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Leakage Inductance Analytical Calculation for
Planar Components with Leakage Layers

Wenhua Tan, Xavier Margueron, Member, IEEE, Laurent Taylor, Nadir Idir, Member, IEEE

Abstract—Planar magnetic components are promising solu-
tions for the integration of power electronic systems. The leak-
age inductance of such components plays an essential role in
power converters. In this paper, an analytical modeling method
for leakage inductance computation is developped for planar
components with plasto-ferrite leakage layers. This method is
based on the solution of Poisson’s equations for magneto-static
using multilayered Green’s functions. The obtained formulations
are general and precise and have been validated by numerical
tests. Experimental characterizations have been performed on
two magnetic components: A planar LLC and planar common
mode choke. The obtained results show that with the described
method, the static leakage inductance of planar components can
be accurately estimated.

Index Terms—Leakage inductance, planar component, mag-
netic shunt, Green’s function.

I. INTRODUCTION

THE trends toward integration of power electronic systems
make planar magnetic components prevalent solutions

to realize more compact power converters [1], [2]. These
components exhibit low profile, high power density and high
reproducibility compared to other types of magnetic com-
ponents. The leakage inductance of such component is a
topic of huge interest. Indeed, due to their low profile, their
leakage inductance value is usually supposed to be low [3].
For many applications, this low value can be an advantage
because transformer’s leakage inductance may cause extra
losses, stress on components and ElectroMagnetic Interference
(EMI) problems due to high frequency voltage oscillations [4]–
[6].

On the opposite, two main applications can find the useful-
ness of a high leakage inductance. For resonant converter LLC
(Fig. 1(a)), the leakage inductance Llk can be used for Zero
Voltage Switching (ZVS), without adding an extra inductor
[7], even if this leakage inductance can also causes voltage
imbalance [8] or high voltage oscillations [9]. This leakage
inductance must have then a specific value for typical soft-
switching converters [10] or Dual Active Bridge (DAB) for
example [11]. If its value is not sufficient, some supplementary
resonant inductor has to be added [12], [13].
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For EMI filters, the leakage inductance of a common-mode
(CM) choke can also be used for filtering differential mode
(DM) perturbations [14]–[18]. For example, in [14], a leakage
layer has been integrated between Printed Circuit Board (PCB)
inside a pot core while in [15], the leakage layer has been
inserted inside a mixed toroidal/EQ planar core. In both case,
this leakage layer enable to increase the leakage inductance
of the CM inductor. Other integrated EMI filters using CM
leakage inductance to filter DM perturbations have also been
reported in the past years, including flexible multilayers [16],
combined toroidal cores for DM and CM chokes [17] or using
magnetic epoxy mixture [18].

As discussed earlier, regarding planar components (trans-
formers or CM chokes), their leakage inductances can be then
increased by adding some supplementary leakage layers (also
called magnetic shunt) such as Ferrite Polymer Composite
(FPC) between the component’s windings [6], [15], [19], [20].
Resonant converters or CM inductors require a specific amount
of leakage inductance so an accurate modeling method for
calculating such Llk is necessary.

In the literature, many methods have been reported to assess
the leakage inductance of a transformer, based on Finite
Element Analysis (FEA) or analytical calculation [21]–[35].
For FEA, computation can be made in 2D, 3D, or mixed
2D/3D for HF losses and inductance values [1], [21]–[23].
FEA is a powerful tool to study electromagnetic components
but when dealing with optimization, using such tool can be
very cumbersome and time consuming. Even if the numerical
resolution is becoming faster with last generation computers,
time for geometry’s description and mesh can also be pro-
hibitive. For magnetic component designers, analytical tool
will be prefered, in particular for first design steps, when
transformer parameters have to be tuned as desired. Most of
the analytical methods for the Llk calculation of a transformer
are based on 1D Dowell’s assumption [24] such that the
magnetic flux is tangential to the surface of conductors [25]–
[31]. This assumption is true when the magnetic window is
well filled with long conductors. However, in some cases,
the winding arrangement may be very irregular such as low
filling factor and non-alignment of conductors. Applying the
Dowell’s assumption will lead to errors in the results. To be
more general, the method of Roth can be applied for 2D
transformer’s winding cross section. This method consists in
using double Fourier series to solve the Poisson’s equations
in a rectangular region [36]. However, double Fourier series
exhibit a low convergence rate so that they are computationally
expensive. Besides, this method only works when the matter
in the rectangular region is uniform. For planar components
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(a) (b)

Fig. 1. Integrated planar LLC. (a) Equivalent circuit. (b) Cross-section of
the component.

whose cross-sections are not magnetically homogeneous, like
in the case of leakage layers, Roth’s method can not be applied.
In such cases, only FEA are performed to determine the value
of the leakage inductance [2]. No analytical formulation is
available in the literature, except in [37] where some reluctance
model is used. This method is still limited to magnetic window
well filled with long conductors.

