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Figure 1: Vizir user interface while authoring automations (left) and examples of airport automations (center, right) 

ABSTRACT 
Automation is one of the key solutions proposed and adopted 
by international Air Transport research programs to meet the 
challenges of increasing air traffic. For automation to be safe 
and usable, it needs to be suitable to the activity it supports, 
both when authoring it and when operating it. Here we 
present Vizir, a Domain-Specific Graphical Language and an 
Environment for authoring and operating airport 
automations. We used a participatory-design process with 
Air Traffic Controllers to gather requirements for Vizir and 
to design its features. Vizir combines visual interaction-
oriented programming constructs with activity-related 
geographic areas and events. Vizir offers explicit human-
control constructs, graphical substrates and means to scale-
up with multiple automations. We propose a set of guidelines 
to inspire designers of similar usable hybrid human-
automation systems. 
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INTRODUCTION 
Automation is “the execution by a machine agent (usually a 
computer) of a function that was previously carried out by a 
human” [41]. The expected benefits of automating an 
activity include offloading monotonous tasks from human to 
machines, greater efficiency of the overall hybrid human-
machine systems and greater safety in cases of critical 

activities [41,42]. However, automation raises several 
challenges, especially in situations in which humans retain 
control, as automation performances have not been assessed 
enough. In such hybrid systems, humans need trust and 
confidence in the automation ability to perform safely, or in 
their own ability to take control if the automation fails [42]. 

Air traffic control (ATC) is a complex hybrid system that 
includes humans and automated processes [22]. ATC aims to 
organize the movements of aircraft in the air or on the ground 
with two main objectives: safety and capacity. To face 
increasing traffic and complexity, further automation is one 
of the key solutions proposed by international air transport 
programs [16,29]. However, due to safety concerns, ATC 
still relies heavily on human operations [22,33]. For 
example, many clearances (i.e. instructions) from air traffic 
controllers (ATCOs) to pilots are still performed by voice via 
radio. In addition, the main problem that field studies and 
surveys on automation have revealed is the low sense of trust 
and substantial degree of confusion that pilots have regarding 
the operation of ‘opaque’ systems [42]. 

We believe that the opacity mentioned in [42] is related to 
the lack of the operator visibility on the program behavior. 
Since the behavior is opaque, it is difficult to predict, and the 
operators feel they must blindly trust automation. Operators 
may prefer to control the operation directly rather than rely 
on unpredictable automation. This mechanism leads to a 
dichotomy in the usage of automation (all or nothing [45]) 
instead of a flexible collaboration between users and 
automated solutions. Opacity might also prevent operators 
from recovering from a problematic situation. When 
automation fails, operators must engage into Knowledge-



based behavior, as opposed to Skills or Rules-based behavior 
[9,44] that is typical in a nominal situation. Operators must 
gather information, make sense of it, understand both the 
causes and the consequences to react appropriately. These 
tasks lead to a substantial increase of their cognitive 
workload. To conduct this problem-solving activity, the 
operator needs an accurate conceptual model of the 
automation, as well as a correct understanding of the state of 
the entire system [39]. Therefore, visibility of operations and 
automation states, as well as program visibility, could be of 
critical importance. 

In this paper, we present Vizir, a 2D Domain-Specific 
Graphical Language (DSGL) to author airport automations 
and to operate them while they are running. Vizir’s visual 
constructs lie above the airport map to make automation 
visible. Vizir blends interaction-oriented programming 
constructs borrowed from data-flow and event-based 
programming such as bindings or state-machines, with ATC-
specific graphical components that use spatial positioning to 
produce or react to events. Components can be connected via 
wires between their inputs and outputs. For instance, a 
graphical zone positioned over a runway can emit an event 
when entered by an aircraft, which would activate a light 
signal accordingly. Other ATC-specific components such as 
aircraft or ground vehicles are dynamically positioned to 
reflect their current locations. Vizir also features a 
component that explicitly represents human control. This 
component allows users to specify when human validation is 
required to perform an action. 

Visual authoring and operating would bring three expected 
benefits: 1) Closeness of control and action mapping [39] to 
foster automation understanding by authors and operators; 2) 
Visibility of automation status to foster awareness of current 
and future situation, and human intervention; 3) End-user 
authoring with an ATC-specific language to foster ATCO 
implication in the design of the automation. We hypothesize 
that automations designed with ATCOs would maximize 
relevance, minimize surprising behavior and maximize 
predictability. 

The paper first describes the research-through-design 
process we used to design Vizir before detailing its 
contributions: a combination of visual, geographic, 
interaction-oriented constructs for programming hybrid 
human-automation systems. We conclude with design 
principles that might be applicable to similar work. 

DESIGN PROCESS 
We followed a research-through-design methodology, in “an 
attempt to make the right thing: a product that transforms the 
world from its current state to a preferred state” [48]. We 
worked with controllers and operational staff from Malta 
Airport to iteratively define the problem and the solution by 
designing scenarios and interactions.  

