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LIPSCHITZ REGULARITY FOR

ORTHOTROPIC FUNCTIONALS

WITH NONSTANDARD GROWTH CONDITIONS

PIERRE BOUSQUET AND LORENZO BRASCO

Abstract. We consider a model convex functional with orthotropic structure and super-quadratic nonstan-
dard growth conditions. We prove that bounded local minimizers are locally Lipschitz, with no restrictions

on the ratio between the highest and the lowest growth rate.
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1. Introduction

1.1. Overview. We pursue our study of the gradient regularity for local minimizers of functionals from the
Calculus of Variations, having a structure that we called orthotropic. We refer to our previous contributions
[2, 3, 4, 5] and [6], for an introduction to the subject.

More precisely, we want to expand the investigation carried on in [6], by studying functionals of the formˆ
f(∇u) dx, f : RN → R convex,

which couple the following two features

orthotropic structure and nonstandard growth conditions.
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problems.
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2 BOUSQUET AND BRASCO

The first one means that we require

f(z) =

N∑
i=1

fi(zi), with fi : R→ R convex,

while the second one means that

|z|p − 1 . f(z) . |z|q + 1, with 1 < p < q.

As we will see, these two features give rise to one of the most challenging type of functionals, at least if one
is interested in higher order regularity of local minimizers, i.e. regularity of their gradients.

Let us be more specific on the type of functionals we want to study. We take a vector p = (p1, . . . , pN )

with 2 ≤ p1 ≤ · · · ≤ pN . Let Ω ⊂ RN be an open set. For every u ∈W 1,p
loc (Ω) and every Ω′ b Ω, we consider

the orthotropic functional with nonstandard growth

Fp(u,Ω′) =
N∑
i=1

1

pi

ˆ
Ω′
|uxi |pi dx.

We say that u ∈W 1,p
loc (Ω) is a local minimizer of Fp if

Fp(u,Ω′) ≤ Fp(v,Ω′), for every v − u ∈W 1,p
0 (Ω′) and every Ω′ b Ω.

Here W 1,p and W 1,p
0 are the classical anisotropic Sobolev spaces, defined for an open set E ⊂ RN by

W 1,p(E) = {u ∈ L1(E) : uxi ∈ Lpi(E), i = 1, . . . , N},

and

W 1,p
0 (E) = W 1,p(E) ∩W 1,1

0 (E).

It is easy to see that a local minimizer of Fp is a local weak solution of the following quasilinear equation
with orthotropic structure

(1.1)

N∑
i=1

(
|uxi |pi−2 uxi

)
xi

= 0.

It is well-known that local minimizers of functionals like Fp above can be unbounded if the ratio

pN
p1
,

is too large, see the celebrated counter-examples by Giaquinta [21] and Marcellini [28, 29, 30] (see also Hong’s
paper [23]). In Western countries, the regularity theory for non degenerate functionals with nonstandard
growth was initiated in the seminal papers [28, 29] by Marcellini. For strongly degenerate functionals,
including the orthotropic functional with nonstandard growth Fp introduced above, the question has been
addressed in the Russian litterature, see for example the papers [24] by Kolod̄ı̆ı, [25] by Koralev and [34] by
Uralt’seva and Urdaletova.

However, in spite of a large number of papers and contributions on the subject, a satisfactory gradient
regularity theory for these problems is still missing. Some higher integrability results for the gradient have
been obtained for example in [18, Theorem 2.1] and [17, Theorem 5]. In any case, we point out that even the
case of basic regularity (i.e. C0,α estimates and Harnack inequalities) is still not completely well-understood,
we refer to the recent paper [1] and the references therein.
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1.2. Main result. In this paper, we are going to prove that bounded local minimizers of our orthotropic
functional Fp are locally Lipschitz continuous. We point out that no upper bounds on the ratio

pN
p1
,

are needed for the result to hold.

Theorem 1.1. Let p = (p1, . . . , pN ) be such that 2 ≤ p1 ≤ · · · ≤ pN . Let U ∈W 1,p
loc (Ω) be a local minimizer

of Fp such that

U ∈ L∞loc(Ω).

Then ∇U ∈ L∞loc(Ω).

Remark 1.2 (L∞ assumption). Sharp conditions in order to get U ∈ L∞loc can be found in [20, Theorem 1]
by Fusco and Sbordone, see also [19, Theorem 3.1] and the papers [11, 12] by Cupini, Marcellini and Mascolo
for the case of more general functionals. Pioneering results are due to Kolod̄ı̆ı, see [24]. We also mention the
recent paper [16] by DiBenedetto, Gianazza and Vespri, where some precise a priori L∞ estimates on the
solution are proved, see Section 6 there.

Remark 1.3 (Comparison with previous results). Some particular cases of our Theorem 1.1 can be traced
back in the literature. We try to give a complete picture of the subject.

