
HAL Id: hal-01886335
https://hal.science/hal-01886335

Submitted on 28 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Vizir: A Domain-Specific Graphical Language for
Authoring and Operating Airport Automations

Stéphane Conversy, Jérémie Garcia, Guilhem Buisan, Mathieu Cousy, Mathieu
Poirier, Nicolas Saporito, Damiano Taurino, Giuseppe Frau, Johan Debattista

To cite this version:
Stéphane Conversy, Jérémie Garcia, Guilhem Buisan, Mathieu Cousy, Mathieu Poirier, et al.. Vizir: A
Domain-Specific Graphical Language for Authoring and Operating Airport Automations. UIST 2018,
31st ACM Symposium on User Interface Software and Technology, ACM SIGCHI, Oct 2018, Berlin,
Germany. pp.Pages 261-273/ ISBN: 978-1-4503-5948-1, �10.1145/3242587.3242623�. �hal-01886335�

https://hal.science/hal-01886335
https://hal.archives-ouvertes.fr

Vizir: A Domain-Specific Graphical Language for Authoring
and Operating Airport Automations

Stéphane Conversy, Jérémie Garcia, Guilhem Buisan, Mathieu Cousy, Mathieu Poirier,
Nicolas Saporito 1, Damiano Taurino, Giuseppe Frau 2, Johan Debattista 3

1 ENAC - Univ. of Toulouse
France

first.last@enac.fr

2 DeepBlue
Italy

first.last@dblue.it

3 MATS
Malta

first.last@maltats.com

Figure 1: Vizir user interface while authoring automations (left) and examples of airport automations (center, right)

ABSTRACT
Automation is one of the key solutions proposed and adopted
by international Air Transport research programs to meet the
challenges of increasing air traffic. For automation to be safe
and usable, it needs to be suitable to the activity it supports,
both when authoring it and when operating it. Here we
present Vizir, a Domain-Specific Graphical Language and an
Environment for authoring and operating airport
automations. We used a participatory-design process with
Air Traffic Controllers to gather requirements for Vizir and
to design its features. Vizir combines visual interaction-
oriented programming constructs with activity-related
geographic areas and events. Vizir offers explicit human-
control constructs, graphical substrates and means to scale-
up with multiple automations. We propose a set of guidelines
to inspire designers of similar usable hybrid human-
automation systems.

Author Keywords
Automation, Domain-Specific Language, Visual
Programming, Air Traffic Control.

ACM Classification Keywords
H.5.2 [Information Interfaces and Presentation]: User
Interfaces – Graphical User Interfaces; D.1.7 Software –
Programing Techniques – Visual Programming.

INTRODUCTION
Automation is “the execution by a machine agent (usually a
computer) of a function that was previously carried out by a
human” [41]. The expected benefits of automating an
activity include offloading monotonous tasks from human to
machines, greater efficiency of the overall hybrid human-
machine systems and greater safety in cases of critical

activities [41,42]. However, automation raises several
challenges, especially in situations in which humans retain
control, as automation performances have not been assessed
enough. In such hybrid systems, humans need trust and
confidence in the automation ability to perform safely, or in
their own ability to take control if the automation fails [42].

Air traffic control (ATC) is a complex hybrid system that
includes humans and automated processes [22]. ATC aims to
organize the movements of aircraft in the air or on the ground
with two main objectives: safety and capacity. To face
increasing traffic and complexity, further automation is one
of the key solutions proposed by international air transport
programs [16,29]. However, due to safety concerns, ATC
still relies heavily on human operations [22,33]. For
example, many clearances (i.e. instructions) from air traffic
controllers (ATCOs) to pilots are still performed by voice via
radio. In addition, the main problem that field studies and
surveys on automation have revealed is the low sense of trust
and substantial degree of confusion that pilots have regarding
the operation of ‘opaque’ systems [42].

We believe that the opacity mentioned in [42] is related to
the lack of the operator visibility on the program behavior.
Since the behavior is opaque, it is difficult to predict, and the
operators feel they must blindly trust automation. Operators
may prefer to control the operation directly rather than rely
on unpredictable automation. This mechanism leads to a
dichotomy in the usage of automation (all or nothing [45])
instead of a flexible collaboration between users and
automated solutions. Opacity might also prevent operators
from recovering from a problematic situation. When
automation fails, operators must engage into Knowledge-

based behavior, as opposed to Skills or Rules-based behavior
[9,44] that is typical in a nominal situation. Operators must
gather information, make sense of it, understand both the
causes and the consequences to react appropriately. These
tasks lead to a substantial increase of their cognitive
workload. To conduct this problem-solving activity, the
operator needs an accurate conceptual model of the
automation, as well as a correct understanding of the state of
the entire system [39]. Therefore, visibility of operations and
automation states, as well as program visibility, could be of
critical importance.

In this paper, we present Vizir, a 2D Domain-Specific
Graphical Language (DSGL) to author airport automations
and to operate them while they are running. Vizir’s visual
constructs lie above the airport map to make automation
visible. Vizir blends interaction-oriented programming
constructs borrowed from data-flow and event-based
programming such as bindings or state-machines, with ATC-
specific graphical components that use spatial positioning to
produce or react to events. Components can be connected via
wires between their inputs and outputs. For instance, a
graphical zone positioned over a runway can emit an event
when entered by an aircraft, which would activate a light
signal accordingly. Other ATC-specific components such as
aircraft or ground vehicles are dynamically positioned to
reflect their current locations. Vizir also features a
component that explicitly represents human control. This
component allows users to specify when human validation is
required to perform an action.

Visual authoring and operating would bring three expected
benefits: 1) Closeness of control and action mapping [39] to
foster automation understanding by authors and operators; 2)
Visibility of automation status to foster awareness of current
and future situation, and human intervention; 3) End-user
authoring with an ATC-specific language to foster ATCO
implication in the design of the automation. We hypothesize
that automations designed with ATCOs would maximize
relevance, minimize surprising behavior and maximize
predictability.

The paper first describes the research-through-design
process we used to design Vizir before detailing its
contributions: a combination of visual, geographic,
interaction-oriented constructs for programming hybrid
human-automation systems. We conclude with design
principles that might be applicable to similar work.

DESIGN PROCESS
We followed a research-through-design methodology, in “an
attempt to make the right thing: a product that transforms the
world from its current state to a preferred state” [48]. We
worked with controllers and operational staff from Malta
Airport to iteratively define the problem and the solution by
designing scenarios and interactions.

Interviews, observations and work analysis workshop
We combined interviews, observation, a work analysis
workshop with ATCOs and operational experts to capture

and analyze real-world scenarios where automation could be
useful. We met eight controllers, an ATC expert and the head
of tower operations, a former ATCO with experience of all
control positions. We collected documents describing
Airport procedures such as the Operation Manual, and
produced eight work scenarios describing nominal and non-
nominal situations precisely. Participants were asked to
indicate the ATCOs’ intentions and challenges for each step.
Later, we transcribed the scenarios into a more detailed
graphical and written format (Figure 2). The outcome was
refined and validated by the operational expert and the head
of tower operation. This process ensured that the correct
requirements were captured and that the work was grounded
on the real activity.