In [38] and [39], authors propose a general 2D analyti-
cal method for calculating the leakage inductance of planar
transformers. This method is based on a PEEC-like formula
for rectangular conductors. To account for the influence of
magnetic core, the method of magnetic images is employed
on the cross-section of the winding part inside the core [40],
[41]. This general method, completely independent of the
conductor’s arrangement, can accurately evaluate the magnetic
field in the cross-section of the component for conventional
power electronic transformers, planar ones or more recently for
power transformers [42]. However, similarly to Roth’s method,
the PEEC-like formula also requires a uniform environment of
matter as prior condition.

If the cross-sections are magnetically multi-layered, the
application of such method can be very cumbersome. For
the above reasons, an improved method based on multi-
layered Green’s function has been developed in this paper
for calculating the leakage inductance of planar components
having magnetically multi-layered structure.

This paper is organized as follows: in Section II, a re-
view of the leakage inductance calculation and the PEEC-
like formulations are given. Section III introduces the multi-
layered Green’s function with detailed analysis and numerical
validations. In Section IV, two application examples, LLC and
CM choke are presented to validate the proposed method. The
paper will end with conclusion.

II. LEAKAGE CALCULATION PROBLEM ANALYSIS

A. Modeling of Leakage Inductance

The existing modeling methods for calculating the static
leakage inductance rely on the evaluation of the magnetic
energy stored in the component when the total ampere-turns
are compensated [43]. The relation between the leakage in-
ductance and the magnetic energy Wmag is expressed by:

Wmag =
1

2
LlkI

2. (1)

Fig. 2. Rectangular conductor cross-section.

where Llk is the static leakage inductance and I the current
in the winding. This magnetic energy Wmag (1) can be
determined by 2D or 3D finite element simulations (FEM),
which are precise but very time-consuming or with analyti-
cal approaches. This computation is generally based on 2D
approximation that the current direction is perpendicular to
the cross-section of the studied component. Consequently, the
magnetic energy Wmag can be calculated by:

Wmag =WsmagLmean (2)

where Wsmag is the energy per unit length stored in the
cross-section of the studied component whereas Lmean is the
mean length of the winding fixed from the location of the peak
energy density.

In High Frequency (HF), it is well known that the leakage
inductance value will decrease due to eddy current effects
[34], [35]. In this work, impact of HF magnetic fields on
leakage inductances will not be studied. Indeed, the goal of
the developped Green analytic tool is to give designers a fast
estimation of their leakage value, as well as in [39]. If this
static value does not seem sufficient, the design has to be
started again because in HF, leakage will be further reduced.

B. Review of 2D PEEC-like Modeling Method

In 2D magnetostatic analysis, the magnetic field over the
cross-section of a planar component is governed by the fol-
lowing Poisson’s equation:

∇2Az = −µJz. (3)

In order to solve this equation, authors proposed in [38],
[39] the 2D PEEC-like formulations, where the leakage induc-
tance of planar transformers can be calculated analytically with
no hypothesis on the conductors’ topology. In free space, the
potential vector Az in the space due to a rectangular conductor
carrying current I (Fig. 2) can be expressed by (4).

With this analytical formula, the distribution of the potential
vector in the space due to the rectangular conductor can be
determined. In case of multiple conductors, the superposition
principle can be applied for the calculation. As long as the
information of Az is obtained, the integration (5) can be
performed to calculate the magnetic energy per unit length
stored in the cross-section of the component.

Wsmag =
1

2

∫∫
Ω

AzJzdxdy (5)

Thus, the leakage inductance of the component can be esti-
mated by:
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Llk ≈
2WsmagLmean

I2
(6)

This method is general and gives accurate estimation of
the leakage inductance value. However, just as stated in the
introduction, this method can not be applied for multi-layered
structure where the permeability of the window is not uniform.
Although the magnetic image method [40], [41] can applied
for taking into account the influence of magnetic material, it
can not be applied on a multi-layered structure where a ferrite
polymer layer is present, for the following reasons:

1) With this method, four first-order images are employed
due to direct reflections and four second-order images
are added due to secondary reflections [39]. Higher
order images are neglected. However, when FPC layer
is implemented in the region, the reflection phenomenon
becomes much more complicated.