The first one is [34, Theorem 1] by Uralt’seva and Urdaletova, which proves local Lipschitz regularity for
bounded minimizers, under the restrictions

p1 ≥ 4 and
pN
p1

< 2.

The method of proof of [34] is completely different from ours and is based on the so-called Bernstein’s
technique. We refer to [3] for a detailed description of their proof.

More recently, Theorem 1.1 has been proved in the two-dimensional case N = 2 by the second author in
collaboration with Leone, Pisante and Verde, see [6, Theorem 1.4]. In this case as well, the proof is different
from the one we give here, the former being based on a two-dimensional trick introduced in [3, Theorem A].
Still in dimension N = 2, Lindqvist and Ricciotti in [27, Theorem 1.2] proved C1 regularity for solutions
of (1.1), by extending to the case of nonstandard growth conditions a result of the authors, see [2, Main
Theorem].

In the standard growth case, i.e. when p1 = · · · = pN = p, local Lipschitz regularity has been obtained
in [4, Theorem 1.1]. As we will explain later, the result of [4] is the true ancestor of Theorem 1.1, since the
latter is (partly) based on a generalization of the method of proof of the former. An alternative proof, based
on viscosity methods, has been given by Demengel, see [14].

In [13], the same author extended her result to cover the case p1 < pN , under the assumptions

pN < p1 + 1.

The result of [13, Corollary 1.2] still requires p1 ≥ 2 and applies to continuous local minimizers.
Finally, Lipschitz regularity for solutions of (1.1) has been claimed in the abstract of [8]. However, a

closer inspection of the assumptions of Theorem 1.2 there (see [8, equation (1.2)]) shows that their result
does not cover the case of (1.1).

Remark 1.4 (A paper by Lieberman). The reader who is familiar with this subject may observe that
apparently our Theorem 1.1 is already contained in Lieberman’s paper [26]. Indeed, [26, Example 1, page
794] deals with exactly the same result for bounded minimizers, by even dropping the requirement p1 ≥ 2.
However, Lieberman’s proof seems to be affected by a crucial flaw. This is a delicate issue, thus we prefer
to explain in a clean way the doubtful point of [26].
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We first recall that the proof by Lieberman is inspired by Simon’s paper [32], dealing with L∞ gradient
estimates for solutions of non-uniformly elliptic equations. One of the crucial tool used by Simon is a
generalized version of the Sobolev inequality for functions on manifolds. This is a celebrated result by
Michael and Simon himself [31, Theorem 2.1], which in turn generalizes the idea of the cornerstone paper
[9] by Bombieri, De Giorgi and Miranda on the minimal surface equation.

The idea of [26] is to enlarge the space dimension and identify the set Ω with the flat N−dimensional
submanifold M := Ω× {(0, . . . , 0)} contained in R2N−1. Then the author introduces:

• a suitable gradient operator

ϕ 7→ δϕ :=

2N−1∑
j=1

γ1,j ϕxj , . . . ,

2N−1∑
j=1

γ2N−1,j ϕxj

 .

Here γ = (γi,j) is a measurable map with values into the set of positive definite symmetric (2N −
1)× (2N − 1) matrices;

• a suitable nonnegative measure µ defined on sets of the form M∩ E for all Borel sets E ⊂ R2N−1;

• a mean curvature–type operator H = (H1, . . . ,HN , HN+1, . . . ,H2N−1) defined on M.

The key point of [26, Section 4] is to apply the Sobolev–type inequality of Michael and Simon in conjunction
with a Caccioppoli inequality for the gradient, in order to circumvent the strong degeneracy of the equation
(1.1). However, in order to apply the result by Michael and Simon, some conditions linking the three objects
above are needed. Namely, the crucial condition

(1.2)

ˆ
M

[
δi ϕ+Hi ϕ

]
dµ = 0, for every ϕ ∈ C∞0 (U), for every i = 1, . . . , 2N − 1,

must be verified, where M ⊂ U ⊂ R2N−1 is an open set. This is condition (1.2) in [31], which is stated to
hold true within the framework of Lieberman’s paper, see the proof of [26, Proposition 2.1]. However, with
the definitions of µ, δ and H taken in [26], one can see that this crucial condition fails to be verified. Indeed,
with the definitions of [26, Proposition 2.1], for N + 1 ≤ i ≤ 2N − 1, it holds

γi,i = 1 and γi,j = 0 for j 6= i, thus δi ϕ = ϕxi ,

and

Hi = 0,

while µ coincides with the N−dimensional Lebesgue measure on Ω. Thus condition (1.2) for N + 1 ≤ i ≤
2N − 1 becomes ˆ

Ω

ϕxi(x, 0, . . . , 0) dx = 0, for every ϕ ∈ C∞0 (U),

which in general is false. Thus the proof of [26, Proposition 2.1] does not appear to be correct, leaving in
doubt the whole proof of [26, Lemma 4.1], which contains the L∞ gradient estimate.

1.3. Structure of the proof. The proof of Theorem 1.1 is quite involved, thus we prefer spending a large
part of this introduction in order to neatly introduce the main ideas and novelties.