Participatory-design workshop
We then conducted a participatory design workshop to
explore and refine the DSGL concepts. We worked with two
other ATCOs, together with the operational expert and the
head of tower operations who formerly validated the work
scenarios. We presented our design concept with an early
prototype and a design scenario. After gathering feedback,
we encouraged participants to identify scenarios from their
previous experiences in which they could program
automation using such concepts. We then used paper
prototyping techniques to produce four new design scenarios
involving more complex situations and/or end-user-defined
automatisms. The session lasted approximately two hours.

OPERATIONAL CONTEXT AND REQUIREMENTS
The airport has two perpendicular runways, several taxiways
to access the runways as well as the aprons and named points
used to respectively park and guide aircraft (Figure 2). The
longest runway usually accommodates commercial traffic,
while the shorter and secondary runway is used for the other
traffic (e.g. training flights) and engine tests. Both runways
might be crossed by search-and-rescue helicopters.

Figure 2: Map of the airport and excerpt of a work scenario
consolidated by the ATCOs. The two runways form a gun-like

shape, taxiways are in purple, and aprons in orange.

Three ATCOs with distinct roles and tasks operate
simultaneously in the tower from adjacent desks. The tower
controller is responsible for operations on the runway. The
ground controller is responsible for aircraft operations on the
maneuvering area. The tower coordinator clears persons and
vehicles on the maneuvering area.

Controlling with physical and digital tools
In addition to an almost complete view of the airport
maneuvering area, all ATCOs use several physical and

digital tools to perform their tasks. For instance, the tower
controller setup is comprised of three screens, a radio and a
physical map (Figure 3). The screens allow the monitoring
of flights on a radar-view (a), the controlling of runway
occupancy indicators and ground lights (b), and the retrieval
of meteorological data (c). The radar view helps the tower
controller monitor the path of approaching and departing
aircraft as well as the planned landing sequence. ATCOs use
the physical map to represent the states of the runways and
the taxiways as well as to track aircraft positions on the
ground. In this figure, a "runway occupied" token is
displayed on the physical map (d) because the secondary
runway has been closed. Another token reminds that the
“tango” taxiway is closed. The yellow strip (e) represents an
approaching aircraft.

Figure 3: ATCO desk comprising a radar view (a), a map of
the airport (b), meteorological data (c), a physical map with
tokens indicating closed parts (d) and strips for aircrafts (e).

An already semi-automated, safety-enforced activity
ATCOs already rely on several forms of automation such as
alarms detecting collision risks between flights, traffic lights
or stop bars. The traffic lights are placed at road and runway
intersections to allow or prevent vehicle access to the
runways. They are manually set by the ATCOs and
automatically raise an alarm if the set command fails. Stop
bars are red lights located at the runway entrance to prevent
aircraft access to the runways. To switch them off, the tower
controller first clicks on the stop bar icon on the center
screen. This opens a confirmation window. He then asks the
coordination controller to ensure that there is no objection. If
the latter agrees, he clicks the confirmation button, which
switches off the stop bar. He then gives a voice clearance to
the pilot. The stop bar is automatically reactivated after 90s,
a delay that has been established by ATCOs and the
equipment manufacturer to suit their practice.

Challenges for automations: Airport complexity factors
ATCOs and the operational experts explained that despite its
medium/small size, Malta airport presents several sources of
complexity mostly due to the low number of taxiways and
traffic heterogeneity. The lack of taxiways available for
aircraft to reach the main runway extremities from the main
parking area forces ATCOs to use the runway as a taxiway
(“to backtrack”). ATCOs must elaborate several strategies
such as having two aircraft backtracking one behind the other
or clearing a departing aircraft to backtrack when another
landing aircraft has reached a specific zone of the runway.

The airport accommodates a wide range of aircraft and
ground vehicles that must share some of the taxiways or

restrict their parallel use. For instance, the two crossing
runways prevent aircrafts from landing or departing
simultaneously. Besides, depending on aircraft weight and
span categories, some of the holding points around the
runways cannot be used and must be vacated immediately.
Thus, departing and landing automations on a runway must
also consider the state of the other runway.

Requirements
Based on the user studies and on our motivation to explore
visual programming, we devised a set of requirements for
authoring and operating automations support. We consider
Authoring as the programming ahead-of-time, i.e. before
performing ATC, of the automations. Authoring includes
creating, editing but also testing. We consider Operating as
the monitoring and adjustments of automations just-in-time,
i.e. while the automations are running. Operating includes
handling real traffic data by automation, human monitoring
of automations, and handover when humans want to take
control over the automation.

Consider the existing scenarios (Existing)
The new technologies must support the current work
practices as identified during the user studies.

Define language constructs relevant to ATC (Relevant)
ATC includes activities such as planning, monitoring,
reacting to contingencies. All these activities require that
humans and machines interact. Hence, the new technologies
must support interaction-oriented programming: events,
dataflow, state-machines, states.

Make language constructs usable by ATCOs (Usable)
An “expertise tension” exists in a two-dimensional
continuum of job-related domain knowledge and system-
related development knowledge [2]. ATCOs might lack
systems knowledge. Thus, domain experts should be enabled
to modify or extend software without having a deep
understanding of a computer system or coding skills.

Foster predictability and handover (Predictable)
Beyond notification, which often occurs too late, another
challenge is to offer better representations of the status of
automation and its ability to handle the current traffic. This
should make the system predictable and allow ATCOs to
decide if they must take control over the automation.

Foster efficient and scalable authoring (Efficient)
Since the number of automations might be high, the
technology should scale up i.e. should be still usable with
multiple automations.

EXPLORING AND ASSESSING THE DSGL CONCEPTS
During the participatory design workshop, participants were
very enthusiastic about the use of the airport map to program
automations since they could instantly understand the visual
programs. When we presented the design scenario, they
expressed concerns about there being no human in the loop
when the departing flight was granted access to the runway.
In reaction to this specific automation, an ATCO stated that
“the runway is more important than my house!”, to

emphasize the importance of being effectively in control of
the runway and not only supervising it. However,
participants quickly understood the potential value of the
concept and we explored ways for the ATCOs to either
manually prevent the flight from automatically entering the
runway (thus taking control back), or a means to simply
notify the ATCO that the runway is available.

Assessing and updating the runway occupancy
Together, we explored a scenario to help ATCOs assess the
runway occupancy status. The participants explained that the
runway status is manually updated by the ATCOs which can
be error-prone. The head of tower operations argued that:
“sometimes you can forget to turn it on in the system because
you are busy and a vehicle wants to go on to the runway for
a five-minute job”. Participants suggested automation could
provide a visual reminder of the permanent runway status by
adding an area to detect aircraft and other vehicles above the
runway. If the detected state differs from the system state, an
alarm will be displayed to help the user update it.

