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Abstract
Pili produced by Lactococcus lactis subsp. lactis are putative linear structures consisting of

repetitive subunits of the major pilin PilB that forms the backbone, pilin PilA situated at the

distal end of the pilus, and an anchoring pilin PilC that tethers the pilus to the peptidoglycan.

We determined the nanomechanical properties of pili using optical-tweezers force spectros-

copy. Single pili were exposed to optical forces that yielded force-versus-extension spectra

fitted using the Worm-Like Chain model. Native pili subjected to a force of 0–200 pN exhibit

an inextensible, but highly flexible ultrastructure, reflected by their short persistence length.

We tested a panel of derived strains to understand the functional role of the different pilins.

First, we found that both the major pilin PilB and sortase C organize the backbone into a full-

length organelle and dictate the nanomechanical properties of the pili. Second, we found

that both PilA tip pilin and PilC anchoring pilin were not essential for the nanomechanical

properties of pili. However, PilC maintains the pilus on the bacterial surface and may play a

crucial role in the adhesion- and biofilm-forming properties of L. lactis.

Introduction
Many bacteria, especially pathogens, produce long polymeric cell-surface organelles, called pili,
that initiate bacterial attachment to host tissues, facilitating colonization and invasion [1–3].
The biogenesis, structure, and properties of these extended hair-like structures are well charac-
terized in Gram-negative bacteria, especially for type 1, IV and P pili [1–5]. In contrast, pilus-
like structures on the surface of Gram-positive bacteria were first detected in the 1960’s in
Corynebacterium renale by electron microscopy [6] but have only recently been characterized
at the molecular level [7]. A number of studies has reported the occurrence of filamentous
structures in Gram-positive bacteria (see, for example, ref. [8] for review) and demonstrated
significant morphological and structural differences between the pili of Gram-positive and
Gram-negative bacteria [9,10]. A generic model for the assembly of pili in Gram-positive
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bacteria [7,11] has proposed that they are assembled from hundreds of copies of a single major
pilin that forms the shaft along with one or two ancillary pilins i.e. an adhesive pilin located at
the pilus tip and an anchoring pilin at the base of the pilus. Pilin subunits are secreted extracel-
lularly and are assembled linearly by a pilus-specific class C-sortase, a transpeptidase that links
the C-terminus of one subunit to the amino side chain of a lysine residue from the next pilin
subunit through a covalent isopeptide bond [7,12]. Once a pilus is assembled, another sortase
(usually a housekeeping sortase) ligates the anchoring pilin to an amino group of the cell wall
peptidoglycan [13], highlighting the fact that these pili are entirely covalent assemblies. This
architecture, typical of Gram-positive sortase-assembled pili, has been reported for several
pathogens, such as Streptococcus agalactiae [14], Streptococcus pyogenes [15] or Streptococcus
pneumoniae [16]. In contrast, data available for pili of non-pathogenic Gram-positive bacteria,
such as Lactic Acid Bacteria (LAB), are scarce and restricted to Lactobacillus rhamnosus GG
pili consisting of 1-μm long linear ultrastructures, resulting from the assembly of several copies
of major pilin SpaA along with ancillary pilins [17]. The distribution of the SpaC ancillary pilin
along the shaft confers the ability of the L. rhamnosus GG pilus to adhere via several attach-
ment sites [18,19].

Lactococcus lactis is considered to be a major LAB present in numerous ecological niches
involved in the global food chain including soil [20,21], plants [22–25], silages [26–28], milk
[29,30], and fermented food products [31,32]. Some strains of L. lactis have pili [33,34]. A pilus
biogenesis chromosomal cluster has been identified in in L. lactis IL1403 [34]. This pil operon
consists of three pilin encoding genes and one sortase C gene. Over-expression of the pil
operon results in the production and display of pili consisting of the 3 pilins i.e. the backbone-
forming major pilin PilB, the pilin PilA situated at the distal end of the pilus, and the anchoring
pilin PilC involved in the tethering of the pilus to the peptidoglycan [34]. These pilins are poly-
merized head-to-tail through isopeptide bond formation catalyzed by class C sortase for assem-
bling pilin and the nascent pilus is anchored to the cell wall by the housekeeping sortase A
[35]. Whereas the pilus biogenesis machinery in L. lactis is now well characterized [34], a com-
prehensive understanding of their nanomechanical properties is still lacking.

We have aimed to fill this gap using optical-tweezers force spectroscopy to unravel the
respective roles of PilA, PilB and PilC pilins. We used a collection of strains expressing the
native pilus operon or derivative pilus operons in which pilin and/or sortase C structural genes
have been deleted or modified.

Materials and Methods

Ethics Statement
All experimental procedures were approved by the “Laboratoire d'Ingénierie des Systèmes Bio-
logiques et Procédés” (Toulouse, France).

Bacterial strains and growth conditions
The lactococcal strains used are listed in Table 1. All are derived from L. lactis subsp. lactis
IL1403 and have been previously described [34,36]. The predicted architecture and topology of
the different gene products based on this previous work are schematically shown in Fig 1. The
relative straightness of the pili has been depicted strictly for representative purposes. Briefly,
the L. lactis Pil strain displays functional pili. The Pil psrtA strain, lacking the chromosomal
sortase A gene, was complemented with the psrtA plasmid yielding high expression of the srtA
gene resulting in the display of higher amounts of pili on the cell surface of this L. lactis strain
than on the lactis Pil strain [36]. The PilΔA strain was deleted for the gene for the PilA tip pilin
and the PilΔAΔC strain for the genes for both the PilA tip pilin and the PilC anchoring pilin.

