Sensor Network Testbed, pp. 68–87. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010.

[134] C. Cano, A. Pittolo, D. Malone, L. Lampe, A. M. Tonello, and
A. G. Dabak, “State of the art in power line communications: From
the applications to the medium,” IEEE Journal on Selected Areas in
Communications, vol. 34, pp. 1935–1952, July 2016.

[135] O. Hahm, E. Baccelli, H. Petersen, and N. Tsiftes, “Operating systems
for low-end devices in the internet of things: A survey,” IEEE Internet
of Things Journal, vol. 3, pp. 720–734, Oct 2016.

[136] P. Levis, S. Madden, J. Polastre, R. Szewczyk, A. Woo, D. Gay, J. Hill,
M. Welsh, E. Brewer, and D. Culler, “Tinyos: An operating system for
sensor networks,” in in Ambient Intelligence, Springer Verlag, 2004.

[137] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, “Protothreads: Simpli-
fying Event-driven Programming of Memory-constrained Embedded
Systems,” in Proceedings of the 4th International Conference on
Embedded Networked Sensor Systems (SenSys), pp. 29–42, 2006.

[138] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a Lightweight
and Flexible Operating System for Tiny Networked Sensors,” in
Proceedings of the 29th Annual IEEE International Conference on
Local Computer Networks (LCN), pp. 455–462, 2004.

[139] “CST Group at FU Berlin. Scatter web Embedded Sensor Board.” http:
//www.csc.kth.se/∼ronniej/project/Scatterweb/ESB.html.

[140] H. Will, K. Schleiser, and J. Schiller, “A real-time kernel for wireless
sensor networks employed in rescue scenarios,” in 2009 IEEE 34th
Conference on Local Computer Networks, pp. 834–841, 2009.

[141] “IPv6 over the TSCH mode of IEEE 802.15.4e.” https://datatracker.
ietf.org/wg/6tisch.

[142] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and
flexible operating system for tiny networked sensors,” in International

Conference on Local Computer Networks (LCN), pp. 455–462, IEEE,
Nov 2004.

[143] J. Eriksson, F. Österlind, N. Finne, N. Tsiftes, A. Dunkels, T. Voigt,
R. Sauter, and P. J. Marrón, “Cooja/mspsim: Interoperability testing for
wireless sensor networks,” in International Conference on Simulation
Tools and Techniques (Simutools), pp. 27:1–27:7, 2009.

[144] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: Accurate and
scalable simulation of entire tinyos applications,” in International Con-
ference on Embedded Networked Sensor Systems (SenSys), pp. 126–
137, ACM, 2003.

[145] A. Fraboulet, G. Chelius, and E. Fleury, “Worldsens: Development and
prototyping tools for application specific wireless sensors networks,”
in 2007 6th International Symposium on Information Processing in
Sensor Networks, pp. 176–185, April 2007.

[146] G. Z. Papadopoulos, A. Gallais, G. Schreiner, E. Jou, and T. Noel,
“Thorough IoT testbed Characterization: from Proof-of-concept to
Repeatable Experimentations,” Elsevier Computer Networks, vol. 119,
pp. 86–101, 2017.

[147] B. Raman, K. Chebrolu, D. Gokhale, and S. Sen, “On the feasibility
of the link abstraction in wireless mesh networks,” IEEE/ACM Trans.
Netw., vol. 17, pp. 528–541, Apr. 2009.

[148] “A community resource for archiving wireless data at dartmouth.” http:
//crawdad.org.

[149] G. Coulson, B. Porter, I. Chatzigiannakis, C. Koninis, S. Fischer,
D. Pfisterer, D. Bimschas, T. Braun, P. Hurni, M. Anwander, G. Wa-
genknecht, S. P. Fekete, A. Kröller, and T. Baumgartner, “Flexible
experimentation in wireless sensor networks,” Commun. ACM, vol. 55,
pp. 82–90, Jan. 2012.

[150] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein,
“Energy-efficient computing for wildlife tracking: Design tradeoffs and
early experiences with zebranet,” SIGARCH Comput. Archit. News,
vol. 30, pp. 96–107, Oct. 2002.

[151] F. Ingelrest, G. Barrenetxea, G. Schaefer, M. Vetterli, O. Couach, and
M. Parlange, “Sensorscope: Application-specific sensor network for
environmental monitoring,” ACM Trans. Sen. Netw., vol. 6, pp. 17:1–
17:32, Mar. 2010.