Interviews, observations and work analysis workshop 
We combined interviews, observation, a work analysis 
workshop with ATCOs and operational experts to capture 

and analyze real-world scenarios where automation could be 
useful. We met eight controllers, an ATC expert and the head 
of tower operations, a former ATCO with experience of all 
control positions. We collected documents describing 
Airport procedures such as the Operation Manual, and 
produced eight work scenarios describing nominal and non-
nominal situations precisely. Participants were asked to 
indicate the ATCOs’ intentions and challenges for each step. 
Later, we transcribed the scenarios into a more detailed 
graphical and written format (Figure 2). The outcome was 
refined and validated by the operational expert and the head 
of tower operation. This process ensured that the correct 
requirements were captured and that the work was grounded 
on the real activity. 

Participatory-design workshop 
We then conducted a participatory design workshop to 
explore and refine the DSGL concepts. We worked with two 
other ATCOs, together with the operational expert and the 
head of tower operations who formerly validated the work 
scenarios. We presented our design concept with an early 
prototype and a design scenario. After gathering feedback, 
we encouraged participants to identify scenarios from their 
previous experiences in which they could program 
automation using such concepts. We then used paper 
prototyping techniques to produce four new design scenarios 
involving more complex situations and/or end-user-defined 
automatisms. The session lasted approximately two hours. 

OPERATIONAL CONTEXT AND REQUIREMENTS 
The airport has two perpendicular runways, several taxiways 
to access the runways as well as the aprons and named points 
used to respectively park and guide aircraft (Figure 2). The 
longest runway usually accommodates commercial traffic, 
while the shorter and secondary runway is used for the other 
traffic (e.g. training flights) and engine tests. Both runways 
might be crossed by search-and-rescue helicopters. 

 

Figure 2: Map of the airport and excerpt of a work scenario 
consolidated by the ATCOs. The two runways form a gun-like 

shape, taxiways are in purple, and aprons in orange. 

Three ATCOs with distinct roles and tasks operate 
simultaneously in the tower from adjacent desks. The tower 
controller is responsible for operations on the runway. The 
ground controller is responsible for aircraft operations on the 
maneuvering area. The tower coordinator clears persons and 
vehicles on the maneuvering area. 

Controlling with physical and digital tools 
In addition to an almost complete view of the airport 
maneuvering area, all ATCOs use several physical and 



digital tools to perform their tasks. For instance, the tower 
controller setup is comprised of three screens, a radio and a 
physical map (Figure 3). The screens allow the monitoring 
of flights on a radar-view (a), the controlling of runway 
occupancy indicators and ground lights (b), and the retrieval 
of meteorological data (c). The radar view helps the tower 
controller monitor the path of approaching and departing 
aircraft as well as the planned landing sequence. ATCOs use 
the physical map to represent the states of the runways and 
the taxiways as well as to track aircraft positions on the 
ground. In this figure, a "runway occupied" token is 
displayed on the physical map (d) because the secondary 
runway has been closed. Another token reminds that the 
“tango” taxiway is closed. The yellow strip (e) represents an 
approaching aircraft. 

 
Figure 3: ATCO desk comprising a radar view (a), a map of 
the airport (b), meteorological data (c), a physical map with 
tokens indicating closed parts (d) and strips for aircrafts (e). 

An already semi-automated, safety-enforced activity 
ATCOs already rely on several forms of automation such as 
alarms detecting collision risks between flights, traffic lights 
or stop bars. The traffic lights are placed at road and runway 
intersections to allow or prevent vehicle access to the 
runways. They are manually set by the ATCOs and 
automatically raise an alarm if the set command fails. Stop 
bars are red lights located at the runway entrance to prevent 
aircraft access to the runways. To switch them off, the tower 
controller first clicks on the stop bar icon on the center 
screen. This opens a confirmation window. He then asks the 
coordination controller to ensure that there is no objection. If 
the latter agrees, he clicks the confirmation button, which 
switches off the stop bar. He then gives a voice clearance to 
the pilot.  The stop bar is automatically reactivated after 90s, 
a delay that has been established by ATCOs and the 
equipment manufacturer to suit their practice. 

Challenges for automations: Airport complexity factors 
ATCOs and the operational experts explained that despite its 
medium/small size, Malta airport presents several sources of 
complexity mostly due to the low number of taxiways and 
traffic heterogeneity. The lack of taxiways available for 
aircraft to reach the main runway extremities from the main 
parking area forces ATCOs to use the runway as a taxiway 
(“to backtrack”). ATCOs must elaborate several strategies 
such as having two aircraft backtracking one behind the other 
or clearing a departing aircraft to backtrack when another 
landing aircraft has reached a specific zone of the runway.  

The airport accommodates a wide range of aircraft and 
ground vehicles that must share some of the taxiways or 

restrict their parallel use. For instance, the two crossing 
runways prevent aircrafts from landing or departing 
simultaneously. Besides, depending on aircraft weight and 
span categories, some of the holding points around the 
runways cannot be used and must be vacated immediately. 
Thus, departing and landing automations on a runway must 
also consider the state of the other runway. 

Requirements 
Based on the user studies and on our motivation to explore 
visual programming, we devised a set of requirements for 
authoring and operating automations support. We consider 
Authoring as the programming ahead-of-time, i.e. before 
performing ATC, of the automations. Authoring includes 
creating, editing but also testing. We consider Operating as 
the monitoring and adjustments of automations just-in-time, 
i.e. while the automations are running. Operating includes 
handling real traffic data by automation, human monitoring 
of automations, and handover when humans want to take 
control over the automation. 