2) The aforementioned method assumes that the thickness
of the ferrite is infinite. As long as the permeability of
the ferrite material is large enough, this assumption is
very close to the reality. However, since the FPC layer
has a low permeability, the impact of its thickness has to
be considered, which further complicates the calculation.

In view of these reasons, an analytical method for leakage
inductance calculation based on Green’s function for multi-
layered structure is introduced.

III. MULTI-LAYERED GREEN’S FUNCTION

A. Description of the Problem

The structure of planar components with PCB technology
is shown in Fig. 1(b). The leakage layer in ferrite polymer
composite is optional but can be used to increase the leakage
inductance for passive component integration in the applica-
tion of soft-switching converters or integrated CM and DM
inductors for EMI filters. It should be noted that the FR-4
epoxy and the isolating layers are considered as magnetically
transparent. As a consequence, the component cross-section
is composed of three layers of matter, i.e. transparent-FPC-
transparent. Similarly to [38], the current is supposed to be
perpendicular to this cross-section and the system is described
by the magnetostatic Poisson’s equation (3). As the relative
permeability of MnZn ferrite material is very high (in order
of 103 − 104), it can be considered as magnetic material with
infinite permeability as an approximation. It can be shown
that the boundary conditions (8) holds by using the continuity
conditions on the tangential component of the magnetic field
H (Fig. 3):

HT
ferrite −HT

window = 0 (7)

Fig. 3. Continuity conditions on the boundary in the core window.

The boundary conditions for the problem are derived as
follows: 

∂Az
∂y

= 0 over the horizontal surface

∂Az
∂x

= 0 over the vertical surface
(8)

As seen, homogeneous Neumann boundary conditions are
obtained. However, this problem admits solutions if and only
if the compatibility condition is satisfied:∫

∂Ω

∂Az
∂n

dl + µ0

∫
Ω

JzdS = 0 (9)

This can be proved by applying Gauss’s Law on the
Poisson’s equation (3). With the homogeneous boundary con-
ditions (8), the first term of equation (9) is null, requiring the
second term to be null too. In fact, this is the prior condition for
the calculation of leakage inductance. Therefore, the Poisson’s
equation (3) with these boundary conditions admit solutions.

After solving the potential vector Az from (9), the equation
(5) and (6) should be used to determine the leakage inductance
of such component.

B. Generality on Green’s Function

Green’s function is a powerful tool for analyzing electro-
magnetic problems. It is a specially constructed function to
solve partial differential equations [44]. It can be regarded as
the impulse response of an electromagnetic system to Dirac
type excitation. For the magnetostatic Poisson’s equation given
in (3), its associated Green’s function is:

∇2G = −µδ (10)

where δ is a Dirac current source. With this Green’s
function, the solution of the original problem can be expressed
by:

Az (x, y) =

∫
Ω

G (x, y) JzdS −
1

µ

∮
∂Ω

Az
∂G

∂n
dl (11)

Az (x, y; a, b) =
−µ0I

16πab

[
XY ln

(
X2 + Y 2

)
+X2 arctan

(
Y

X

)
+ Y 2 arctan

(
X

Y

)∣∣∣∣X=x−a

X=x+a

]∣∣∣∣∣
Y=y−b

Y=y+b

(4)
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From this equation, it is desirable to also provide homoge-
neous Neumann boundary conditions for the Green’s function
so that the second term of (11) is null and the potential vector
Az can be represented by a convolution. However, this is
not allowed since such boundary condition will violate the
compatibility condition. Indeed, the following compatibility
condition should be satisfied during the construction of the
Green’s function: ∫

∂Ω

∂G

∂n
dl = −µ0 (12)

C. Multi-layered Green’s Function

In [45], [46], authors present a multi-layered Green’s func-
tion for solving electrostatic Poisson’s equation with homo-
geneous Dirichlet boundary conditions in a bounded multi-
layered region. As stated previously, the studied planar compo-
nents have a magnetically multi-layered cross-section. In this
paper, the method of [45] will be extended for magnetostatic
analysis. It has been shown that the boundary conditions
should verify (8) to admit solutions. Therefore, the following
boundary conditions are proposed:

∂G

∂y

∣∣∣∣
y=H

= −µ0

L
∂G

∂x

∣∣∣∣
x=0

=
∂G

∂x

∣∣∣∣
x=L

=
∂G

∂y

∣∣∣∣
y=0

= 0
(13)

As seen, only the top edge of the rectangular region is
not zero. With these boundary conditions, the compatibility
conditions given in (12) can be satisfied.