[152] R. T. Hermeto, A. Gallais, K. Van Laerhoven, and F. Theoleyre, “Pas-
sive and Stable Initial Preferred Parent Selection through Neighbors
Ranking for a Fast Convergence in 6TiSCH Networks,” in European
Wireless Sensor Networks (EWSN), ACM, 2018.

[153] D. Cavin, Y. Sasson, and A. Schiper, “On the accuracy of manet
simulators,” in Proceedings of the Second ACM International Workshop
on Principles of Mobile Computing, POMC ’02, (New York, NY, USA),
pp. 38–43, ACM, 2002.

[154] P. H. Gomes, Y. Chen, T. Watteyne, and B. Krishnamachari, “Insights
into frequency diversity from measurements on an indoor low power
wireless network testbed,” in 2016 IEEE Globecom Workshops (GC
Wkshps), pp. 1–6, Dec 2016.

[155] A. Brandt, J. Buron, and G. Porcu, “Home automation routing require-
ments in low-power and lossy networks,” RFC 5826, IETF, 2010.

[156] K. Pister, P. Thubert, S. Dwars, and T. Phinney, “Industrial routing
requirements in low-power and lossy networks,” RFC 5673, IETF,
2009.

[157] “Spectrum Requirements for Short Range Device, Metropolitan Mesh
Machine Networks (M3N) and Smart Metering (SM) applications,”
ETSI TC ERM, TR 103 055, v1.1.1, Sept. 2011.

https://engineering.purdue.edu/MESH
http://www.orbit-lab.org
http://anrg.usc.edu/www/tutornet/
http://www.csc.kth.se/~ronniej/project/Scatterweb/ESB.html
http://www.csc.kth.se/~ronniej/project/Scatterweb/ESB.html
https://datatracker.ietf.org/wg/6tisch
https://datatracker.ietf.org/wg/6tisch
http://crawdad.org
http://crawdad.org

27

Kosmas Kritsis is a Research Associate at the In-
stitute for Language and Speech Processing, Athena
Research and Innovation Center (ILSP/ATHENA
RC). He is also a Ph.D. Candidate at the Dept. of
Informatics, University of Piraeus (UniPi). He holds
a M.Sc. in Sound & Music Computing from Pompeu
Fabra University of Barcelona (UPF) and a B.Sc.
in Informatics from the Alexander Technological
Educational Institute of Thessaloniki (ATEITHE).
During his studies he was admitted twice the Eras-
mus EU scholarship for studying at the Computer

Science Dept. of Carlos III University of Madrid (UC3M). Additionally, he
received the Erasmus Placement EU scholarship as a student researcher at the
ICube lab, University of Strasbourg (UNISTRA). His academic experience and
research interest includes diverse scientific areas, such as computer networks,
signal processing, computer vision, Human-Computer Interaction and machine
learning.

Georgios Z. Papadopoulos (S10-M16) serves as
an Associate Professor at the IMT Atlantique in
Rennes, France. Previously, he was a Postdoctoral
Researcher at the University of Bristol. He received
his Ph.D. from University of Strasbourg, in 2015
with honors, his M.Sc. in Telematics Engineering
from University Carlos III of Madrid in 2012 and
his B.Sc. in Informatics from Alexander T.E.I. of
Thessaloniki in 2011. Dr. Papadopoulos has par-
ticipated in various international and national (FP7
RERUM, FIT Equipex) research projects. Moreover,

he has received the prestigious French national ANR JCJC grant for young
researchers. He has been involved in the organization of many interna- tional
events (AdHoc-Now18, IEEE CSCN18, IEEE ISCC17). His research interests
include Industrial IoT, 6TiSCH, LPWAN, Battery Management System and
Smart Grid. Dr. Papadopoulos has received the Best Ph.D. Thesis Award
granted by the University of Strasbourg and he was a recipient of two Best
Paper Awards (IFIP Med-Hoc-Net14 and IEEE SENSORS14).