Consider the existing scenarios (Existing) 
The new technologies must support the current work 
practices as identified during the user studies. 

Define language constructs relevant to ATC (Relevant) 
ATC includes activities such as planning, monitoring, 
reacting to contingencies. All these activities require that 
humans and machines interact. Hence, the new technologies 
must support interaction-oriented programming: events, 
dataflow, state-machines, states. 

Make language constructs usable by ATCOs (Usable) 
An “expertise tension” exists in a two-dimensional 
continuum of job-related domain knowledge and system-
related development knowledge [2]. ATCOs might lack 
systems knowledge. Thus, domain experts should be enabled 
to modify or extend software without having a deep 
understanding of a computer system or coding skills. 

Foster predictability and handover (Predictable) 
Beyond notification, which often occurs too late, another 
challenge is to offer better representations of the status of 
automation and its ability to handle the current traffic. This 
should make the system predictable and allow ATCOs to 
decide if they must take control over the automation. 

Foster efficient and scalable authoring (Efficient) 
Since the number of automations might be high, the 
technology should scale up i.e. should be still usable with 
multiple automations. 

EXPLORING AND ASSESSING THE DSGL CONCEPTS 
During the participatory design workshop, participants were 
very enthusiastic about the use of the airport map to program 
automations since they could instantly understand the visual 
programs. When we presented the design scenario, they 
expressed concerns about there being no human in the loop 
when the departing flight was granted access to the runway. 
In reaction to this specific automation, an ATCO stated that 
“the runway is more important than my house!”, to 



emphasize the importance of being effectively in control of 
the runway and not only supervising it. However, 
participants quickly understood the potential value of the 
concept and we explored ways for the ATCOs to either 
manually prevent the flight from automatically entering the 
runway (thus taking control back), or a means to simply 
notify the ATCO that the runway is available. 

Assessing and updating the runway occupancy 
Together, we explored a scenario to help ATCOs assess the 
runway occupancy status. The participants explained that the 
runway status is manually updated by the ATCOs which can 
be error-prone. The head of tower operations argued that: 
“sometimes you can forget to turn it on in the system because 
you are busy and a vehicle wants to go on to the runway for 
a five-minute job”. Participants suggested automation could 
provide a visual reminder of the permanent runway status by 
adding an area to detect aircraft and other vehicles above the 
runway. If the detected state differs from the system state, an 
alarm will be displayed to help the user update it. 

To prevent possible detection failures, we suggested the use 
of a digital puck like the physical one they use on the current 
map to mimic the presence of any vehicles. The ATCOs 
found the idea convincing and explained this could also be 
very useful to indicate maintenance operations on the runway 
or that a runway is closed for safety reasons such as the 
presence of ice or traffic light maintenance. 

Programming safety nets 
Building upon the previous scenario, participants expressed 
positive feedback about the opportunity to program 
automations themselves that would act as safety nets, i.e. 
security measures, that they could fine test and tune. We built 
a design scenario with a safety net that triggers an alarm if 
there is an aircraft on the runway and another one 
approaching. To author this automation, participants 
suggested that they would use a zone covering an area 
corresponding approximately to 5min before landing and 
place an alarm box wired to both the runway and this zone. 

Interacting with stop bars 
Since participants mentioned challenges to automate the 
stop-bars, we explored possibilities to define their behaviors 
with our concepts. Participants first suggested that they could 
turn off the stop-bars by clicking or touching their visual 
representations on the map as presented in Figure 4 (left). 
They argued for a confirmation step involving another click 
to mimic existing interactions. Figure 4 (center) illustrates 
how we prototyped it by adding an ATCO icon (the 
confirmation components of the DSGL) over the stop-bar to 
make the user confirmation step explicit. We discussed the 
opportunity to make the remaining time visible as a progress 
bar or text superimposed over the graphical representation. 
This idea received positive feedback from the participants. 

 
Figure 4: Prototypes for automating stop-bars.  Left: turning 

off a stop-bar by tapping its representation. Center: 
representing the ATCO to ensure a confirmation. Right: 

dropping an area to join two aircraft. 

VIZIR 
Based on the results of the workshops, we designed Vizir, a 
DSGL and an environment for the visual authoring and 
operating of automations (Figure 1). This section 
incrementally introduces its features by describing several 
interactions based on the work scenarios (Existing). 

The geographic airport map as the background canvas 
ATCOs rely extensively on both the airport map and the 
radar view to accomplish their tasks. Such visual, two 
dimensional representations of the space they must monitor, 
offers clear landmarks that support reasoning. To support 
their tasks, automations must be visible and correlated with 
the airport map. Their representations should facilitate the 
interactive control that may be required in sensitive 
situations (Usable and Predictable). 

At the start of the application, the map of the airport is 
displayed. The map is a structured SVG file, containing 
multiple layers of graphics implemented with SVG groups: 
runways, taxiways, parking, buildings. Users can freely pan 
and zoom the airport or hide and reveal specific layers. The 
background and the features of the airport are mostly dark 
blue. Dark images are often used in ATC as they place less 
stress on the eyes than luminous ones. 