According to the previous analysis, the cross-section of the
planar component is a 3-layer structure. If a Dirac current
source is introduced, the structure is further split into four
layers. Therefore, only a 4-layer structure is studied in this
work. As shown in Fig. 4(a), each layer has a height Hk and
a permeability µk. Here, the local coordinates are applied for
each layer and the origin is chosen at the lower left vertex
of each rectangular region. The Dirac current source locates
at the interface between layer j and j + 1 (j < 4). As a
consequence, the Green’s function in layer i satisfies:

∇2Gi = 0 (14)

The following boundary conditions can be written out:

1) Left and right boundaries of layer i: x = 0 and x = L:

∂Gi

∂x

∣∣∣∣
x=0

=
∂Gi

∂x

∣∣∣∣
x=L

= 0 (15)

2) Top and bottom boundaries (in layer 4 and layer 1):
∂G1

∂y

∣∣∣∣
y=0

= 0 Layer 1

∂G4

∂y

∣∣∣∣
y=H4

= −µ0

L
Layer 4

(16)

3) Continuity conditions on the interface between layer i

(a) (b)

Fig. 4. 4-layer structure for Green’s function deduction. (a) Source point
higher than FPC layer. (b) Source point lower than FPC Layer.

and i+ 1 (i < 4):
Gi
∣∣
y=Hi

− Gi+1
∣∣
y=0

= 0

1

µi

∂Gi

∂y

∣∣∣∣
y=Hi

− 1

µi+1

∂Gi+1

∂y

∣∣∣∣
y=0

= δijδ (x− xs)

(17)

where δij is the Chronecker Delta function whereas δ(x−
xs) presents the Dirac current source.

From these boundary conditions (15), the general solution
in layer i can be derived as follows:

Gi = αi0y + βi0 +

∞∑
n=1

[
αin ch (kny) + βin sh (kny)

]
cos (knx)

(18)
where ch() and sh() are hyperbolic cosine and sinus func-

tions respectively. Note that the term αi0y + βi0 appears since
the eigenvalue of (14) can be zero [46].

In order to determine the parameters αi0, βi0, αin and βin,
the remaining boundary conditions are used. From (16), the
following relations hold:

{
α1

0 = 0 and β1
n = 0

α4
0 = −µ0

L
and β4

n = −α4
n tanh (knH4)

(19)

The next step consists in using the continuity condition
(17) to establish the link between the parameters of different
layers. The detailed derivation is given in Appendix, only
the final results are given here. The parameters αi0, βi0, αin
and βin can be expressed by (24). Note that

[
Fl,l+1
n

]
and[

Fl,l+1
n

]−1
are the up-going and down-going transformation

matrix, respectively:[
Fl,l+1

0

]
=

[ µl+1

µl
0

Hl 1

]
(20)

[
Fl,l+1

0

]−1

=

[
µl

µl+1
0

−µl

µl+1
Hl 1

]
(21)

[
Fl,l+1
n

]
=

[
ch (knHl) sh (knHl)

µl+1

µl
sh (knHl)

µl+1

µl
ch (knHl)

]
(22)
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[
Fl,l+1
n

]−1
=

[
ch (knHl) − µl

µl+1
sh (knHl)

−sh (knHl)
µl

µl+1
ch (knHl)

]
(23)

The parameter α1
n and α4

n can be derived from the continuity
condition when i = j.

D. Magnetic Field Calculation

The first integral can be performed on the conductor area
where the current is non-zero. The second term corresponds to
the average value of the potential vector on the boundary of the
region, which is a constant. Neglecting this constant, the first
integral of (11) can be evaluated analytically [due to the term
cos(knxs) in (25)] along x-axis and numerically along y-axis
by discretizing the conductor into K thin elements (Fig.5).
For element k, the y coordinate of the center point ysm =
(yk + yk+1)/2 is chosen for the integration along y-axis.