To prevent possible detection failures, we suggested the use
of a digital puck like the physical one they use on the current
map to mimic the presence of any vehicles. The ATCOs
found the idea convincing and explained this could also be
very useful to indicate maintenance operations on the runway
or that a runway is closed for safety reasons such as the
presence of ice or traffic light maintenance.

Programming safety nets
Building upon the previous scenario, participants expressed
positive feedback about the opportunity to program
automations themselves that would act as safety nets, i.e.
security measures, that they could fine test and tune. We built
a design scenario with a safety net that triggers an alarm if
there is an aircraft on the runway and another one
approaching. To author this automation, participants
suggested that they would use a zone covering an area
corresponding approximately to 5min before landing and
place an alarm box wired to both the runway and this zone.

Interacting with stop bars
Since participants mentioned challenges to automate the
stop-bars, we explored possibilities to define their behaviors
with our concepts. Participants first suggested that they could
turn off the stop-bars by clicking or touching their visual
representations on the map as presented in Figure 4 (left).
They argued for a confirmation step involving another click
to mimic existing interactions. Figure 4 (center) illustrates
how we prototyped it by adding an ATCO icon (the
confirmation components of the DSGL) over the stop-bar to
make the user confirmation step explicit. We discussed the
opportunity to make the remaining time visible as a progress
bar or text superimposed over the graphical representation.
This idea received positive feedback from the participants.

Figure 4: Prototypes for automating stop-bars. Left: turning

off a stop-bar by tapping its representation. Center:
representing the ATCO to ensure a confirmation. Right:

dropping an area to join two aircraft.

VIZIR
Based on the results of the workshops, we designed Vizir, a
DSGL and an environment for the visual authoring and
operating of automations (Figure 1). This section
incrementally introduces its features by describing several
interactions based on the work scenarios (Existing).

The geographic airport map as the background canvas
ATCOs rely extensively on both the airport map and the
radar view to accomplish their tasks. Such visual, two
dimensional representations of the space they must monitor,
offers clear landmarks that support reasoning. To support
their tasks, automations must be visible and correlated with
the airport map. Their representations should facilitate the
interactive control that may be required in sensitive
situations (Usable and Predictable).

At the start of the application, the map of the airport is
displayed. The map is a structured SVG file, containing
multiple layers of graphics implemented with SVG groups:
runways, taxiways, parking, buildings. Users can freely pan
and zoom the airport or hide and reveal specific layers. The
background and the features of the airport are mostly dark
blue. Dark images are often used in ATC as they place less
stress on the eyes than luminous ones.

Authoring simple geographic-based automations
The user can add programming constructs on top of the
airport to specify automations. These elements are luminous
and yellow to differentiate them from the background.

Drag’n’dropping components from the toolbox
A toolbox at the bottom displays a set of components:
enter/leave zone, geographic-time scale, confirmation,
alarm, gauge, “occupied” and “closed” pucks, fake flight,
text-to-speech, logic and arithmetic operations and
properties (Figure 5). The user can drag and drop them from
the toolbox to the map to create instances (Usable).

Figure 5: the component toolbox

Defining an Enter/Leave zone (ELZ)
The user can drag and drop a rectangular Enter/Leave zone
that is activated (and colored purple) when a flight enters or
leaves it. The user can move it around freely, superimpose it
on a specific area of the airport, resize it and reorient it to

match the underlying area (Figure 6). The user can thus
specify an area that would not match the structure of the
airport, for example an area that encompasses a taxiway and
a parking (Relevant). We will also make it possible to use
airport graphics as Enter/Leave zone components (not
implemented in the current prototype) (Usable).

Figure 6: resizing an enter/leave zone to match runway

Connecting elements
Each component embeds a set of input and output plugs
(small triangles), resembling boxes in Max and similar
environments. The user can press a plug to create a wire, drag
its end and drop it on the plug of another component to
connect them. For example, after placing an Enter/Leave
zone and a warning box, the user can connect the output of
the Enter/Leave zone to the input of the warning box to
specify that the Warning will turn to ‘on’ (e.g. red) when a
flight enters the Enter/Leave zone. In addition, a light
rectangle behind the triangle appears when the plug is
activated and informs users of the plug activation.

Figure 7: connecting an ‘and’ gate with an alarm

Authoring more complex automations

Specifying data-flow behaviors
To specify data-flow-based automations, the user can
connect logical (and, or, …) and arithmetical (+, -, x …)
operators between input and output plugs that emit or receive
a flow of scalars. For example, users can create an
Enter/Leave zone located at a position corresponding to
500m before the runway. They can then create an ‘and’ gate,
then connect the zone to one input of the ‘and’ and the zone
over the runway to the other input, and the result of the ‘and’
box to a warning box (Figure 7). This would create a warning
for the ATCO that would flash if a flight is about to land
while another flight is still on the runway.

Maintaining state
Users can create Boolean, integer or double properties, and
connect them to other components. Properties serve as
intermediate variables in dataflows and to implement states.
Indeed, connectors can be of two types: data-flow or
assignment (shift key pressed when connecting). While a
dataflow continuously pushes data when activated, an
assignment pushes only one value when activated.

Connecting a component to a property with such a link
specifies that the property will be set to a value when the
component is activated.

Switching state
The choice of reactions of an interactive system often relies
on its state. Vizir provides ways to access the inner states and
transitions of the state-machine controlling a component.
Figure 8 illustrates a scenario in which the user connects the
transitions of two state-machines. When a transition is fired
in the first state-machine, the connected one is also fired in
the other state-machine. Conversely, the states of different
state-machines can also be coupled. However, Vizir does not
offer ways to entirely and graphically specify a state-
machine, it only allows its states and transitions to be
accessed. The state-machine must be written with a textual
language.

Figure 8: coupling state-machines: here, runway and stop bar

Explicitly transferring automation control to human control
To ensure that an event cannot be transmitted without
explicit ATCO validation (Predictable), any connection can
be overloaded with a confirmation decorator by dragging a
‘Hand’ onto the wire. When an event is sent from the source,
the Hand is replaced by a glowing confirm-abort box: the
user must click on it to confirm or abort the signal flow to
destination (Figure 9). For example, the user can create an
automation that would switch off a stop bar whenever the
runway is free because the flight that landed left it for a
taxiway. Since this action is critical, she can put a ‘hand’ on
the wire between the runway zone and the stop bar to request
confirmation from the operating user.

Figure 9: explicit human confirmation component

Explicitly transferring human control to automation control
Some aircraft are equipped with digital communication
means to exchange mail-type messages with ATCOs, but
many light or old aircraft are not. In this case, the main
communication channel between ATCOs and pilots is radio.
Some ATCO messages are routine, such as ‘transfer

messages’ in which ATCOs instruct departed flights to
change their frequency to the next control sector. Other ones
may be very urgent, such as a ‘go around’ message to a flight
that must cancel its landing because the runway is
unexpectedly occupied. Vizir provides programmers with a
text-to-speech component that synthesizes speech over the
radio when activated, for such routine or urgent message
(Figure 10). This feature also shows how automation can
leverage the use of older technologies, providing smooth
system evolution (Existing).