Authoring simple geographic-based automations 
The user can add programming constructs on top of the 
airport to specify automations. These elements are luminous 
and yellow to differentiate them from the background. 

Drag’n’dropping components from the toolbox 
A toolbox at the bottom displays a set of components: 
enter/leave zone, geographic-time scale, confirmation, 
alarm, gauge, “occupied” and “closed” pucks, fake flight, 
text-to-speech, logic and arithmetic operations and 
properties (Figure 5). The user can drag and drop them from 
the toolbox to the map to create instances (Usable). 

 

 

Figure 5: the component toolbox 

Defining an Enter/Leave zone (ELZ) 
The user can drag and drop a rectangular Enter/Leave zone 
that is activated (and colored purple) when a flight enters or 
leaves it. The user can move it around freely, superimpose it 
on a specific area of the airport, resize it and reorient it to 



match the underlying area (Figure 6). The user can thus 
specify an area that would not match the structure of the 
airport, for example an area that encompasses a taxiway and 
a parking (Relevant). We will also make it possible to use 
airport graphics as Enter/Leave zone components (not 
implemented in the current prototype) (Usable). 

 

Figure 6: resizing an enter/leave zone to match runway 

Connecting elements 
Each component embeds a set of input and output plugs 
(small triangles), resembling boxes in Max and similar 
environments. The user can press a plug to create a wire, drag 
its end and drop it on the plug of another component to 
connect them. For example, after placing an Enter/Leave 
zone and a warning box, the user can connect the output of 
the Enter/Leave zone to the input of the warning box to 
specify that the Warning will turn to ‘on’ (e.g. red) when a 
flight enters the Enter/Leave zone. In addition, a light 
rectangle behind the triangle appears when the plug is 
activated and informs users of the plug activation. 

 

Figure 7: connecting an ‘and’ gate with an alarm 

Authoring more complex automations 

Specifying data-flow behaviors 
To specify data-flow-based automations, the user can 
connect logical (and, or, …) and arithmetical (+, -, x …) 
operators between input and output plugs that emit or receive 
a flow of scalars. For example, users can create an 
Enter/Leave zone located at a position corresponding to 
500m before the runway. They can then create an ‘and’ gate, 
then connect the zone to one input of the ‘and’ and the zone 
over the runway to the other input, and the result of the ‘and’ 
box to a warning box (Figure 7). This would create a warning 
for the ATCO that would flash if a flight is about to land 
while another flight is still on the runway. 

Maintaining state 
Users can create Boolean, integer or double properties, and 
connect them to other components. Properties serve as 
intermediate variables in dataflows and to implement states. 
Indeed, connectors can be of two types: data-flow or 
assignment (shift key pressed when connecting). While a 
dataflow continuously pushes data when activated, an 
assignment pushes only one value when activated. 

Connecting a component to a property with such a link 
specifies that the property will be set to a value when the 
component is activated. 

Switching state 
The choice of reactions of an interactive system often relies 
on its state. Vizir provides ways to access the inner states and 
transitions of the state-machine controlling a component. 
Figure 8 illustrates a scenario in which the user connects the 
transitions of two state-machines. When a transition is fired 
in the first state-machine, the connected one is also fired in 
the other state-machine. Conversely, the states of different 
state-machines can also be coupled. However, Vizir does not 
offer ways to entirely and graphically specify a state-
machine, it only allows its states and transitions to be 
accessed. The state-machine must be written with a textual 
language. 

 

Figure 8: coupling state-machines: here, runway and stop bar 

Explicitly transferring automation control to human control 
To ensure that an event cannot be transmitted without 
explicit ATCO validation (Predictable), any connection can 
be overloaded with a confirmation decorator by dragging a 
‘Hand’ onto the wire. When an event is sent from the source, 
the Hand is replaced by a glowing confirm-abort box: the 
user must click on it to confirm or abort the signal flow to 
destination (Figure 9). For example, the user can create an 
automation that would switch off a stop bar whenever the 
runway is free because the flight that landed left it for a 
taxiway. Since this action is critical, she can put a ‘hand’ on 
the wire between the runway zone and the stop bar to request 
confirmation from the operating user. 

   

Figure 9: explicit human confirmation component 

Explicitly transferring human control to automation control 
Some aircraft are equipped with digital communication 
means to exchange mail-type messages with ATCOs, but 
many light or old aircraft are not. In this case, the main 
communication channel between ATCOs and pilots is radio. 
Some ATCO messages are routine, such as ‘transfer 



messages’ in which ATCOs instruct departed flights to 
change their frequency to the next control sector. Other ones 
may be very urgent, such as a ‘go around’ message to a flight 
that must cancel its landing because the runway is 
unexpectedly occupied. Vizir provides programmers with a 
text-to-speech component that synthesizes speech over the 
radio when activated, for such routine or urgent message 
(Figure 10). This feature also shows how automation can 
leverage the use of older technologies, providing smooth 
system evolution (Existing). 