Nanomechanics of L. lactis Pili
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These four strains all produce the backbone PilB polymerized structure [34]. Additionally, the
PilΔB strain is deleted for the gene for the PilB backbone pilin and cannot produce a polymer-
ized structure. The PilstrC

�
strain that produces an inactive sortase C is unable to polymerize

pilins.
Bacterial stock cultures were grown in M17 broth (Oxoid) containing 0.5% (w/v) D-glucose,

5 μg.mL-1 erythromycin (Ery) and stored at -80°C in 20% (v/v) glycerol. Aliquots of stock cul-
tures were first streaked on agar plates and incubated 24 h at 30°C. For the Pil psrtA strain, the
same medium with added tetracycline (Tet) at 5 μg.mL-1 was used.

The bacteria were then harvested as follows: 1–2 colonies were picked from the agar plates
and dispersed for approximately 5 min in phosphate-buffer saline (PBS) solution, comple-
mented in some cases with bovine serum albumin (BSA, Sigma-Aldrich, France). 1X buffer
was prepared using NaCl (140 mM), KCl (2.7 mM), Na2HPO4 (10.1 mM), and KH2PO4

(1.8 mM) pH 7.4 in Milli-Q grade water (Millipore, Billerica, USA) and filtered using a 0.2 μm-
pore size filter. To determine the influence of BSA on pili interactions, 10X stock solutions
with 2%, 1% and 0.1% (w/v) BSA were prepared in PBS. These solutions were dispensed into

Table 1. Bacterial strains and plasmids used in this study.

Strain number and strain designation
hereafter

Relevant characteristic(s)a Reference

L. lactis VE17061, control Wild-type strain (WT) [34]

L. lactis VE17173, Pil WT, pilA:pilB:srtC:pilC ibid

L. lactis VE17148, PilΔA WT, pilB:srtC:pilC ibid

L. lactis VE17183, PilΔAΔC WT, pilB:srtC ibid

L. lactis VE17190, PilΔB ΔpilB, pilA:srtC:pilC ibid

L. lactis VE17191, PilSrtC* ΔsrtC, pilA:pilB:pilC ibid

L. lactis VE17176, ΔsrtA psrtA Pil ΔsrtA, psrtA, pilA:pilB:srtC:pilC, pstrA
(pIL2608:strA)

[34,36]

a The host strain as well as the over-expressed pil operon derivatives are indicated; the pil operon and the

topology of the predicted gene products are shown in Fig 1. Genes yhgD, yhgE, yhhA, and yhhB whose

function has been characterized [34] are hereafter termed pilA, pilB, srtC, and pilC, respectively while the

ylcC gene [36] is termed srtA.

SrtC* designates sortase C whose active site has been inactivated.

doi:10.1371/journal.pone.0152053.t001

Fig 1. Predicted pilus topology of the strains used in this study. Scheme not to scale.

doi:10.1371/journal.pone.0152053.g001
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1-mL aliquots and stored at -20°C until use. A panel of 1X BSA solutions at 0.2% (w/v), 0.1%
(w/v) and 0.01% (w/v) corresponding to 30 μM, 15 μM, and 1.5 μM of BSA, respectively, were
used.

To isolate the lactoccocal pili, colonies of the strain PilΔAΔC were picked from agar plates.
They were resuspended into 10 mL cold 5 mM Tris-HCl (pH 8.0). The suspension was then
vortexed 3 times and centrifuged (9300 g, 30 min, 4°C). Supernatants were treated with ammo-
nium sulfate (55% (w/v)) overnight [37,38]. The precipitated pili were harvested by centrifuga-
tion (9300 g, 30 min, 21°C), extensively dialyzed against PBS, and filtered using a 0.2 μm low-
protein binding filter.

Transmission electron microscopy of L. lactis
The ultrastructure of lactococcal pili was analyzed using transmission electron microscopy
(TEM) and a negative staining procedure. All solutions were prepared extemporaneously and
ultrafiltered using a 0.2 μm pore-size filter. 24-h to 48-h old colonies were picked from agar
plates and resuspended in droplets of 50 μL PBS buffer. Formvar carbon coated copper grids
(300 Mesh, Electron Microscopy Sciences, Hatfield, USA) were deposited over bacterial sus-
pension droplets and left for 3 min to allow the adsorption of bacteria. Staining was performed
by immersion of the grids in a 1% (w/v) pH 7 phosphotungstic acid (Sigma-Aldrich, France)
solution for 20 s and the grids were dried onWhatman grade n°1 cellulose filter paper. Samples
were observed at 75 kV with an H-600 TEM (Hitachi) equipped with a 1024 x 1024 pixel for-
mat Orca CCD camera (Hamamatsu, Massy, France) driven by AMT image capture engine
software (version 5.42). Images were then post-processed using MATLAB1 software (Math-
works, Austin, USA).