The magnetic induction B can then be calculated by
deriving Az , as given by (26). Note that the parameters
αi0, βi0, αin and βin are only dependent to the coordinate
of the source point. This property allows the separation of
the mathematical treatment on the source conductor and the
observation one. Therefore, the partial derivation on G (on the
observation point) given in (26) can be performed directly on
the expression whereas the integration on the source conductor
is still evaluated numerically as done before.

Bx =
∂Az
∂y

= −µ
∫

Ω

∂G (x, y)

∂y
Jds

By = −∂Az
∂x

= µ

∫
Ω

∂G (x, y)

∂x
Jds

(26)

The final purpose involves estimating the total energy in
the cross-section via the integral (5). The Greens function
has to be integrated both on the source conductor and the
observation conductor. The integration on the source conductor
is performed numerically while the integration on the observa-
tion conductor can be performed analytically according to the
expression (18). However, three cases should be distinguished
(Fig. 6):

1) The position of the source conductor element is higher
than the observation conductor:
In this case, the observation conductor is completely in
layer i+1, therefore the integration is performed with the
Greens function Gi+1 for layer i+1.

2) The position of the source conductor element is lower
than the observation conductor:
In this case, the observation conductor is completely in
layer i, the integration is thereby calculated with the
Greens function Gi for layer i.

3) The position of the source conductor element is included
in the observation conductor:
In this case, as the observation conductor crosses the
two layers, the integration is performed by two separate
parts. Both the Greens function Gi and Gi+1 should be
integrated on the corresponding parts.

Fig. 5. Discretization along y-axis of the source conductor.

Fig. 6. Analytical integration on the observation conductor: Three cases.

Note that during the calculation of Az , a constant
appears on the final obtained results due to the Neumann
type boundary conditions [47]. However, this constant
will not affect the results of (5) since the integral of
this constant over all the conductors will be null as the
total ampere-turns is compensated in the component’s
window.

E. Numerical Validations

To validate the proposed method, the multi-layered Green’s
function is applied on two structures. The first case (Fig. 7)
does not correspond to real component but is computed to
test the developped approach. The second one, is closer to
a real planar component (Fig. 10(a)). For both components,
numerical simulations, performed with ANSYS Maxwell 2D
[48], are done to be compared to Green’s calculation. For each
FEA simulation, total ampere-turns are compensated.

1) Configuration test: As shown in Fig. 7, an FPC layer is
implemented so that the structure is divided into three layers.
The total ampere-turns of the component are compensated. To
analyse the results, two test cuts are performed on this cross-
section at y = 0.75 mm and y = 3.75 mm respectively. The
obtained vector potential on these two test cuts are compared
with Finite Elements simulations results, as shown in Fig.
8(a). As seen, a constant difference is observed between
the calculated curves and the simulated ones. These results
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Fig. 7. Test configuration.

are foreseen due to the Neumann type boundary conditions.
Removing this constant (Fig. 8(b)), a good agreement between
these two curves can be found. The magnetic induction Bx and
By can also be deduced, as illustrated in Fig. 9. One can note
a good coherence between the calculated curves and simulated
ones. After the numerical integration, the magnetic energy
stored in the window is 2.29E − 5J/m while the calculated
one is similar. In the previous analysis, it is supposed that
the permeability is infinite. Indeed, even though the practical
permeability of ferrite material is in the order of 103µ0, the
infinite-permeability assumption still gives good approxima-
tion to the reality. FEA simulations have been performed to
assess the influence of the magnetic core. Results are presented
in Table I where the magnetic energy stored in the windows is
computed with various permeability values. Comparing FEA
results and the Green’s calculations, it can be seen that the
proposed method can accurately determine the magnetic field
in the structures of interest.

2) Planar CM choke: This second test case is based on
the design of a planar CM choke (Fig. 10(a)) made of 3F3
E32/I planar core [49]. Some FPC layer (height 0.8mm)
is added between two windings. The total ampere-turns of
the component are also compensated. The current in each
conductor higher than the FPC layer is −1A whereas the
current is 1A for the conductors lower than the FPC layer.
The Fig 10(b) shows the magnetic field inside the component’s
window. From this simulation, it can be concluded that the
field is not tangential to the conductors. Therefore, the 1D

(a) (b)

Fig. 8. Comparison between calculated results and simulated results. (a)
Before removing the constant. (b) After removing the constant.