   
Figure 10: text-to-speech automation 

Compressing distance with geographic time-scales 
Coping with different orders of magnitude of distance 
between objects is an inherent problem with geographic 
maps. When zoomed to fit the entire airport, the view 
represents roughly a 5x4 km area. However, landing flights 
that are important for ATCOs may be as far as 100km away 
from the airport and cannot be represented without zooming 
out, leading to a tiny airport representation. 

 

Figure 11: geographic time-scale 

To mitigate this problem, we designed a geographic time-
scale. A classical time-scale reflects the predicted delay 
before a flight lands: it projects the delay to a position in the 
frame of reference of the time-scale. A geographic-time scale 
is a time-scale substrate [18,36] whose position and 
orientation on the screen are meaningful with respect to the 
underlying geographic map. Figure 13 shows an instance of 
a geographic time-scale: the “entrance” of the time-scale 
corresponds to where the flights come from, while the “exit” 
of the time-scale corresponds to the “entrance” of the 
runway. The flight is depicted with a yellow circle. Such a 
representation ‘compresses’ the position of distant flights. Its 
position and orientation lend itself to smooth transition of 
flights movement from time to space (Usable). It works in 
this case because flights are placed in a queue before landing. 

Defining meta-interaction between graphical components 
The use of graphics to specify behavior can be extended from 
geographic-based to screen-based. For example, we have 
designed a gauge to reflect the ‘level of traffic’. The gauge is 
connected to a zone comprising the taxiways and the 
runways and counts the number of flights in this zone. Since 

the value of the gauge is displayed with a yellow dot, the fact 
that the circle enters another zone can be used as a meta-
event that triggers another behavior. As presented in Figure 
9, we have connected it to a set of radio-buttons that reflect 
the current strategy of an external algorithm that computes a 
timed sequence of departures. When the level of traffic is 
high, the strategy is changed from ‘minimize fuel 
consumption’ to ‘maximize runway usage’ to make flights 
depart as soon as possible. 

     

Figure 12: the gauge value is detected by an enter/leave zone 

Another example is the geographic time-scale. Users can 
create Enter/Leave zones that detect flights inside the time-
scale to trigger behavior. Figure 13 illustrates an Enter/leave 
zone in the range 5-3 min before landing. e.g. when flights 
‘enter’ a 3min-delay zone. Combined with the presence of a 
flight on the runway, such automation is capable of 
triggering a warning, or even a go-around by radio if 
connected to the text-to-speech component. 

  

Figure 13: meta-automation on geographic time-scale 

Supporting tests 
Testing is a mandatory activity of automation development 
(Efficient). Fake flights are components that the user can 
move around (Figure 14). Like flights, a fake flight is sensed 
by Enter/Leave zones. This enables the user to test parts of 
the automation that is under construction: she can place one 
or multiple flights in multiple zones and observe how the 
automation behaves with respect to these conditions. One 
can simulate a traffic with a sequence of interactions that 
correspond to target situations to be tested. 

   

Figure 14: fake flight and occupied puck 

The user can also directly propagate the activation of a 
component by clicking on a plug (e.g. yellow triangles in 
Figure 7). If the plug is an input, the component it belongs to 
is activated and subsequent behavior is triggered. If the plug 
is an output, the component connected to this plug is 
activated. 



Managing scalability 
Visual languages might suffer from scalability. Even with 
some simple automations, the screen might be filled up with 
many graphical components and crossing wires, making 
automation difficult to understand and edit. 

We relied on progressive disclosure [24]  to address this 
issue. Vizir distributes automations in file units organized in 
a folder hierarchy, as in traditional programming languages. 
The editor displays this hierarchy as a collapsible tree to the 
left of the main document, as in traditional IDE (Figure 1). 
The user can double-click on a file to display its content in 
the main document within a tab. A double-click on another 
file in the tree opens a new tab and displays its content on top 
of the radar image in lieu of the previous tab. The originality 
of our approach is the common use of the map in the 
background of all tabs, and the disclosure or the concealment 
of the program on top of this background. To the best of our 
knowledge, no other visual editor provides such a 
functionality. 

Another possibility is to display the content of two or more 
tabs simultaneously, by shift-clicking on a tab, effectively 
turning them into layers. The content of the new tab is added 
to the content of the current visible tab. A slider enables 
control of the opacity of the components that belong to the 
tab. This mechanism mitigates the problem of possible 
overlap between components. The ability to make the 
content of multiple files visible and accessible to the 
programmer enables the user to connect the plug of 
components that reside in different files. This fosters 
modularity and visibility. 

Complex components can be written in the Smala textual 
language [35] and directly reused in Vizir. The component 
appears as a box with plugs that correspond to declared 
properties in the code. The user can double-click on the box 
to open its content in a new tab. The user can control the tab 
opacity to see the geographical map when coding with text.  

 

Figure 15: translucent tab to edit textual code 

Operating automations 

Controlling program visibility 
During operation, many of the automation components are 
invisible to the tower ATCO. Only the visual components 
such as alarms, stop bars, hand and runway EL zones are 
visible since they are required for proper first-level 
interaction. However, the ATCO can progressively disclose 
automation components by: using a slider to control their 

opacity; invoking a magic lens [3] that she can move around 
to reveal local automation; or by clicking on a component 
and revealing/hiding each level of connections (considered 
here as a graph) using the mouse wheel. 