Optical tweezers set-up
Ashkin and co-corkers [39] pioneered the use of light as micromanipulators to handle micro-
sized particles. Pico-Newton (pN) gradient and scattering forces are possible using a Gaussian
TEM00 intensity mode tightly focalized by a high numerical aperture microscope objective. In
this study, initially introduced by Fällman and co-workers [40], the custom-made force-mea-
suring optical tweezers (FMOT) set-up used the main components of the Thorlabs Optical
Tweezers Kit [41] (Thorlabs Inc., Newton, USA). A solid-state Nd-YAG laser source operating
at 1064 nm (500 mW ultrastable, CrystaLaser, Reno, USA) was expanded using a two-lens Gal-
ilean telescope (f = -25 mm and f = 100 mm) and coupled to an oil immersion objective (Plan
Fluorite, Nikon, Japan) with high numerical aperture (NA = 1.3). The pointing and intensity
stability was measured over 24 hours and fitted to the manufacturer’s specifications (< 0.25%
rms). To control the intensity, a half-wave (λ/2) plate mounted on a rotational motor was com-
bined with a polarizing beam splitter cube such that the intensity of the transmitted-polarized
light could be remotely modulated. The reflected light was measured using a power meter
(PMD100A, Thorlabs). A 10X condenser (Plan E, Nikon, Japan) collected the laser light and its
back focal plane was imaged onto a quadrant photo-diode (PDQ80A, Thorlabs) for 3D-detec-
tion of micro-sized particles [42]. In order to reach the optimum filling ratio with respect to
microsphere diameter [43] and subsequent lateral and axial stiffness values, the size of the
beam was modulated by translating the two-lens expander along the optical axis. This method
made use of the divergence of the beam and does not require extra lenses, which would intro-
duce additional spherical aberrations and a decrease in available laser power. The distance
between the source output and the first surface of the expander was in the range 310–380 mm
in our system. The beam diameter before the objective was determined using the knife-edge
method in both x- and y-directions [44].

Nanomechanics of L. lactis Pili
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The sample, illuminated by a light-emitting diode (1W), was translated by a 3D-nanoposi-
tioning piezo-stage (NanoMax 341\M, Thorlabs) and visualized using either a CCD
(DUC224C, Thorlabs) or sCMOS (Edge, PCO, Kelheim, Germany) camera. Closed-loop feed-
back position using a gauge reader (TSG001, Thorlabs) can achieve positional resolution of 5
nm. For large displacements (up to 4 mm), the stage was equipped with 3 stepper motors that
were controlled using a USB gaming joystick and custom-LabVIEW1 user interface (National
Instruments, Austin, USA). All optics were purchased from Thorlabs Inc. and optimized for
1064 nm and anti-reflection coated. The set-up was tested for stability in the time domain
using Allan variance [45] and possible sources of noise were diminished [46].

Single-Molecule Force Spectroscopy assays
Large 10.5-μm polystyrene beads (Polysciences, Inc. Warrington, USA)–referred to asmount-
ing beads throughout the paper–were washed twice, suspended in Milli-Q grade water, soni-
cated and immobilized on a glass coverslip at 60°C for one hour, as described in ref. [40]. The
beads were functionalized by depositing a 100-μg.mL-1 poly-L-lysine (Sigma-Aldrich, France)
solution to provide strong electrostatic attachment with the negatively charged bacteria (elec-
trophoretic mobility determined in ref. [47]), and incubated at 37°C. The glass slides were then
dried under a laminar flow hood. Small, 1-μm latex amine-modified beads (Molecular Probes,
Invitrogen)–referred to as probe beads throughout the paper—were washed twice and sus-
pended in PBS (complemented with BSA in some cases). The small beads and bacterial/iso-
lated-pili suspensions were mixed 1:1 (v/v) prior to the experiments.

A flow cell was built using two strips of Parafilm1, sandwiched between the bottom cover-
slip treated with immobilized beads and a small untreated top coverslip. This was then warmed
to ~80°C for a few seconds, thereby forming a channel with a depth of approximately 150-μm.
The bacterial/isolated pili and probe bead suspension was introduced into the flow cell by
pipetting in one end and aspiration, using a filter paper, from the other. To avoid evaporation
and convection, the two ends were sealed with vacuum grease (Dow Corning, Auburn, MI). At
low trap power (30 mW before the objective), bacteria were brought into close contact with the
positively charged mounting beads approximately 4.5 μm from the bottom surface (equatorial
plane of the large bead). Once a firm interaction was achieved, a probe bead was trapped at
higher power (480 mW before the objective) and focused at the same height.

The trap was calibrated using a combined drag-force-power spectral analysis method as
described in ref [48]. This method employed a sinusoidal displacement of 150 nm at a fre-
quency of 32 Hz. The displacement was controlled by the analog voltage outputs of a 16-bit
acquisition card (PCI-6361, National Instrument) to the piezocontrollers (TPZ001, Thorlabs).
The QPD recorded the voltage signals via the analog inputs of the DAQ-card at fsample = 65536
Hz at a sampling rate for t = 1/8 s. The power spectrum density was averaged over 10 measure-
ments and fitted using a custom-MATLAB least-squares fitting routine implementing a Leven-
berg-Marquardt algorithm. The acquisition and stiffness determination took less than 2 s. The
trap stiffness was typically in the range 140–180 pN.μm-1 and 20–40 pN.μm-1 along the x-, y-
and z- axes, respectively.