Dowell assumption is not directly applicable in such case. This
hypothesis is confirmed when analysing Bx and By (Fig. 11)
along the horizontal test cut at H = 1.5mm. Simulated results
are also compared to the computed ones in Fig. 11, where both
simulated and calculated fields show good agreement.

After numerical integration, the calculated magnetic energy
stored in the window is 2.43E − 5J/m, while the simulated
value is 2.57E − 5J/m. The difference is equal only to 5%.

IV. APPLICATIONS

The previous method has been tested on two real compo-
nents: A LLC transformer and a CM choke. Both devices are
based on the use of ferrite planar cores [49], associated with
FPC C350 [50] for the leakage layers.

A. Components’ description

For the LLC transformer (Fig. 12(a)), two 3F3 E38-cores
are used while for the CM inductor (Fig. 13(a)), two 3C90
E43-cores are preferred.

The transformer is made of 4 copper layers of 35µm with 8
turns for the primary and 2 for the secondary. The CM inductor
is a symmetrical component, made of 8 identical 70µm copper
layers with 4 turns on each layer. For both components a
leakage layer made of FPC is sandwiched between the two
windings to increase the leakage inductance. This FPC layer
is set to 0.2mm and 0.96mm, for the transformer and the CM
inductor, respectively. The winding arrangements are described
in Fig.12(b) and Fig.13(c).

[
αi0
βi0

]
=


[

0
0

]
i ≤ j[

N−1∏
l=i

[
Fl,l+1

0

]−1
] [
−µ0

L
0

]
i > j

and
[
αin
βin

]
=


[

1∏
l=i−1

[
Fl,l+1
n

]] [ α1
n

0

]
i ≤ j[

N−1∏
l=i

[
Fl,l+1
n

]−1
] [

α4
n

−α4
n tanh (knH4)

]
i > j

(24)
j∏
l=3

[
Fl,l+1

0

]−1
[
−µ0

L
β4

0

]
=

j∏
l=1

[
Fl,l+1

0

] [
0
β1

0

]
+

[
−µj+1

L
0

]
j∏
l=3

[
Fl,l+1
n

]−1
[

α4
n

−α4
n tanh (knH4)

]
=

j∏
l=1

[
Fl,l+1
n

] [ α1
n

0

]
+

[
0

− 2µj+1

nπ cos (knxs)

] (25)
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TABLE I
VARIATION OF MAGNETIC ENERGY WITH PERMEABILITY

µr ∞ 10000 5000 1000 500
Wsmag(J/m) 2.29E-5 2.29E-5 2.29E-5 2.28E-5 2.27E-5

(a) (b)

(c) (d)

Fig. 9. Comparison between calculated results and simulated results for the
test case. (a) Test cut 1: Bx. (b) Test cut 1: By . (c) Test cut 2: Bx. (d) Test
cut 2: By .

B. Leakage inductance calculation

For the part inside the core, the previous Green’s com-
putation is applied. For the winding part outside the core,
the FPC layer is not implemented. Therefore, the PEEC-like
formulations can be employed for calculating the magnetic
field as well as the magnetic energy per unit length. In fact,
it can be shown that the PEEC-like formula (4) is the integral
form of the free space Green’s function (Green’s theorem) over
the rectangular region [−a/2, a/2]× [−b/2, b/2] [51]:

G (x, y;xs, ys) = −
µ0

2π
ln

√
(x− xs)2 + (y − ys)2 (27)

The Table II presents energy computed inside the core using
Green’s functions Wic and the one calculated outside the core
based on PEEC formulas Woc. The total leakage inductance
is then calculated with (28) taking into account lengths of
windings inside and outside the core (Fig. 14). For the LLC
transformer, the leakage inductance is evaluated to 162nH
while for the CM inductor, it is equal to 13.4µH .

Llk =
2

I2
[2Wiclic +Woc(loc1 + loc2)] (28)

Regarding computation time, duration depends on the num-
ber of conductors. For example, the LLC computation lasts
3.45s while the CM inductor 5.14s. As a comparison, FEA
performed on the example of Fig. 10(a) lasts 15s. Such semi-

(a)

(b)

Fig. 10. Planar CM choke cross section under simulation. (a) Window cross
section. (b) Field inside the window.