    

Figure 16: when the alarm is triggered, its program appears 

    

Figure 17: press+mouse wheel to gradually reveal the program 

   

Figure 18: magic lens to inspect local automations 

Triggering/Disabling automation 
Some of the testing support in author mode is accessible 
during operation: for example, clicking a plug will activate 
the depending component. If an automation component is 
visible, the status of its plug is visible too. The user also has 
the possibility of temporarily disabling a coupling by simply 
moving the end of a connection and releasing it on the 
background. Instead of completely deleting it, disconnecting 
allows the user to retrieve a disconnected coupling and 
enable it again by moving it into the plug.  

The ‘occupied’ and ‘closed’ pucks (Figure 14) enable the 
ATCO to inform the system that an Enter/leave zone is 
occupied as if a flight is inside, while triggering any behavior 
that depends on such a flight occurrence. It offers a pliant 
way to adapt the operation of the automation e.g. in case of 
an unpredicted contingency (e.g. fire) without being explicit 
about the causes. 

Assessing future behavior of automation 
To reveal the automations that will be triggered in the near 
future, the user can also manipulate a time slider: the flight 
trajectories will be extrapolated and simulate the triggering 
of automations as they are expected to behave. Similarly, the 
user can trigger a DIMP-like interaction [14] by pressing on 
a flight. This interaction displays the predicted trajectory and 
dragging the flight along the trajectory allows the user to 
visualize the updated positions of other flights and the 



corresponding triggered automations. This enables a user to 
assess the behavior of automation at a critical place at the 
airport e.g. a crossing. The current implementation serves as 
a demonstration only and is not truthful, as a proper 
implementation requires the saving the successive states of 
the application to be able to backtrack in time and retrieve 
previous states.  

   

Figure 19: Assessing automation behavior in the near future: 
pressing on the top-left flight displays its predicted route (in 
orange), moving the flight along its route changes the time of 

the whole simulation. 

Implementation 
We used the smala language and the djnn framework [35] to 
implement Vizir on top of the airport radar image. Smala and 
djnn unify many concepts related to interaction-oriented 
programming. Vizir representations of djnn unified concepts 
enable programmers to seamlessly combine different 
interaction-oriented programming constructs in a visual 
manner. 

Since Vizir is a research project, it is not complete and safe 
enough to be operational. We thus simulated operations by 
using realistic traffic data. Simulated traffic uses a real-time 
player of recorded trajectories, which broadcasts them 
through the Ivy software bus [5]. In actual operation, the 
system would be fed with aircraft and vehicle locations, 
which is generally feasible via GPS, a ground radar or with 
direct communication. 

DESIGN PRINCIPLES AND DISCUSSION 
While designing Vizir, we identified and refined a number of 
design principles. The principles helped us fulfill the 
requirements and answer the research question. They also 
guided us during ideation phases. We present the guidelines 
as explanations based on a post-hoc analysis of Vizir's 
features. Their titles have been generalized from the specific 
activity to make them useful to designers of similar systems. 

Continuum of usage and progressive disclosure 
We envisage that the tool be used during a continuum of 
phases: ahead-of-time when authoring the map, 
programming rules/constraints from the operational manual 
of the airport and when programming local automations 
according to the places of the airport; or just-in-time while 
controlling by anticipating when quickly programming 
clearances in advance, reacting to behavior triggered by 
automation, taking control back, or simply supervising. 
Progressive disclosure [24] is one of the means to implement 
this continuum. 

Space-based and event-based constructs 
Since ATCOs monitor moving aircraft and vehicles on 
ground, most of their activity is based on the geography of 
the airport. However, some of their activity is time-based 
because time can be easily measurable. Considering that 
space was reliably measurable (for example using GPS), we 
explored how to transform time-based rules and their 
automation into space-based rules. Examples of features that 
support this principle include enter/leave zones, 
geographical-time scale and ‘meta’-interactions between 
graphical components. 

Make current state and future behavior visible 
Visibility is one the most important properties to respect in 
GUIs [39] (Usable). We thus strived to provide 
‘programmers’ and ‘users’ with means to respectively 
display and see all elements useful for the understanding and 
prediction of the behavior of the system. Examples of 
features to support this principle include alarms, gauges, 
user-triggered disclosure of DSGL constructs, visibility of 
plug status and means to navigate in the future. Gauges can 
be used to build low-visibility warnings that emit harbinger 
cues and inform the users of the ‘load’ of the automation so 
that they can predict their own load in an optional handover. 

Seamless and seamful hybrid control 
In such hybrid human-automation systems, an important 
property resides in the seamless interactions between 
humans and automations (Predictable). Humans should be 
able to easily control automation and recover all authority. 
Similarly, automation might be able to inform users, and 
request users’ actions. ‘Seamless’ in this case means that 
programming constructs be designed to be indifferently 
performed by humans and automation. Examples of features 
include human-triggered and automation-triggered plugs, 
text-to-speech, gauges connected to strategy change. On the 
other hand, seamless control can also lead to dangerous 
behaviors such as unintended consequences of accidental 
actions triggered by humans or unexpected high-impact 
decisions made by automation. Vizir provides seamful [21] 
control switch between humans and automation in critical 
situations. Examples of such features include explicit 
confirmation or “occupied” puck. 