Once the trap was calibrated, the probe bead was brought into the vicinity of the bacteria
(~100 nm) for approximately 1 min (Fig 2A).

A first attempt to bring away the bead was manually made using the joystick. If the bead
detached, the event was reported as “failure”, and if not, as a “success”. The total number of
attempts is listed in Table 2. When the probe bead remained bound, the custom-LabVIEW
program set the retraction to a translation speed of 100 nm.s-1. During retraction, the position
of the bead was converted into force in pN using the calibrated stiffness and gave rise to a
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force-extension curve [49,50] as shown in Fig 2B and 2C. The sampling rate was set at fsample =
2 kHz. The axial force (along the z-axis) was also recorded to control cross-talk between lateral
and axial axes (see S1 Appendix and S2 Fig) and to ensure the appropriate position of the
probe bead in its vertical position with the bacterium. Sometimes, the force elongation curve
rapidly increased in less than a 50-nm separation distance until the bead escaped the harmonic
potential of the optical trap. This event was reported as “strong attachment” in Table 2. Finally,
a full force-elongation curve was obtained during this run (reported in Table 2), giving rise to a
success rate i.e. the ratio of the number of elongation traces to the total number of attempts,
and complemented with the strong attachment rate, i.e. the ratio of the number of attempts
that required pulling forces out of the range of the set-up (typically> 200 pN) to the total
number of attempts.

Modeling a sortase-assembled pilus with the Worm-Like Chain model
Lactococcal pili are hypothesized to share a common architecture with other sortase-assembled
pili [8] as depicted in Fig 1. A common model for describing the force–extension response of
linear polymers that undergoes thermal fluctuations is the Worm-Like Chain (WLC) model
[51,52]. This model describes the polymer as a continuous flexible chain of length Lc [nm] with
a bending stiffness, which is often expressed in terms of a persistence length, Lp [nm].

As there is no analytical solution to the WLC model for the entire range of forces, approxi-
mate solutions have been developed [53]. The most common approximation is the interpolated

Fig 2. Experimental configuration of single-molecule force spectroscopy assays. Scheme illustrating
the measurement configuration that was used during the experiments with no force applied (A) and under
force (B) when the stage was moving. C is a close-up of B.). The pilus attached to the trapped bead is
disproportionally long for reasons of depiction. The 10.5-μmmounting bead (MB) was immobilized on the
coverslip while the 1-μm probe bead (PB) was trapped by optical tweezers (OT). A piliated bacterium was
non-specifically attached to the MB and a pilus to the PB. When the coverslip was moved, and the trap kept in
a fixed position, a force was directly exerted on the pilus. (C) Assuming adhesion to be non-specific, the most
likely situation is that a portion of the pilus was attached (white subunits) and not solely the adhesion pilin (red
subunit). Only a part of the pilus (black subunits) was thus subjected to the applied force.

doi:10.1371/journal.pone.0152053.g002
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WLC, derived by Bustamante et al.[51], which reads:

FðLÞ ¼ kBT
Lp

1

4
1� L� dL

Lc

� ��2

� 1

4
þ L� dL

Lc

 !
� dF0; ½1�

in which kB is the Boltzmann’s constant and T the absolute temperature (kBT in J or pN.nm),
L (nm) represents the end-to-end distance of the segment of the pilus being stretched between
the two bead surfaces in the direction of the elongation, δL (nm) and δF0 (pN) are lateral and
force offsets, respectively. Lateral offset was typically in the range 0–50 nm. The force offset
was obtained when rupture occurred i.e. probe bead was detached. This value was then updated
with axial force response (using axial position and stiffness values) in the case of cross-talk [54]
yielding a possible tilt of the pilus during extension (see S1 Fig for more details). Determination
of the two offset values provided remarkable accuracy of Lp and Lc values. This analytical solu-
tion was thus used in the present work to analyze the force–extension behavior of pili produced
by L. lactis.

The experimental data were then fitted with the model of Eq [1] using a custom-MATLAB
least-squares fitting routine yielding a regression coefficient of R2 > 97%.

Table 2. Summary of FMOT dataset on the tested strains for which an elongation process was observed (i.e. Pil, Pil psrtA, PilΔA, and PilΔAΔC).

Conditions/Strain Pil Pil psrtA PilΔA PilΔAΔC

Number of successful elongation data (success rate (%) / strong attachment rate (%))

PBS 253 (94.4/35.6) 0 (0/100) 277 (91.1/29.8) not tested

+BSA 1.5 μM 246 (56.1/9.5) 71 (13.1/86.8) 198 (68.9/12.3) 244 (81.8/21.9)

+BSA 15 μM 52 (20.3/0) 79 (26.9/74.5) 41 (26.2/0) not tested

+BSA 30 μM 0 (0/0) 13 (35.5/12.3) 0 (0/0) not tested

Lp values (nm)