(a) (b)

Fig. 11. Comparison between calculated results and simulated results. (a)
Test cut: Bx. (b) Test cut: By.

analytical approach can then be interesting for component’s
optimization and its leakage inductance tuning.

C. Leakage inductance measurement

Both components are then characterized with an impedance
analyzer [52] and their leakage inductances are measured
based on method proposed in [53]: The leakage impedance
Zs (Fig. 15) is calculated using open-circuit and short-circuit
impedance measurements (29). This method enables to cancel
the effect on magnetizing inductance while calculating the
leakage one (30).

Zs =
Z0
′(Zcc − rp)

(Z0 − rp)− rs
(29)
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(a) (b)

Fig. 12. LLC planar transformer (a) Component top view. (b) Cross section
and dimensions.

(a) (b)

(c)

Fig. 13. Planar CM choke. (a) Component Top view. (b) Component Face
view. (c) Cross section and dimensions

with Z0 the impedance measured from primary winding with
secondary in open-circuit, Z0

′ the impedance measured from
secondary winding with primary in open-circuit and Zcc the
impedance measured from primary winding with secondary in
short-circuit. rp (Fig.15) is deduced from Z0 in low frequency
while rs is calculated with Z0

′ also in low frequency [53].

TABLE II
LEAKAGE INDUCTANCE CALCULATION

Component LLC CM ind
Core type E38 E43

Mag. material 3F3 3C90
lic (m) 25.4E − 3 27.9E − 3

loc1 + loc2 (m) 30E − 3 88E − 3
Wic (J/m) 1.009E − 6 6.691E − 5
Woc (J/m) 5.007E − 7 3.367E − 5
Llk (H) 162E − 9 13.4E − 6

Fig. 14. Typical winding length.

Fig. 15. Equivalent circuit for leakage measurement.

Llkmeas = Im(
Zs
2πf

) (30)

The measured values are plotted in Fig. 16, where they
are compared to the computed ones. In this figure, for low
frequencies, the leakage inductance is masked by resistances
while in HF, parasitic capacitances cancel the magnetic effect.
The leakage value is quite constant on the frequency range
[1kHz; 1MHz].

In both components coupling coefficients k between wind-
ings are close to 1. Magnetizing inductances are evaluated
to 431µH and 851µH for the LLC and the CM inductor,
respectively. These values are widely stronger than the leakage
ones. With such a difference, the total ampere-turn compen-
sation hypothesis stays valid because magnetizing current can
be neglected in case of short-circuit test.

D. Discussion

Regarding Fig. 16, it can be noted that computation for
both cases gives good result with error lower than 15%. These
differences can be justified for following reasons:

1) Errors related with dimensions: The dimensions reported
in Fig. 12(b) and Fig. 13(c) have been measured directly
on the prototypes and are not precises.

2) Simplification of the geometry: The window’s descrip-
tion is not identical inside and outside the core. The
part inside the magnetic core is well described but the
one outside is simplified and the angles/corners are not
really taken into account.

3) Sensitivity to the average length: The results are directly
proportional to the energy density. They have to be
multiplied by a lenght which is easy to determine inside
the core (depth of the core) but which is more difficult
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to evaluate outside. A mean path is fixed, based on
window’s peak energy but this assumption is not precise.

4) Magnetic material disparities: As an example, the C350
material is given with a permeability of 9 ± 20% [50].
The same computation has been done again, taking into
account this disparity. Calculation has been done with
µr = 10.8(9+20%) and µr = 7.2(9−20%). The Table
III summarizes the results and shows that this parameter
can lead to significant differences.

Without the leakage layers, leakage inductance can be
evaluated, based on [39], to 128nH (Wic = 6.68E − 7J/m)
and 11.8µH (Wic = 5.287E−5J/m) for the LLC transformer
and the CM inductor, respectively. The leakage layers enable
then to increase the leakage inductance and can be analytically
calculated with a good precision with the developped method.
However, this increase can be considered as quite low while
regarding relative differences between leakage inductances
with and without leakage layers. As a percentage, this rise
is equal to 26% for the LLC and 13% for the CM inductor.
These values can still be increased by acting on two main
factors:

1) Increase of FPC thickness: In both examples, FPC layers
are limited to 0.2mm and 0.96mm. Adding some layers,
can enable to increase the leakage inductance value.

2) Addition of FPC outside the core: In this work, only FPC
inside the core was considered. Adding leakage layers
outside the core will also increase the leakage value. But
the present method will not be able to calculate its value.
Only 3D FEA could be performed to do this assessment.