Foster interaction-oriented programming 
The programming model to be used should make the 
geographic map, spaces, events, states, behaviors and 
graphics first-class citizens. In other words, Vizir had to be 
based on an interaction-oriented programming model. We 
used the djnn conceptual model [39], which seamlessly 
combines events, reactions, activations, data-flows, state 
machines, graphics and states to implement interactions. 

RELATED WORK 
Visual authoring and operating of automation are related to 
End-User Programming, Graphical languages and 
environments, and specific authoring environments.  



End-user programming and related concepts 
End-user programming (EUP) is defined as "programming to 
achieve the result of a program primarily for personal, rather 
than public use.” [28]. The benefits of having an end-user 
program lie in coupling deep knowledge of the involved 
activities with programming to build a system that supports 
such activities. A domain such as ATC is "likely to involve 
different types of computational patterns and different 
software architectures" [28]. This is what we wanted to 
explore: to which extent the correct conceptual model and 
user interface may enable stakeholders, ATCOs and 
Engineers to design better automated systems? 

Several notions related to End-user programming (EUP) may 
prove important for Vizir usability. End-User Development 
(EUD) is a set of methods, techniques, and tools that allow 
users of software systems, who are acting as non-
professional software developers, at some point to create, 
modify or extend a software artefact [34]. End-User 
Software Engineering (EUSE) is concerned with 
technologies that collaborate with end-users to improve 
software quality [28]. EUSE deals with other phases of the 
software life-cycle than programming. Programming By 
Example is an easier way to specify behavior for end-users 
[11,12,31,49]. Live Programming makes programming 
easier by re-executing a program continuously during editing 
[6,19,46]. Domain-specific languages (DSLs) are tailored to 
a specific application domain and offer “substantial gains in 
expressiveness and ease of use compared with general-
purpose programming languages in their domain of 
application” [37]. 

Graphical languages and environments 
All programming activities require languages and 
environments to specify, produce and run programs. Among 
them, graphical languages facilitate EUP. 

Learning to program 
Some IDEs are specialized in facilitating the learning phase 
of programming. Much of them are oriented towards 
children. For example Little Wizard [51] uses icons for 
variables, expressions, loops, conditions and logical blocks 
that children can drag and drop together to compose  program 
“sentences”. Squeak Etoys [52] and Scratch [53] are 
authoring environments to create computer programs using a 
scripting language based on blocks and containers. Kodu 
[54] is a visual programming tool to teach reactive 
programming to children with the “trigger – action” 
programming concept. Kodu builds on ideas begun with 
Logo [1] and other projects such as AgentSheets [55], 
Squeak [52] and Alice [56]. Learnable programming is a set 
of principles about the vocabulary, the visualization of flows 
and states, and on supporting coders in creating behavior by 
reacting to immediate feedback and abstracting [4]. 

Professional environments 
LabVIEW [57] is a system-design platform and development 
environment using the G graphical language. Execution is 
determined by the structure of a graphical block diagram on 
which the programmer connects different nodes by drawing 

wires. VAPS XT [47] and SCADE Display [50] are products 
that allow users to define both object appearance and display 
logic in a single graphical editor for embedded systems. Most 
of the editing is performed in a graphical form. IFTTT [58] 
("If This Then That") is an implementation of Trigger-Action 
for web and IoT. 

Interaction-oriented languages and tools 
Interaction-oriented programming [32] has requirements that 
necessitate support from languages, frameworks and tools 
[38]. For example, Fabrik is a direct manipulation user 
interface builder that enables a designer to specify transforms 
between linked widgets with a visual flow language [23]. 
Whizz’ed is a graphical editor for a data-flow-based 
programming language [17]. Whizz’ed enables 
programmers to draw links between blocks and is capable of 
triggering actions based on enter/leave events [17]. Icon is a 
tool to graphically specify and control data-flows of events 
from input to display [13]. Interstate is a tool to graphically 
develop state-machines that describe interactions [40]. 
Musical programming environments such as Max and Pure 
Data [43] are based on data-flow. In such languages, 
functions or "objects" are linked or "patched" together in a 
graphical environment that models the flow of the control 
and audio. Kitty is a tool to sketch interactive illustrations 
[26]. Kitty notably relies on space and time, and a relational 
graph that implements the causal relationships between 
objects in a scene. Vizir seamlessly combines several 
features from these works. 

Specific authoring and operating environment 
Several environments have been created to help develop 
games with high-level programming concepts that are closer 
to game designers’ concerns. In particular, several tools such 
as Unreal Engine [59], Unity [60] or Euphoria [61] rely on 
visual programming techniques to facilitate the definition of 
dynamic behaviors, rules and motions. Real Time Strategy 
(RTS) games enable players to control multiple instances of 
semi-autonomous agents in a simulated world. For example, 
agents can go to a location, collect some elements and bring 
them back. Animations can also be considered automation, 
and several applications support their design, including those 
involving multiple objects [27]. 