Figure 10: text-to-speech automation

Compressing distance with geographic time-scales
Coping with different orders of magnitude of distance
between objects is an inherent problem with geographic
maps. When zoomed to fit the entire airport, the view
represents roughly a 5x4 km area. However, landing flights
that are important for ATCOs may be as far as 100km away
from the airport and cannot be represented without zooming
out, leading to a tiny airport representation.

Figure 11: geographic time-scale

To mitigate this problem, we designed a geographic time-
scale. A classical time-scale reflects the predicted delay
before a flight lands: it projects the delay to a position in the
frame of reference of the time-scale. A geographic-time scale
is a time-scale substrate [18,36] whose position and
orientation on the screen are meaningful with respect to the
underlying geographic map. Figure 13 shows an instance of
a geographic time-scale: the “entrance” of the time-scale
corresponds to where the flights come from, while the “exit”
of the time-scale corresponds to the “entrance” of the
runway. The flight is depicted with a yellow circle. Such a
representation ‘compresses’ the position of distant flights. Its
position and orientation lend itself to smooth transition of
flights movement from time to space (Usable). It works in
this case because flights are placed in a queue before landing.

Defining meta-interaction between graphical components
The use of graphics to specify behavior can be extended from
geographic-based to screen-based. For example, we have
designed a gauge to reflect the ‘level of traffic’. The gauge is
connected to a zone comprising the taxiways and the
runways and counts the number of flights in this zone. Since

the value of the gauge is displayed with a yellow dot, the fact
that the circle enters another zone can be used as a meta-
event that triggers another behavior. As presented in Figure
9, we have connected it to a set of radio-buttons that reflect
the current strategy of an external algorithm that computes a
timed sequence of departures. When the level of traffic is
high, the strategy is changed from ‘minimize fuel
consumption’ to ‘maximize runway usage’ to make flights
depart as soon as possible.

Figure 12: the gauge value is detected by an enter/leave zone

Another example is the geographic time-scale. Users can
create Enter/Leave zones that detect flights inside the time-
scale to trigger behavior. Figure 13 illustrates an Enter/leave
zone in the range 5-3 min before landing. e.g. when flights
‘enter’ a 3min-delay zone. Combined with the presence of a
flight on the runway, such automation is capable of
triggering a warning, or even a go-around by radio if
connected to the text-to-speech component.

Figure 13: meta-automation on geographic time-scale

Supporting tests
Testing is a mandatory activity of automation development
(Efficient). Fake flights are components that the user can
move around (Figure 14). Like flights, a fake flight is sensed
by Enter/Leave zones. This enables the user to test parts of
the automation that is under construction: she can place one
or multiple flights in multiple zones and observe how the
automation behaves with respect to these conditions. One
can simulate a traffic with a sequence of interactions that
correspond to target situations to be tested.

Figure 14: fake flight and occupied puck

The user can also directly propagate the activation of a
component by clicking on a plug (e.g. yellow triangles in
Figure 7). If the plug is an input, the component it belongs to
is activated and subsequent behavior is triggered. If the plug
is an output, the component connected to this plug is
activated.

Managing scalability
Visual languages might suffer from scalability. Even with
some simple automations, the screen might be filled up with
many graphical components and crossing wires, making
automation difficult to understand and edit.

We relied on progressive disclosure [24] to address this
issue. Vizir distributes automations in file units organized in
a folder hierarchy, as in traditional programming languages.
The editor displays this hierarchy as a collapsible tree to the
left of the main document, as in traditional IDE (Figure 1).
The user can double-click on a file to display its content in
the main document within a tab. A double-click on another
file in the tree opens a new tab and displays its content on top
of the radar image in lieu of the previous tab. The originality
of our approach is the common use of the map in the
background of all tabs, and the disclosure or the concealment
of the program on top of this background. To the best of our
knowledge, no other visual editor provides such a
functionality.

Another possibility is to display the content of two or more
tabs simultaneously, by shift-clicking on a tab, effectively
turning them into layers. The content of the new tab is added
to the content of the current visible tab. A slider enables
control of the opacity of the components that belong to the
tab. This mechanism mitigates the problem of possible
overlap between components. The ability to make the
content of multiple files visible and accessible to the
programmer enables the user to connect the plug of
components that reside in different files. This fosters
modularity and visibility.

Complex components can be written in the Smala textual
language [35] and directly reused in Vizir. The component
appears as a box with plugs that correspond to declared
properties in the code. The user can double-click on the box
to open its content in a new tab. The user can control the tab
opacity to see the geographical map when coding with text.

Figure 15: translucent tab to edit textual code

Operating automations

Controlling program visibility
During operation, many of the automation components are
invisible to the tower ATCO. Only the visual components
such as alarms, stop bars, hand and runway EL zones are
visible since they are required for proper first-level
interaction. However, the ATCO can progressively disclose
automation components by: using a slider to control their

opacity; invoking a magic lens [3] that she can move around
to reveal local automation; or by clicking on a component
and revealing/hiding each level of connections (considered
here as a graph) using the mouse wheel.

Figure 16: when the alarm is triggered, its program appears

Figure 17: press+mouse wheel to gradually reveal the program

Figure 18: magic lens to inspect local automations

Triggering/Disabling automation
Some of the testing support in author mode is accessible
during operation: for example, clicking a plug will activate
the depending component. If an automation component is
visible, the status of its plug is visible too. The user also has
the possibility of temporarily disabling a coupling by simply
moving the end of a connection and releasing it on the
background. Instead of completely deleting it, disconnecting
allows the user to retrieve a disconnected coupling and
enable it again by moving it into the plug.

The ‘occupied’ and ‘closed’ pucks (Figure 14) enable the
ATCO to inform the system that an Enter/leave zone is
occupied as if a flight is inside, while triggering any behavior
that depends on such a flight occurrence. It offers a pliant
way to adapt the operation of the automation e.g. in case of
an unpredicted contingency (e.g. fire) without being explicit
about the causes.

Assessing future behavior of automation
To reveal the automations that will be triggered in the near
future, the user can also manipulate a time slider: the flight
trajectories will be extrapolated and simulate the triggering
of automations as they are expected to behave. Similarly, the
user can trigger a DIMP-like interaction [14] by pressing on
a flight. This interaction displays the predicted trajectory and
dragging the flight along the trajectory allows the user to
visualize the updated positions of other flights and the

corresponding triggered automations. This enables a user to
assess the behavior of automation at a critical place at the
airport e.g. a crossing. The current implementation serves as
a demonstration only and is not truthful, as a proper
implementation requires the saving the successive states of
the application to be able to backtrack in time and retrieve
previous states.

Figure 19: Assessing automation behavior in the near future:
pressing on the top-left flight displays its predicted route (in
orange), moving the flight along its route changes the time of

the whole simulation.