PBS 0.653 ± 0.086 failed 0.632 ± 0.082

0.965 ± 0.065 failed 0.967 ± 0.083

1.357 ± 0.085 failed 1.361 ± 0.079

2.748 ± 0.106 failed 2.780 ± 0.089

+BSA 1.5 μM 0.680 ± 0.046 0.763 ± 0.187 0.739 ± 0.097 0.585*

0.949 ± 0.082 failed 1.021 ± 0.042 0.845*

1.406 ± 0.092 1.263 ± 0.073 1.411 ± 0.090 1.352 ± 0.116

2.730 ± 0.114 2.795 ± 0.026 2.738 ± 0.101 2.758 ± 0.087

+BSA 15 μM 0.366 ± 0.019 0.724 ± 0.186

0.933 ± 0.119 1.037 ± 0.092 0.951 ± 0.053

1.360 ± 0.202 1.314 ± 0.121 1.295 ± 0.062

2.747 ± 0.101 2.787 ± 0.079 2.712 ± 0.097

+BSA 30 μM failed failed

failed failed

failed 1.422 ± 0.035 failed

failed 2.795 ± 0.067 failed

A first set concerns the number of successful elongation data for the entire campaign of experiments. A second set provides the value of persistence

length Lp extracted from fitting Eq [1] to elongation curves under different conditions of medium (PBS and PBS+1.5–30 μM BSA). When elongation curves

cannot be obtained (strong attachment or no interaction), the attempt was reported as “failed”. The distribution of Lp exhibited four distinct modalities. Each

peak was fitted with either Gaussian function or deconvoluted using multipeak convergence and reported in this table.

(*) indicates failure in multipeak fitting convergence. Values are only the position (in nm) of the highest peak.

doi:10.1371/journal.pone.0152053.t002
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Results and Discussion

Pilus of L. lactis is highly flexible but inextensible
The pil operon drives pilus biogenesis in L. lactis resulting in protruding filamentous structures
on the bacterial cell surface that tend to tangle and wrap around each other [34]. Fibers reach
up to 3 μm in length with a diameter of 5-nm as observed by atomic force microscopy. The
wild-type strain have no pili on the surface. The mechanical flexibility of pili can be assessed by
their persistence length. The persistence length Lp used in the WLC model opposes the thermal
fluctuations, which tend to randomize the orientation of a polymer, to the energetic cost of
bending. Alternatively, it characterizes the correlations of the tangent vectors at different posi-
tions along the polymer [55]. For a pilus, the tangent vectors of two segments are totally uncor-
related, showing that the entropic elements of free energy dominate over the bending stiffness.
Fig 3A is a transmission electron micrograph showing the strain Pil–over-expressing the entire
pil operon–which produces long appendages, forming bundles (arrow with a star), sometimes
highly tangled (arrow).

The pili are very long– 1 to 3 μm length–i.e. longer than the bacterium itself. The pilus
shown in Fig 3B (which is a close-up of the black rectangle) is not entirely straight, in contrast
to the predicted architecture shown in Fig 1. Fig 3C shows image processing of the pilus reveal-
ing the edges (solid dark grey lines) and the mean value (solid red line). It shows that pili

Fig 3. Transmission electronmicrograph of Pil strain. (A) Pil strain bacterium (scale bar is 500 nm). A
close-up of a pilus (black square) is shown in (B) with higher contrast and (C) image analysis of the contour.

doi:10.1371/journal.pone.0152053.g003
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display high curvature that reflect a relative small persistence length. Several studies have esti-
mated the persistence length through image observations, e.g. in Corynebacterium diphteriae
[56] by measuring the bending angles over 50-nm segments using AFM, obtaining a persis-
tence length of ~280 nm. The authors claimed that this method could have limitations resulting
from the drying process although they assumed that the pili thermally equilibrate in the sub-
strate plane before drying. We measured the bending angle of straight pili by analyzing the
mean curve (Fig 3C—solid red line) using the first derivative to obtain its inverse tangent. In
thermodynamic equilibrium, the probability p that the segment ΔL is bent by a specific angle θ

is given by Boltzmann’s law p(θ)/ exp(−U(θ)/kBT) = exp((−Lp/ΔL)θ2) with U(θ) the energy
required to bend the segment. Consequently, the standard deviation s2

y of the bending angles is

given by s2
y ¼ hy2i ¼ DL=Lp We obtained an estimation of the persistence length for the Pil

strain using the TEMmicrographs of 36 ± 15 nm, with σ = 1.17 rad, over the 50-nm segments
analyzed (N = 31) and 30 pili. This persistence length is relatively small compared to other
types of pili, such as that obtained for C. diphteriae using the same method of analysis of the
bending angles. This could result from the lower resolution of TEM images relative to those of
AFM images.

The persistence length determines the bending stiffness of the pilus and is therefore a key
parameter of its nanomechanical properties. We applied optical-tweezers force spectroscopy to
more accurately determine the persistence length of a pilus attached to living bacteria–for sin-
gle-pili—and to circumvent artifacts of the sample preparation such as the drying process. The
Pil strain produced a substantial number of long pili (Fig 3A) and it was difficult to avoid mul-
tiple attachments. Back-and-forth cycles were performed until a single attached pilus remained
(Fig 4).