Antoine Gallais is an Associate Professor at the
University of Strasbourg since 2008 (ICube labora-
tory). He holds a master (2004), a PhD degree (2007)
in computer science from the University of Lille,
and an HDR thesis (2017) from Univ. Strasbourg.
Since sept. 2017, he is a visiting researcher at Inria
Lille - Nord Europe. His research topics include
wireless sensor and mobile ad hoc networking, mo-
bility management and performance evaluation. He
is serving as TPC member for several events (e.g.,
IEEE COMNETSAT, IEEE ICNC, IEEE Globe-

com), was program co-chair of ICST Adhocnets’14-15 and local co-chair
of IEEE Wimob’13. He regularly serves as an external reviewer for several
international journals an conferences and was an active member of several
national and international research projects (ANR TLCOM SensLAB, ANR
FIT Equipex, ANR INFRA IRIS, PHC EXPRESS).

Periklis Chatzimisios (S02-M05-SM12) received
the B.Sc. degree in informatics from Alexander
Technological Educational Institute of Thessaloniki
(ATEITHE), Thessaloniki, Greece, in 2000, and
the Ph.D. degree in wireless communications from
Bournemouth University, Poole, U.K., in 2005. He
serves as an Associate Professor and the Director
of the Computing Systems, Security and Networks
(CSSN) Research Laboratory in the Department of
Informatics, ATEITHE. He has edited/authored eight
books and more than 130 peer-reviewed papers and

book chapters. His published research work has received more than 2800
citations by other researchers. His research interests include performance
evaluation and standardization activities of mobile/wireless communications,
Internet of Things, and big data. Dr. Chatzimisios is involved in several
standardization and IEEE activities serving as a member of the Standards
Development Board for the IEEE Communication Society (ComSoc), the
IEEE ComSoc Standards Program Development Board, and the IEEE ComSoc
Education and Training Board, as well as the Vice Chair of the IEEE ComSoc
Technical Committees on Big Data (TCBD) and Information Infrastructure
and Networking (TCIIN).

Fabrice Tholeyre (S05-M09-SM16) is a researcher
at the CNRS. After having spent 2 years in the
Grenoble Informatics Laboratory (France), he is part
of the ICube lab (Strasbourg, France) since 2009. He
received his PhD in computer science from INSA,
Lyon (France) in 2006. He was a visiting scholar
at the University of Waterloo (Canada) in 2006,
and a visiting researcher at INRIA Sophia Antipolis
(France) in 2005. He serves in about ten TPC
per year, and is area editor for Ad Hoc Networks
since 2018. He has been associate editor for IEEE

Communications Letters and guest editor for Computer Communications and
Eurasip JWCN. His research interests mainly concern distributed algorithms
and experimental design for the Internet of Things.

	Introduction
	Performance Evaluation Life-circle
	Theoretical Analysis
	Numerical Analysis
	Simulation and/or Emulation
	Network Simulation
	Emulation

	Methodology
	What should we measure?
	Common metrics
	Medium Access Control (MAC)
	Routing

	How should we measure?
	Average value
	Distribution and worst case
	Initialization vs. steady-state
	Time Dependency and Stability

	Radio topology
	Network Topologies
	Common metrics
	MAC layer
	Routing protocol

	Communication model
	Unit Disk Graph (UDG) communication model
	Free space
	Two ray ground
	Log-normal path loss model
	Experimental measures to calibrate the models

	Interference Model
	Fixed range
	k-hops interference model
	SINR
	Graph of conflict

	Key realistic characteristics
	Time Variability
	Asymmetry

	Datasets

	Traffic characterization
	Traffic pattern
	Convergecast
	Up and Download
	Localized

	Traffic Profile
	Constant Bit Rate (CBR)
	Event detection

	Energy Consumption Models for Wireless Devices
	Residual Energy Estimation
	Packet Based Estimation
	Transmission power adaptation
	Energy harvesting

	Available Tools for Performance Evaluation
	Numerical Analysis
	MATLAB
	GNU Octave
	Python
	Limitations

	Network Simulation
	Proposed services:
	Solutions
	Limits

	Testbeds
	Characteristics
	Proposed services

	Which OS to choose?
	TinyOS
	Contiki OS
	FreeRTOS
	RIOT
	OpenWSN

	Emulation
	COOJA
	MSPSim
	TOSSIM
	WSim
	OpenSim
	Conclusions

	Guidelines and Directions
	Reproducibility
	Diversity and robustness
	Long term evaluation
	Re-injection of real measures
	Definition of Scenarii and Benchmarking

	Conclusions
	References
	Biographies
	Kosmas Kritsis
	Georgios Z. Papadopoulos
	Antoine Gallais
	Periklis Chatzimisios
	Fabrice ThÃ©oleyre