A number of tools and techniques assist musical composers 
in programming and executing temporal plans for real-time 
performance. Such systems frequently combine music-
specific representations such as musical notation with 
additional data such as control curves. The automations can 
also be used during live performance and modified in real-
time (“operating” in Vizir). In automatic score-following 
tools such as Antescofo [7], a real-time listening machine 
reacts to musical events described in a score and interpreted 
by a human performer to launch predefined actions. Cont et 
al. propose to defer error handling strategies to the user [8]. 
They define two strategies, tight and loose, that respectively 
correspond to whether the system will necessarily trigger all 
actions or avoid some parts if events are missed. Vizir also 
relies on the user to define automation that must be validated. 



However, Vizir does not yet offer such sophisticated 
strategies to define how to recover from user errors such as 
forgetting to switch off the stop bars before clearing an 
aircraft to enter the runway. 

Automation in ATC 
Automation in ATC aims at substantially reducing controller 
task-load per flight through automated decision support, 
whilst simultaneously meeting the established safety and 
environmental goals. However, due to safety concerns and 
careful integration of technologies, ATC still relies heavily 
on human operations [22,33]. The usability of the whole 
system is also important since safety and capacity heavily 
depend on mutual awareness [15,25] as well as fast and 
efficient interactions [10,33]. Still, the will to improve safety 
and capacity requires ATC systems to evolve and reach new 
levels of performance, notably with movement guidance and 
control systems (A-SMGCS) [30], for which automations 
can be designed with Vizir. 

THREATS TO VALIDITY AND LIMITATIONS 
The interactions that we designed might be applicable only 
to the specific airport we studied, due to its particularities and 
its low complexity. The rationale of Vizir is that airport 
automation will be programmed with similar constructs but 
with specific automation, airports and sources of complexity. 
We believe that many airports would benefit from location 
and event-based constructs like the ones introduced in the 
paper. The stakeholders from other airports to whom we 
demonstrated the system confirmed that Vizir descriptive 
power seems compatible with other settings. Adapting the 
interactions might be unavoidable, as much as adapting code 
to specific contexts is unavoidable in traditional software 
engineering. 

Nevertheless, automation needs to be specific to be useful. 
Previous work in the design of short-term conflict alert 
already in use in ATC shows that algorithms must be heavily 
tuned to the very specific settings and traffic of the 
instrumented airspace [62]. Furthermore, airspace rules are 
continuously evolving globally and locally to make them 
safer and more effective, thus requiring automation that can 
be adapted. We believe it is more valuable to provide design 
tools for end-users as opposed to providing configured-in-
advance tools (e.g. A-SMGCS [30]) that might not be useful 
at all unless they can be adjusted. Hospital studies 
corroborate that specifically-tailored tools are the most 
beneficial for patients in hospitals [20]. 

The interactions might also be applicable to ATC only. 
However, other domains share similar concerns. For 
example, home automation might also benefit from the 
space-based and event-based interactions that we designed. 
Similarly, designing an interactive museum experience or 
games might benefit from our work.  

The hypothesis that visibility would help ATCOs understand 
automation must be experimentally tested. Another question 
that may arise is that of the proficiencies of the targeted users 
at programming their own automation. If ATCOs are 

professionally trained to manage traffic, they may be not 
literate enough in thinking about, specifying or programming 
software that will be sufficiently usable and safe. However, 
in the near future, ATCOs like most higher-grade professions 
will be educated in computer science during their studies. We 
envision they will participate in automation design in 
collaboration with qualified computer scientists. Indeed, 
after the submission of this article, we demonstrated Vizir to 
two ATCOS who were able to design 3 automations specific 
to their ATC context in 10 minutes.  We never discussed 
these automations together before. This suggests that our 
hypothesis that ATCOs will be able to participate to the 
design of automation is not falsified. 

ATCOs may already be too busy with handling the traffic 
and they might not be able to cope with automation. 
However, the whole air traffic system is already an 
automation-based activity from the ATCOs’ point of view. 
ATCOs delegate a number of actions to the pilots and then 
must monitor whether they are performed. In some ways, 
pilots can be seen as equivalent to an automatic agent that 
might succeed or fail to comply with a clearance. 

Vizir does not provide visual constructs to support 
automation that requires coordination with controllers that 
are not located in the same room. This is a frequent situation 
faced by controllers that should be investigated in future 
work. Nevertheless, if confronted to the incompleteness of 
the visual language, programmers can resort to the 
underlying textual language and can even embed algorithms 
coded in C/C++. 

CONCLUSION 
We have presented Vizir, a Domain-Specific Graphical 
Language and Environment to support end-user authoring 
and operating of airport automation. Vizir combines visual, 
geographic, interaction-oriented constructs to program 
hybrid human-automation systems. Vizir provides means to 
mitigate the complexity induced when scaling up the number 
of automations. We grounded our work by studying ATC on 
Malta airport, and the features were refined through a 
participatory design process with ATCOs. 

Future work will focus on additional experimentation with 
ATCOs to assess how they can author and operate 
automation with Vizir. We will also further explore the 
DSGL and Vizir to adapt them to more complex airports and 
other domains than ATC such as home automation.  
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