Implementation
We used the smala language and the djnn framework [35] to
implement Vizir on top of the airport radar image. Smala and
djnn unify many concepts related to interaction-oriented
programming. Vizir representations of djnn unified concepts
enable programmers to seamlessly combine different
interaction-oriented programming constructs in a visual
manner.

Since Vizir is a research project, it is not complete and safe
enough to be operational. We thus simulated operations by
using realistic traffic data. Simulated traffic uses a real-time
player of recorded trajectories, which broadcasts them
through the Ivy software bus [5]. In actual operation, the
system would be fed with aircraft and vehicle locations,
which is generally feasible via GPS, a ground radar or with
direct communication.

DESIGN PRINCIPLES AND DISCUSSION
While designing Vizir, we identified and refined a number of
design principles. The principles helped us fulfill the
requirements and answer the research question. They also
guided us during ideation phases. We present the guidelines
as explanations based on a post-hoc analysis of Vizir's
features. Their titles have been generalized from the specific
activity to make them useful to designers of similar systems.

Continuum of usage and progressive disclosure
We envisage that the tool be used during a continuum of
phases: ahead-of-time when authoring the map,
programming rules/constraints from the operational manual
of the airport and when programming local automations
according to the places of the airport; or just-in-time while
controlling by anticipating when quickly programming
clearances in advance, reacting to behavior triggered by
automation, taking control back, or simply supervising.
Progressive disclosure [24] is one of the means to implement
this continuum.

Space-based and event-based constructs
Since ATCOs monitor moving aircraft and vehicles on
ground, most of their activity is based on the geography of
the airport. However, some of their activity is time-based
because time can be easily measurable. Considering that
space was reliably measurable (for example using GPS), we
explored how to transform time-based rules and their
automation into space-based rules. Examples of features that
support this principle include enter/leave zones,
geographical-time scale and ‘meta’-interactions between
graphical components.

Make current state and future behavior visible
Visibility is one the most important properties to respect in
GUIs [39] (Usable). We thus strived to provide
‘programmers’ and ‘users’ with means to respectively
display and see all elements useful for the understanding and
prediction of the behavior of the system. Examples of
features to support this principle include alarms, gauges,
user-triggered disclosure of DSGL constructs, visibility of
plug status and means to navigate in the future. Gauges can
be used to build low-visibility warnings that emit harbinger
cues and inform the users of the ‘load’ of the automation so
that they can predict their own load in an optional handover.

Seamless and seamful hybrid control
In such hybrid human-automation systems, an important
property resides in the seamless interactions between
humans and automations (Predictable). Humans should be
able to easily control automation and recover all authority.
Similarly, automation might be able to inform users, and
request users’ actions. ‘Seamless’ in this case means that
programming constructs be designed to be indifferently
performed by humans and automation. Examples of features
include human-triggered and automation-triggered plugs,
text-to-speech, gauges connected to strategy change. On the
other hand, seamless control can also lead to dangerous
behaviors such as unintended consequences of accidental
actions triggered by humans or unexpected high-impact
decisions made by automation. Vizir provides seamful [21]
control switch between humans and automation in critical
situations. Examples of such features include explicit
confirmation or “occupied” puck.

Foster interaction-oriented programming
The programming model to be used should make the
geographic map, spaces, events, states, behaviors and
graphics first-class citizens. In other words, Vizir had to be
based on an interaction-oriented programming model. We
used the djnn conceptual model [39], which seamlessly
combines events, reactions, activations, data-flows, state
machines, graphics and states to implement interactions.

RELATED WORK
Visual authoring and operating of automation are related to
End-User Programming, Graphical languages and
environments, and specific authoring environments.

End-user programming and related concepts
End-user programming (EUP) is defined as "programming to
achieve the result of a program primarily for personal, rather
than public use.” [28]. The benefits of having an end-user
program lie in coupling deep knowledge of the involved
activities with programming to build a system that supports
such activities. A domain such as ATC is "likely to involve
different types of computational patterns and different
software architectures" [28]. This is what we wanted to
explore: to which extent the correct conceptual model and
user interface may enable stakeholders, ATCOs and
Engineers to design better automated systems?

Several notions related to End-user programming (EUP) may
prove important for Vizir usability. End-User Development
(EUD) is a set of methods, techniques, and tools that allow
users of software systems, who are acting as non-
professional software developers, at some point to create,
modify or extend a software artefact [34]. End-User
Software Engineering (EUSE) is concerned with
technologies that collaborate with end-users to improve
software quality [28]. EUSE deals with other phases of the
software life-cycle than programming. Programming By
Example is an easier way to specify behavior for end-users
[11,12,31,49]. Live Programming makes programming
easier by re-executing a program continuously during editing
[6,19,46]. Domain-specific languages (DSLs) are tailored to
a specific application domain and offer “substantial gains in
expressiveness and ease of use compared with general-
purpose programming languages in their domain of
application” [37].

Graphical languages and environments
All programming activities require languages and
environments to specify, produce and run programs. Among
them, graphical languages facilitate EUP.

Learning to program
Some IDEs are specialized in facilitating the learning phase
of programming. Much of them are oriented towards
children. For example Little Wizard [51] uses icons for
variables, expressions, loops, conditions and logical blocks
that children can drag and drop together to compose program
“sentences”. Squeak Etoys [52] and Scratch [53] are
authoring environments to create computer programs using a
scripting language based on blocks and containers. Kodu
[54] is a visual programming tool to teach reactive
programming to children with the “trigger – action”
programming concept. Kodu builds on ideas begun with
Logo [1] and other projects such as AgentSheets [55],
Squeak [52] and Alice [56]. Learnable programming is a set
of principles about the vocabulary, the visualization of flows
and states, and on supporting coders in creating behavior by
reacting to immediate feedback and abstracting [4].

Professional environments
LabVIEW [57] is a system-design platform and development
environment using the G graphical language. Execution is
determined by the structure of a graphical block diagram on
which the programmer connects different nodes by drawing

wires. VAPS XT [47] and SCADE Display [50] are products
that allow users to define both object appearance and display
logic in a single graphical editor for embedded systems. Most
of the editing is performed in a graphical form. IFTTT [58]
("If This Then That") is an implementation of Trigger-Action
for web and IoT.

Interaction-oriented languages and tools
Interaction-oriented programming [32] has requirements that
necessitate support from languages, frameworks and tools
[38]. For example, Fabrik is a direct manipulation user
interface builder that enables a designer to specify transforms
between linked widgets with a visual flow language [23].
Whizz’ed is a graphical editor for a data-flow-based
programming language [17]. Whizz’ed enables
programmers to draw links between blocks and is capable of
triggering actions based on enter/leave events [17]. Icon is a
tool to graphically specify and control data-flows of events
from input to display [13]. Interstate is a tool to graphically
develop state-machines that describe interactions [40].
Musical programming environments such as Max and Pure
Data [43] are based on data-flow. In such languages,
functions or "objects" are linked or "patched" together in a
graphical environment that models the flow of the control
and audio. Kitty is a tool to sketch interactive illustrations
[26]. Kitty notably relies on space and time, and a relational
graph that implements the causal relationships between
objects in a scene. Vizir seamlessly combines several
features from these works.