A concentration of 1.5-μM BSA was typically used. Force-versus-extension spectra show a
saw-tooth pattern related to consecutive unbinding during separation (Fig 4A). After an ini-
tialization step to create the interaction between the pili and the probe bead, the Separation
step #1 gave the extension force response shown by trace S1. This trace resulted from several
rupture events originating from numerous pili-bead interactions referred to asmultipili attach-
ments that were also monitored by the axial position of the bead (see S1 Appendix and S2 Fig
for supplementary details). Each instance (solid black lines) was fitted with the WLC model
given by Eq [1] (grey dashed lines). The persistence length of each fit is shown in Table 2. The
retraction run (H1) retraced the previous extension curve S1 and stopped earlier (at ~400 nm).
The second extension cycle with extension curve S2 (Fig 4B) resulted in another rupture. The
last curve was retraced during the second retraction run (H2). The third cycle (Fig 4C) dis-
played no hysteresis with extension run (S3) that retraced the previous rectraction (H2), until
the force dropped down to the offset value δF0 after detachment of the pilus.

The acquired force increased monotonically (Fig 4A) in a non–linear manner until the force
stalled at the end of each part. There was no visible plateau of constant force, in contrast to L.
rhamnosus GG, possibly because L. lactis pili do not have ancillary pilin along the shaft, which
gives L. rhamnosusGG pili the ability to adhere via several attachment sites [18,19]. In contrast,
the curve exhibited a sharp increase in the force values due to the entropy that hampers further
extension of the pilus. During the force-extension measurements, the pilus was not stretched as
an individual monomer but was instead extended as a united linearized structure [57]. The
WLC model that treats the pili as linear structures seems appropriate, with R2>97%. Fig 4C
showed no hysteresis for long extension (up to 900 nm) nor during retraction of the pilus, indi-
cating that no conformational changes occurred during the extension procedure. This result is
consistent with the findings of Alegre-Cebollada and co-workers, showing that the isopeptide
bonds of the major pilin Spy0128 produced by S. pyogenes are inextensible and thus block the
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unfolding of the pilin monomer [57]. The extension/retraction process was reversible as we
observed no unfolding of subunits under 200 pN using FMOT. This suggests that the shortest
pili that unbound operated in a “sacrificial-bond system” to leave the longest pili operational.
The single-pilus force-extension curve (trace S3 in Fig 4C) was thus fitted with the WLC model
and yielded a value of 2.7 nm. This value is much smaller than that obtained using TEM (mean
value of 36 nm) raising the question of whether conditions of pili immobilization on a surface
before drying for TEM observations are appropriate for such measurements. This value is also
smaller than the predicted length of PilB (55 kDa [34] i.e. length of ~ 10 nm based on RrgB
pilin from S.pneumoniae, 12-nm long [16] and Spy0128 from S. pyogenes, 10-nm long [58,59]),
reflecting high flexibility of the macromolecule. The elastic cost to bend the pili under these
experimental conditions was particularly low compared to the thermal energy. Therefore, such
low persistence length value may be rationalized by describing the stretching of extended poly-
peptide segments (generated as a result of the applied force) as reported in other works [57,60]
and not on the stretching of a polymer of globular units. Indeed, Alegre-Cebollada et al. [57]
have determined Lp values between 0.2 and 2.3 nm to fit force spectra of Spy0128. The L. lactis
pili extension data are in agreement with these findings in S. pyogenes [57] using AFM and S.
pneumoniae [61] using FMOT (2.1 nm). The same order of magnitude was also observed for E.

Fig 4. Force spectra from extension/retraction cycles experiments. Typical force spectra experiment at
constant velocity on the Pil strain under conditions of 1.5 μMBSA. The steps were organized as follows: (A)
the initialization, separation and homing steps giving the extension (S1) and retraction (H1) traces; (B)
second separation/homing cycle with S2 and H2 and (C) third separation until rupture with S3 where the force
finally dropped down to the zero force offset (δF0).

doi:10.1371/journal.pone.0152053.g004
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coli pili displaying a helix-like shape able to unwind under constant force using FMOT [62]
(0.8 nm) or by AFM [60] (1.2–1.6 nm).

In conclusion, optical-tweezers force spectroscopy determined an Lp value that is close to
sortase-assembling pili and other types of pili such as helixlike E.coli. FMOT gave an accurate
determination of a single-pilus persistence length of 2.730 ± 0.114nm. The other early rupture
events were also analyzed and their interpretation is proposed in S2 Appendix and S3 Fig. This
consisted of deriving the WLC model into several WLC-behaving entities with an emphasis on
persistence length. The main objective of this analysis is to interpret the force-extension spectra
and differentiate whether the pilus was subjected to slip from the probe bead or unbinding
(multiple attachments), giving rise to a constant Lp value or its increase after each rupture
event, respectively.

Nanomechanics of the pilus backbone: Sortase C and PilB are required
The PilΔB and PilstrC

�
strains, which lack the backbone pilin PilB and functional sortase C,

respectively, have been reported to be unable to produce functional pili [34]. Consistent with
these findings, force spectroscopy experiments did not show an elongation process for PilΔB or
PilStrC

�
, behaving similarly to the negative control. Our data, together with molecular biology

studies [34], confirm that sortase C is essential for the polymerization of PilB pilin subunits in
L. lactis, as shown in other sortase-assembled pili of Gram-positive species such as S. pneumo-
niae [16,63], S. pyogenes [64], E. faecalis [65] and Streptococcus agalactiae [66]. Indeed, PilB is
essential for the structure of the pilus backbone; no other pilin can fulfill this function. The
force-elongation curves that will be discussed below are thus restricted to the strains that pro-
duce structures containing oligomerized PilB moieties, i.e. Pil, Pil psrtA, PilΔA and PilΔAΔC.