These both solutions can also be discussed. Indeed, in
most of power electronic converters, while power density
is required, HF power transformers are made of interleaved
layers to limit HF copper losses [54], [55]. Such interleaving
reduces the leakage inductance. FPC can be added between
each primary and secondary layers [56] but here also, the
present method will be unusable. Some developpements have
to be made on massively multi-layered windings as well as
HF effects.

In connection with HF power transformers, problem of par-
allel windings should also be adressed. In planar transformers,
parallel layers are a common practice to increase currents
inside windings. The Green method can be applied with such
conductor configurations. Indeed, only current values have
to be settled, as in the example presented in Fig.7. In low
frequency, the current repartition will be homogeneous and
current will be uniformly distributed inside conductors. It is
not true in HF, but the developped Green method is also limited
and can not be applied in HF.

V. CONCLUSION

In this paper, the leakage inductance of planar magnetic
components including leakage layer is studied via an analytical
method based on multilayered Green’s function. Using this
Green’s function, the Poisson equation for a rectangular region
with Neumanns type boundary conditions can be solved to
determine the magnetic field in the cross-section of the studied
component. Simulation and measurement results show that this

Fig. 16. Comparison between measurement and computation results.

method is very effective and accurate for planar component
leakage inductance calculation when a leakage layer is inserted
inside the component’s windings.

APPENDIX A
DERIVATION OF EQUATION

Recall the general solution of Greens function in layer i (18)
and the continuity condition (17). If i 6= j, δij = 0. In this
case, the Dirac current source does not locate on the interface
to analyze. The condition can be expressed by (31). Based on
the equality of the coefficients term by term, the following
matrix systems can be derived:

[
αi+1
n

βi+1
n

]
=
[
Fi,i+1
n

] [ αin
βin

]
(n = 0, 1, 2...∞) (33)

Here the matrix
[
Fi,i+1
n

]
is the upward transformation

matrix that relates the parameters of layer i and layer i+1.
Its expression can be found in (20) and (22). The downward
transformation matrix

[
Fi,i+1
n

]−1
can be defined similarly as:

[
αin
βin

]
=
[
Fi,i+1
n

]−1
[
αi+1
n

βi+1
n

]
(n = 0, 1, 2...∞) (34)

where
[
Fi,i+1
n

]−1
is given in (21) and (23).

If i = j, δij = 1. In this case, the Dirac current source
locates on the studied interface. The condition (17) becomes
(32). Integrate the second term of this equation (32) on [0, L]:

L

µj
αj0 −

L

µj+1
αj+1

0 = 1 (35)

Multiply the two sides of the second equation of (32) by
cos(knx), and integrate it on [0, L]:
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TABLE III
LEAKAGE INDUCTANCE VARIATION

LLC CM
Leakage value Error with Leakage value Error with

measurement measurement
µr = 9 162nH 11.1% 13.4µH 8.2%

µr = 10.8(+20%) 170nH 15.4% 14.7µH < 1%
µr = 7.2(−20%) 154nH 6.4% 12.1µH 17.1%

1

µj

∞∑
n=1

[
αjnsh (knHj) + βjnch (knHj)

]
−β

j+1
n

µj+1
=

2 cos (knxs)

nπ

(36)
Rearrange the equation (35), (36) and the first equation of

(32), the following matrix system are obtained:[
αj+1

0

βj+1
0

]
=
[
Fj,j+1

0

] [
αj0
βj0

]
+

[
−µj+1

L
0

]
(37)

[
αj+1
n

βj+1
n

]
=
[
Fj,j+1
n

] [ αjn
βjn

]
+

[
0

2µj+1

−nπ cos (knxs)

]
(38)

To solve the value of αi0, βi0, αin and βin, the equations (37)
and (38) are solved. On the interface between layers j and j+1
(j < 4), the equations (25) hold. It can be shown that β1

0 =
β2

0 = β3
0 = β4

0 = constant , which agree with feature of a
homogenous Neumann B.C. problem that an arbitrary constant
will appear in the final solutions. In this study, they are set
to be zero for simplicity. It is explained in the text that their
value will not influence the final leakage inductance. Once the
values of α1

n and α4
n are obtained, the relation equations (24)

are applied to find all the parameters αi0, βi0, αin and βin. More
details related to this development are given in [46].
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