Specific authoring and operating environment
Several environments have been created to help develop
games with high-level programming concepts that are closer
to game designers’ concerns. In particular, several tools such
as Unreal Engine [59], Unity [60] or Euphoria [61] rely on
visual programming techniques to facilitate the definition of
dynamic behaviors, rules and motions. Real Time Strategy
(RTS) games enable players to control multiple instances of
semi-autonomous agents in a simulated world. For example,
agents can go to a location, collect some elements and bring
them back. Animations can also be considered automation,
and several applications support their design, including those
involving multiple objects [27].

A number of tools and techniques assist musical composers
in programming and executing temporal plans for real-time
performance. Such systems frequently combine music-
specific representations such as musical notation with
additional data such as control curves. The automations can
also be used during live performance and modified in real-
time (“operating” in Vizir). In automatic score-following
tools such as Antescofo [7], a real-time listening machine
reacts to musical events described in a score and interpreted
by a human performer to launch predefined actions. Cont et
al. propose to defer error handling strategies to the user [8].
They define two strategies, tight and loose, that respectively
correspond to whether the system will necessarily trigger all
actions or avoid some parts if events are missed. Vizir also
relies on the user to define automation that must be validated.

However, Vizir does not yet offer such sophisticated
strategies to define how to recover from user errors such as
forgetting to switch off the stop bars before clearing an
aircraft to enter the runway.

Automation in ATC
Automation in ATC aims at substantially reducing controller
task-load per flight through automated decision support,
whilst simultaneously meeting the established safety and
environmental goals. However, due to safety concerns and
careful integration of technologies, ATC still relies heavily
on human operations [22,33]. The usability of the whole
system is also important since safety and capacity heavily
depend on mutual awareness [15,25] as well as fast and
efficient interactions [10,33]. Still, the will to improve safety
and capacity requires ATC systems to evolve and reach new
levels of performance, notably with movement guidance and
control systems (A-SMGCS) [30], for which automations
can be designed with Vizir.

THREATS TO VALIDITY AND LIMITATIONS
The interactions that we designed might be applicable only
to the specific airport we studied, due to its particularities and
its low complexity. The rationale of Vizir is that airport
automation will be programmed with similar constructs but
with specific automation, airports and sources of complexity.
We believe that many airports would benefit from location
and event-based constructs like the ones introduced in the
paper. The stakeholders from other airports to whom we
demonstrated the system confirmed that Vizir descriptive
power seems compatible with other settings. Adapting the
interactions might be unavoidable, as much as adapting code
to specific contexts is unavoidable in traditional software
engineering.

Nevertheless, automation needs to be specific to be useful.
Previous work in the design of short-term conflict alert
already in use in ATC shows that algorithms must be heavily
tuned to the very specific settings and traffic of the
instrumented airspace [62]. Furthermore, airspace rules are
continuously evolving globally and locally to make them
safer and more effective, thus requiring automation that can
be adapted. We believe it is more valuable to provide design
tools for end-users as opposed to providing configured-in-
advance tools (e.g. A-SMGCS [30]) that might not be useful
at all unless they can be adjusted. Hospital studies
corroborate that specifically-tailored tools are the most
beneficial for patients in hospitals [20].

The interactions might also be applicable to ATC only.
However, other domains share similar concerns. For
example, home automation might also benefit from the
space-based and event-based interactions that we designed.
Similarly, designing an interactive museum experience or
games might benefit from our work.

The hypothesis that visibility would help ATCOs understand
automation must be experimentally tested. Another question
that may arise is that of the proficiencies of the targeted users
at programming their own automation. If ATCOs are

professionally trained to manage traffic, they may be not
literate enough in thinking about, specifying or programming
software that will be sufficiently usable and safe. However,
in the near future, ATCOs like most higher-grade professions
will be educated in computer science during their studies. We
envision they will participate in automation design in
collaboration with qualified computer scientists. Indeed,
after the submission of this article, we demonstrated Vizir to
two ATCOS who were able to design 3 automations specific
to their ATC context in 10 minutes. We never discussed
these automations together before. This suggests that our
hypothesis that ATCOs will be able to participate to the
design of automation is not falsified.

ATCOs may already be too busy with handling the traffic
and they might not be able to cope with automation.
However, the whole air traffic system is already an
automation-based activity from the ATCOs’ point of view.
ATCOs delegate a number of actions to the pilots and then
must monitor whether they are performed. In some ways,
pilots can be seen as equivalent to an automatic agent that
might succeed or fail to comply with a clearance.

Vizir does not provide visual constructs to support
automation that requires coordination with controllers that
are not located in the same room. This is a frequent situation
faced by controllers that should be investigated in future
work. Nevertheless, if confronted to the incompleteness of
the visual language, programmers can resort to the
underlying textual language and can even embed algorithms
coded in C/C++.

CONCLUSION
We have presented Vizir, a Domain-Specific Graphical
Language and Environment to support end-user authoring
and operating of airport automation. Vizir combines visual,
geographic, interaction-oriented constructs to program
hybrid human-automation systems. Vizir provides means to
mitigate the complexity induced when scaling up the number
of automations. We grounded our work by studying ATC on
Malta airport, and the features were refined through a
participatory design process with ATCOs.

Future work will focus on additional experimentation with
ATCOs to assess how they can author and operate
automation with Vizir. We will also further explore the
DSGL and Vizir to adapt them to more complex airports and
other domains than ATC such as home automation.

ACKNOWLEDGEMENTS
We are grateful to experts and controllers from Malta Airport
that participated in our studies. This project has received
funding from the SESAR Joint Undertaking under grant
agreement No 699382 under European Union’s Horizon
2020 research and innovation programme.

REFERENCES
1. Hal Abelson, Nat Goodman, and Lee Rudolph. 1974.
LOGO Manual. Retrieved December 7, 2016 from
http://dspace.mit.edu/handle/1721.1/6226

2. Joerg Beringer. 2004. Reducing expertise tension.
Communications of the ACM 47, 9: 39.
https://doi.org/10.1145/1015864.1015885

3. Eric A. Bier, Maureen C. Stone, Ken Fishkin, William
Buxton, and Thomas Baudel. 1994. A Taxonomy of See-
through Tools. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’94), 358–364.
https://doi.org/10.1145/191666.191786

4. Victor Bret. Bret Victor, Learnable programming.
worrydream. Retrieved July 19, 2016 from
http://worrydream.com/#!/LearnableProgramming

5. Marcellin Buisson, Alexandre Bustico, Stéphane Chatty,
Francois-Régis Colin, Yannick Jestin, Sébastien Maury,
Christophe Mertz, and Philippe Truillet. 2002. Ivy: Un Bus
Logiciel Au Service Du DéVeloppement De Prototypes De
SystèMes Interactifs. In Proceedings of the 14th Conference
on L’Interaction Homme-Machine (IHM ’02), 223–226.
https://doi.org/10.1145/777005.777040