Unless stated otherwise, the persistence length of the four pili-producing strains used in this
study are plotted in Fig 5 by fitting Eq [1] to the full-length force-extension curves.

A concentration of 1.5-μM BSA was used for experiments with the Pil, PilΔA and PilΔAΔC

strains, whereas 15 μM BSA was used for Pil psrtA. We fitted the distributions around the
apparent peaks (either using Gaussian fitting or multipeak Gaussian analysis, as indicated by a
black star) and revealed four values that were shared between the strains, i.e. ~2.7 nm, ~1.3 nm,
~0.9 nm and ~0.6 nm (Table 2). We deduced the value of 2.7 nm by fitting the last curve result-
ing from the optimized cycling procedure. This value was shared between the four strains that
produced polymerized PilB under the different medium conditions (PBS and BSA).

Strains PilΔA (that does not produce PilA tip pilin) and PilΔAΔC (that does not produce PilA
tip pilin or PilC anchoring pilin) both produce pili. Only PilΔA pili gave results for the exten-
sion process (Table 2, Fig 5), whereas PilΔAΔC did not. This was expected because the absence
of the anchoring PilC pilin in this strain results in the release of PilB polymers into the extracel-
lular medium, demonstrating that PilC is required for the attachment of pili to the cell wall.
We took advantage of this feature to perform elongation attempts on bacteria-free pili. The
strain PilΔAΔC was prepared as explained inMaterials and Methods. Pili released into the cul-
ture supernatant were recovered using previously reported protocols for P-pili producing E.
coli [37,38]. The amount of BSA was optimized to avoid aggregation (1.5 μM) and attachment
to the mounting and probe beads was achieved. We obtained a sufficient amount of elongation
data to characterize the free pili (n = 244). The absence of the PilA tip pilin did not appear to
substantially affect the biomechanical properties of the strain PilΔA or pili from PilΔAΔC. The
value of 2.7 nm was conserved among the strains indicating that PilA, which is the first secreted
and assembled pilin in the pilus biogenesis process, does not play a role in the ultrastructure
and nanomechanics of the final pilus. This result reinforces our above conclusions on the key
role of the PilB pilin in L. lactis pili nanomechanics.
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The Pil pstrA strain, which overexpresses pili with a certain amount released into the sur-
rounding medium [34], was examined further. We never succeeded to produce elongation data
under PBS conditions with this strain because the probe bead stuck to the bacterium. The
behavior of this strain in the presence of BSA was different from that observed for other strains
(Table 2). BSA is commonly described to suppress non-specific binding in favor of specific
receptor-ligand interactions (e.g.[67]) by mainly neutralizing hydrophobic interactions [68].
The percentage of success was low for strain Pil pstrA, regardless of the BSA concentration: for
example, 13.1% in 1.5 μM BSA compared to 56.1% (Pil) with only 2–3 single-pilus attachments
(Table 2). The force needed to overcome this strong attachment was probably too large for
FMOT (probably in the range of nanoNewtons). The number of measurements was still small
when the concentration of BSA was increased to 30 μM (n = 13, Table 2). The intermediate
BSA concentration of 15 μM resulted in profiles similar to those achieved with the Pil strain.
Altogether, our results show that the number of measurements of the last peak value (~2.7 nm)
increased with the amount of BSA which correlated with the number of pili involved in the
force spectra. The use of BSA tended to minimize the amount of strong attachment events and
favored the single pilus configuration. In a previous study, Klinth et al. [69] used BSA (from
2.8 to 11.3 μM) to measure the influence of the PapD chaperone protein on refolding of P pili
produced by E. coli. BSA, even at 11.3 μM, did not affect the refolding process of the helix-like
pilus when subjected to external force, where only few disturbances were detected. Our results

Fig 5. Histograms of persistence length Lp (nm). The positions are provided by fitting WLCmodel to force
spectroscopy data on the Pil strain and its pili-displaying derivatives with 1.5 μMBSA or 15 μMBSA for the Pil
psrtA strain. Data were fitted using the Gaussian function (solid line) and Gaussian multi-peak analysis (solid
line and black star (*)).

doi:10.1371/journal.pone.0152053.g005
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also suggest that BSA did not impede the linearization process and did not thus influence the
persistence length.

Our findings with the Pil pstrA strain clearly show that the use of pstrA on the strain lacking
expression of class A sortase not only reactivated the function of the sortase but also resulted in the
secretion of more pili. The pili produced had identical biomechanical properties to those of the Pil
strain. The presence of BSA reduced the number of attachment events between pili suggesting that
BSA either a contributes to site-specific adhesion and/or homophilic adhesion. The second possi-
bility was previously shown by studying the biofilm-forming properties of the Pil pstrA strain [34].
The biofilms were highly reticulated, heterogeneous, rough, and aerial [34] due to the high density
of pili and their subsequent steric interactions that somehowmaintained foamy aggregates.