6. Sebastian Burckhardt, Manuel Fahndrich, Peli de Halleux,
Sean McDirmid, Michal Moskal, Nikolai Tillmann, and Jun
Kato. 2013. It’s Alive! Continuous Feedback in UI
Programming. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI ’13), 95–104.
https://doi.org/10.1145/2491956.2462170

7. Arshia Cont. 2008. ANTESCOFO: Anticipatory
Synchronization and Control of Interactive Parameters in
Computer Music. In International Computer Music
Conference (ICMC), 33–40. Retrieved December 14, 2016
from https://hal.archives-ouvertes.fr/hal-00694803/

8. Arshia Cont, José Echeveste, Jean-Louis Giavitto, and
Florent Jacquemard. 2012. Correct Automatic
Accompaniment Despite Machine Listening or Human
Errors in Antescofo. Retrieved November 10, 2016 from
https://hal.inria.fr/hal-00718854/document

9. Stéphane Conversy, Stéphane Chatty, Hélène Gaspard-
Boulinc, and Jean-Luc Vinot. 2016. The Accident of Flight
447 Rio-Paris: A Case Study for HCI Research. In
Proceedings of the International Conference on Human-
Computer Interaction in Aerospace (HCI-Aero ’16), 1:1–
1:8. https://doi.org/10.1145/2950112.2964586

10. Stéphane Conversy, Hélène Gaspard-Boulinc, Stéphane
Chatty, Stéphane Valès, Carole Dupré, and Claire Ollagnon.
2011. Supporting air traffic control collaboration with a
TableTop system. In Proceedings of the ACM 2011
conference on Computer supported cooperative work, 425–
434.

11. Allen Cypher. 1991. EAGER: Programming Repetitive
Tasks by Example. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI
’91), 33–39. https://doi.org/10.1145/108844.108850

12. Allen Cypher, Daniel C. Halbert, David Kurlander,

Henry Lieberman, David Maulsby, Brad A. Myers, and Alan
Turransky (eds.). 1993. Watch What I Do: Programming by
Demonstration. MIT Press, Cambridge, MA, USA.

13. Pierre Dragicevic and Jean-Daniel Fekete. 2001. Input
Device Selection and Interaction Configuration with ICON.
In People and Computers XV—Interaction without
Frontiers. Springer, London, 543–558.
https://doi.org/10.1007/978-1-4471-0353-0_34

14. Pierre Dragicevic, Gonzalo Ramos, Jacobo Bibliowitcz,
Derek Nowrouzezahrai, Ravin Balakrishnan, and Karan
Singh. 2008. Video Browsing by Direct Manipulation. In
Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI ’08), 237–246.
https://doi.org/10.1145/1357054.1357096

15. Mica R. Endsley. 2011. Designing for Situation
Awareness: An Approach to User-Centered Design, Second
Edition. CRC Press, Inc., Boca Raton, FL, USA.

16. Heinz Erzberger. 2004. (4) Transforming the NAS: The
next generation air traffic control system. NASA, TP–2004-
212828. Retrieved September 25, 2017 from
https://www.researchgate.net/publication/250066237_Trans
forming_the_NAS_The_next_generation_air_traffic_contro
l_system

17. Olivier Esteban, Stéphane Chatty, and Philippe
Palanque. 1995. Whizz’ed: A Visual Environment for
Building Highly Interactive Software. In Human—Computer
Interaction. Springer, Boston, MA, 121–126.
https://doi.org/10.1007/978-1-5041-2896-4_20

18. Jérémie Garcia, Theophanis Tsandilas, Carlos Agon, and
Wendy Mackay. 2012. Interactive Paper Substrates to
Support Musical Creation. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI
’12), 1825–1828. https://doi.org/10.1145/2207676.2208316

19. Christopher Michael Hancock. 2003. Real-time
programming and the big ideas of computational literacy.
Massachusetts Institute of Technology. Retrieved December
18, 2016 from http://dspace.mit.edu/handle/1721.1/61549

20. David U. Himmelstein, Adam Wright, and Steffie
Woolhandler. 2010. Hospital Computing and the Costs and
Quality of Care: A National Study. The American Journal of
Medicine 123, 1: 40–46.
https://doi.org/10.1016/j.amjmed.2009.09.004

21. Kristina Höök and Jonas Löwgren. 2012. Strong
Concepts: Intermediate-level Knowledge in Interaction
Design Research. ACM Trans. Comput.-Hum. Interact. 19,
3: 23:1–23:18. https://doi.org/10.1145/2362364.2362371

22. V. David Hopkin. 1991. The Impact of Automation on
Air Traffic Control Systems. In Automation and Systems
Issues in Air Traffic Control. Springer, Berlin, Heidelberg,
3–19. https://doi.org/10.1007/978-3-642-76556-8_1

23. Dan Ingalls, Scott Wallace, Yu-Ying Chow, Frank
Ludolph, and Ken Doyle. 1988. Fabrik: A Visual

Programming Environment. In Conference Proceedings on
Object-oriented Programming Systems, Languages and
Applications (OOPSLA ’88), 176–190.
https://doi.org/10.1145/62083.62100

24. J. Johnson, T. L. Roberts, W. Verplank, D. C. Smith, C.
H. Irby, M. Beard, and K. Mackey. 1989. The Xerox Star: a
retrospective. Computer 22, 9: 11–26.
https://doi.org/10.1109/2.35211

25. David B. Kaber and Mica R. Endsley. 2004. The effects
of level of automation and adaptive automation on human
performance, situation awareness and workload in a dynamic
control task. Theoretical Issues in Ergonomics Science 5, 2:
113–153. https://doi.org/10.1080/1463922021000054335

26. Rubaiat Habib Kazi, Fanny Chevalier, Tovi Grossman,
and George Fitzmaurice. 2014. Kitty: Sketching Dynamic
and Interactive Illustrations. In Proceedings of the 27th
Annual ACM Symposium on User Interface Software and
Technology (UIST ’14), 395–405.
https://doi.org/10.1145/2642918.2647375

27. Rubaiat Habib Kazi, Fanny Chevalier, Tovi Grossman,
Shengdong Zhao, and George Fitzmaurice. 2014. Draco:
Bringing Life to Illustrations with Kinetic Textures. In
Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI ’14), 351–360.
https://doi.org/10.1145/2556288.2556987

28. Andrew J. Ko, Robin Abraham, Laura Beckwith, Alan
Blackwell, Margaret Burnett, Martin Erwig, Chris Scaffidi,
Joseph Lawrance, Henry Lieberman, Brad Myers, Mary Beth
Rosson, Gregg Rothermel, Mary Shaw, and Susan
Wiedenbeck. 2011. The State of the Art in End-user
Software Engineering. ACM Comput. Surv. 43, 3: 21:1–
21:44. https://doi.org/10.1145/1922649.1922658

29. P. Ky and B. Miailler. 2006. SESAR: towards the new
generation of air traffic management systems in Europe.
Journal of ATC Quaterly.

30. Roger Lane, Stephane Dubuisson, Mohamed Ellejmi,
Michael Huhnold, Bert Klinkers, and Eivan Cerasi.
EUROCONTROL Specification for A-SMGCS Services.
123.

31. Gilly Leshed, Eben M. Haber, Tara Matthews, and Tessa
Lau. 2008. CoScripter: Automating & Sharing How-to
Knowledge in the Enterprise. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI
’08), 1719–1728. https://doi.org/10.1145/1357054.1357323

32. Catherine Letondal, Stéphane Chatty, Greg Phillips,
Fabien André, and Stéphane Conversy. 2010. Usability
Requirements of User Interface Tools.

33. Catherine Letondal, Christophe Hurter, Rémi Lesbordes,
Jean-Luc Vinot, and Stéphane Conversy. 2013. Flights in my
hands: coherence concerns in designing Strip’TIC, a tangible
space for air traffic controllers. In Proceedings of the
SIGCHI Conference on Human Factors in Computing

Systems, 2175–2184.

34. Henry Lieberman, Fabio Paternò, Markus Klann, and
Volker Wulf. 2006. End-User Development: An Emerging
Paradigm. In End User Development, Henry Lieberman,
Fabio Paternò and Volker Wulf (eds.). Springer Netherlands,
1–8. https://doi.org/10.1007/1-4020-5386-X_1

35. Mathieu Magnaudet, Stéphane Chatty, Stéphane
Conversy, Sébastien Leriche, Celia Picard, and Daniel Prun.
2018. Djnn/Smala: A Conceptual Framework and a
Language for Interaction-Oriented Programming. Proc.
ACM Hum.-Comput. Interact. 2, EICS: 12:1–12:27.
https://doi.org/10.1145/3229094

36. Nolwenn Maudet, Ghita Jalal, Philip Tchernavskij,
Michel Beaudouin-Lafon, and Wendy E. Mackay. 2017.
Beyond Grids: Interactive Graphical Substrates to Structure
Digital Layout. In Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems (CHI ’17), 5053–
5064. https://doi.org/10.1145/3025453.3025718

37. Marjan Mernik, Jan Heering, and Anthony M. Sloane.
2005. When and How to Develop Domain-specific
Languages. ACM Comput. Surv. 37, 4: 316–344.
https://doi.org/10.1145/1118890.1118892

38. Brad Myers, Scott E. Hudson, and Randy Pausch. 2000.
Past, Present, and Future of User Interface Software Tools.
ACM Trans. Comput.-Hum. Interact. 7, 1: 3–28.
https://doi.org/10.1145/344949.344959

39. Donald A. Norman. 2013. The Design of Everyday
Things: Revised and Expanded Edition. Basic Books.

40. Stephen Oney, Brad Myers, and Joel Brandt. 2014.
InterState: A Language and Environment for Expressing
Interface Behavior. In Proceedings of the 27th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’14), 263–272.
https://doi.org/10.1145/2642918.2647358

41. Raja Parasuraman and Victor Riley. 1997. Humans and
Automation: Use, Misuse, Disuse, Abuse. Human Factors:
The Journal of the Human Factors and Ergonomics Society
39, 2: 230–253.
https://doi.org/10.1518/001872097778543886

42. Raja Parasuraman, Thomas B. Sheridan, and
Christopher D. Wickens. 2000. A model for types and levels
of human interaction with automation. IEEE Transactions on
systems, man, and cybernetics-Part A: Systems and Humans
30, 3: 286–297.

43. M Puckette. 1996. Pure Data: another integrated
computer music environment. Proceedings of the Second
Intercollege Computer \ldots. Retrieved from
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.4
1.3903&rep=rep1&type=pdf

44. J. Rasmussen. 1983. Skills, rules, and knowledge;
signals, signs, and symbols, and other distinctions in human
performance models. IEEE Transactions on Systems, Man,

and Cybernetics SMC-13, 3: 257–266.
https://doi.org/10.1109/TSMC.1983.6313160

45. Thomas B. Sheridan and William L. Verplank. 1978.
Human and Computer Control of Undersea Teleoperators.

46. Steven L. Tanimoto. 1990. VIVA: A Visual Language
for Image Processing. J. Vis. Lang. Comput. 1, 2: 127–139.
https://doi.org/10.1016/S1045-926X(05)80012-6

47. TMP. Avionics Display Development Software - VAPS
XTTM | Presagis. Retrieved November 25, 2016 from
http://www.presagis.com/products_services/products/embe
dded-
graphics/hmi_modeling_and_display_graphics/vaps_xt/

48. John Zimmerman, Jodi Forlizzi, and Shelley Evenson.
2007. Research Through Design As a Method for Interaction
Design Research in HCI. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI
’07), 493–502. https://doi.org/10.1145/1240624.1240704

49. 2001. Your Wish is My Command: Programming by
Example. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA.

50. 2012. SCADE Display®. Esterel Technologies.
Retrieved November 25, 2016 from http://www.esterel-
technologies.com/products/scade-display/

51. Little Wizard’s Home Page. Retrieved November 15,
2016 from http://littlewizard.sourceforge.net/tutorial.html

52. squeakland : resources. Retrieved July 26, 2016 from
http://www.squeakland.org/resources/

53. Scratch - Imagine, Program, Share. Retrieved July 21,

2016 from https://scratch.mit.edu/

54. Kodu | Home. Retrieved November 28, 2016 from
http://www.kodugamelab.com/

55. Agentcubes. Retrieved November 21, 2016 from
http://www.agentsheets.com/agentcubes/index.html

56. Alice.org. Retrieved December 8, 2016 from
http://www.alice.org/index.php

57. Logiciel de conception de systèmes LabVIEW -
National Instruments. Retrieved November 25, 2016 from
http://www.ni.com/labview/f/

58. IFTTT. Retrieved November 21, 2016 from
https://ifttt.com/discover

59. Unreal Engine Technology | Home. Retrieved
November 16, 2016 from https://www.unrealengine.com/

60. Unity - Game Engine. Unity. Retrieved November 16,
2016 from https://unity3d.com

61. NaturalMotion - Home Page. Retrieved November 16,
2016 from http://www.naturalmotion.com/

62. [3]
https://www.skybrary.aero/index.php/Short_Term_Conflict
Alert(STCA)#Performance - Google Search. Retrieved
July 11, 2018 from
https://www.google.fr/search?q=%5B3%5D+https%3A%2
F%2Fwww.skybrary.aero%2Findex.php%2FShort_Term_C
onflict_Alert_(STCA)%23Performance&oq=%5B3%5D+ht
tps%3A%2F%2Fwww.skybrary.aero%2Findex.php%2FSh
ort_Term_Conflict_Alert_(STCA)%23Performance&aqs=c
hrome..69i57.256j0j7&sourceid=chrome&ie=UTF-8