Nanomechanics of L. lactis pili are a key player in its interactions with the
environment: comparison with other types of pili
L. lactis pili can only extend ~ 1 time their original length (Fig 4), whereas the pili expressed by
uropathogenic E. coli strains can extend more than 5 times their length [50] under FMOT
force. The L. lactis sortase-assembled pilus thus behaves as a barely extensible biopolymer. This
may be attributable to an evolutionary artifact or originate from the different shear forces that
prevail in the diverse sites of bacterial colonization. This has been proposed by Mu and co-
workers who observed that Hib pili onHaemophilus influenzae could not overextend, suggest-
ing that regions of intense shear forces, such as recurrent coughs and sneezes, favor the persis-
tence of bacteria displaying inextensible pili [70]. However, recent work [71] compared the
biomechanical properties of pili produced by uropathogenic (UPEC) and enterotoxigenic
(ETEC) E. coli. The pili share common quaternary structure and the ability to unwind under
constant force. Their ecological niches reflect their property to unwind because they are sub-
jected to different types of forces. For example, UPEC are found in the ureter and need to with-
stand periodic shear forces due to urine boluses. The rewinding kinetics allowing the pili of
UPEC to act as reversible structures have been shown to be rapid [72,73]. CS20 pili on ETEC
[74] can be unwound to up to eight times their initial length by a low unwinding force. Peristal-
tic motion in the ileum generates smooth back-and-forth shear forces [75], suggesting that evo-
lution has resulted in pathogenic bacteria with dedicated shock absorbers. In contrast, L. lactis
belongs to Gram-positive bacteria with sortase-assembled subunits. Here, we have shown that
such pili are not wound as those found in UPEC/ETEC strains and in turn cannot respond to
shear force solely by unwinding. A possible adaptive strategy would be to form a biofilm com-
munity, notably through pili-mediated homophilic adhesion which can help in building a thick
fortress. Indeed, the pili-displaying strain Pil has been shown to be able to form an aerial and
reticulated biofilm, solely due to the presence of pili with respect to its negative control [34]. In
addition, pili, as observed in Fig 3A, tend to form bundles or a mesh-like structure. This sug-
gests a high affinity between pili. Indeed, L. rhamnosus GG pili exhibit ancillary proteins along
the backbone that improve homophilic adhesion and display a force plateau when exposed to
an external force [18]. The unzipping mechanism can easily be compared to that present in
UPEC/ETEC strains that break their layer-to-layer bonds and thereby dissipate energy. This
comparison has been presented in a previous publication on T4 pili of S. pneumoniae [61]
which share a similar architecture with that produced by L. lactis.

Conclusion
We analyzed the persistence length of pili produced by L. lactis reflecting their morphological
and biomechanical properties. We have proposed a technical and analytical methodology to
provide a reliable interpretation of certain aspects of their structural/nanomechanical
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relationship. This methodology consisted of using Force-Measuring Optical Tweezers to apply
minute forces on several pili until some detached leaving a single pilus, followed by the exploi-
tation of an experimental procedure, i.e. directly at the single-pilus scale using an interaction-
screening protein (bovine serum albumin). Our methodology allowed us to investigate the
functionality of the different pilins needed to form a pilus. We have clearly established the
combined role exerted by sortase C and the backbone pilin PilB. In contrast, the tip pilin PilA
was shown to be nonessential for pilus nanomechanics.

In future work, these mechanistic insights into the nanomechanics L. lactis pili will be
strengthened by investigating the adhesion properties of piliated L. lactis under shear flow on
different surfaces such as mucins, to propose further applications of piliated lactococci for
functional food, mucosal vaccines, or therapeutic drug delivery.

Supporting Information
S1 Appendix. Axial monitoring of beads during force spectroscopy experiments.
(DOCX)

S2 Appendix. Proposal of derivations of the WLC model.
(DOCX)

S1 Fig. Defocusing effect from the linearization of the pilus during elongation. Sketch depicting
extension routine of a single pilus (A). (B) At rest, the pilus is somehow folded but the two ends are
not located at the same height on the mounting bead and the probe bead. (C)When the stage starts
to move, the pilus linearizes and the force response is monitored, revealing the bending stiffness. (D)
Once the pilus is fully linearized, the forces equilibrate and tend to defocus the bead in order to align
the pilus in the same plane. This effect was monitored along the z- axis.
(TIF)

S2 Fig. Force-versus-elongation curve and axial monitoring. (A) Force-versus-elongation
curve (solid line) fitted with the WLC model (dashed gray line). The probe bead was set free,
the force dropped down to a zero offset δF0. (B) Axial position of the probe bead during the
extension process. When the force reached the zero offset, the equilibrium position of the bead
was indicated by δz0.
(TIF)

S3 Fig. Scenarios describing force-versus-elongation spectra displaying multiple rupture
events. Example of force spectra on the Pil strain (A, C, E) with successive values of Lp and Lc
(B, F and D), respectively. During the extension process, the force rapidly increased and rup-
ture events occurred: either a pilus partially detached and therefore gained sequentially an
amount of contour length ΔLc depicted in (G) or a pilus detached from the bead in case of mul-
tipili attachments (black stars�) illustrated by (H). (G) and (H) provide possible scenarios illus-
trating the two cases as slipping and multipili events. (G) involved a single pilus, some parts are
colored to highlight the slipping effect. (H) involved three independent pili (yellow, blue and
red). When a curve was fitted using the WLC model (dashed black line), the fitted curve was
designated using a capital roman letter (e.g. IV). The extension range of the curve is represented
by yellow/white shading (B, D, F) for easier reading of the plots.
(TIF)
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