As usual when dealing with higher order regularity, the first issue to be tackled is that the minimizer U
lacks the smoothness needed to perform all the necessary manipulations. However, this is a minor issue,
which can be easily fixed by approximating our local minimizer U with solutions uε of uniformly elliptic
problems, see Section 2. The solutions uε are as smooth as needed (basically, C2 regularity is enough) and
they converge to our original local minimizer U , as the small regularization parameter ε > 0 converges to 0.
Thus it is sufficient to prove “good” a priori estimates on uε which are stable when ε goes to 0.
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For this reason, in the rest of this subsection we will pretend that our minimizer U is smooth and explain
how to get the needed a priori estimates.

The building blocks of Theorem 1.1 are the following two estimates:

A. a local L∞ − Lγ a priori estimate on the gradient, i.e. an estimate of the type

(1.3) ‖∇U‖L∞(Br) ≤ C
(ˆ

BR

|∇U |γ dx
)Θ
γ

,

where γ ≥ pN + 2 and Θ > 1 are two suitable exponents. This is the content of Proposition 5.1;

B. a local higher integrability estimate of arbitrary order on the gradient, i.e. an estimate of the typeˆ
BR

|∇U |q dx ≤ Cq,

where 1 < q < +∞ is arbitrary and Cq > 0 is a constant depending only on q, the data of the
problem and the local L∞ norm of U . This is proved in Proposition 6.1.

It is straightforward to see that once A. and B. are established, then our main result easily follows. We
explain how to get both of them:

• in order to obtain A. we employ the same method that we successfully applied in [4, Theorem 1.1],
for the standard growth case p1 = · · · = pN = p. This is based on a new class of Caccioppoli-type
inequalities for ∇U , which have been first introduced by the two authors in [2] and then generalized
and exploited in its full generality in [4].

In a nutshell, the idea is to take the equation satisfied by U

N∑
i=1

(
|Uxi |pi−2 Uxi

)
xi

= 0,

differentiate it with respect to xj and then insert weird test functions of the form

Φ(Uxj ) Ψ(Uxk),

with k, j ∈ {1, . . . , N}. With these new Caccioppoli-type inequalities at hand, we can follow the
same scheme as in [4, Proposition 5.1] and obtain (1.3).

We point out that, apart from a number of technical complications linked to the fact that p1 6= pN ,
in the present setting there is a crucial difference with the case treated in [4]. Indeed, after a Moser–
type iteration, there we obtained an a priori estimate of the type

(1.4) ‖∇U‖L∞(Br) ≤ C
(ˆ

BR

|∇U |p+2 dx

) 1
p+2

.

Apparently, in that case as well we needed the further higher integrability information ∇U ∈ Lp+2
loc .

However, thanks to the homogeneity of the estimate (1.4), one can use a standard interpolation trick
(see the Step 4 of the proof of [4, Proposition 5.1]) and upgrade (1.4) to the following

‖∇U‖L∞(Br) ≤ C
(ˆ

BR

|∇U |p dx
) 1
p

.

This does not require any prior integrability information on∇U beyond the natural growth exponent.
Thus in the standard growth case, we are dispensed with point B., i.e. point A. is enough to conclude.
On the contrary, in our case, the same trick does not apply to estimate (1.3), because of the presence
of the exponent Θ > 1. For this reason we need a higher integrability information on ∇U .
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In order to have a better understanding of the proof described above, we refer the interested
reader to the Introduction of [4], where the whole strategy for point A. is explained in details;

• part B. is the really involved point of the whole proof. At first, we point out that we do not have
a good control on the exponent γ appearing in (1.3) (unless some restrictions on the ratio pN/p1

are imposed). For this reason, we need to gain as much integrability on ∇U as possible. This is
a classical subject in the regularity theory for functionals with nonstandard growth conditions, i.e.
integrability gain on the gradients of minimizers.

Since in general minimizers of this kind of functionals may be very irregular when p1 and pN
are too far apart, usually one needs to impose some restrictions on the ratio pN/p1 to get some
regularity. These restriction are typically of the type

pN
p1

< cN , for some constant cN > 0 such that lim
N→∞

cN = 1.

If one further supposes local minimizers to be bounded, then the previous restriction can be relaxed
to conditions of the type

pN
p1

< C or pN < p1 + C,

with a universal constant C > 0 . In any case, to the best of our knowledge all the results appearing
in the literature require some upper bound on the ratio pN/p1. More precisely, all the results
except one: in the very interesting paper [7] by Bildhauer, Fuchs and Zhong, the authors consider a
functional with nonstandard growth of the type

(1.5) (u,Ω′) 7→
ˆ

Ω′

(
N−1∑
i=1

|uxi |2
) p1

2

dx+

ˆ
Ω′
|uxN |p2 dx, with p1 ≤ p2,

and prove that any local minimizer u ∈ L∞loc is such that ∇u ∈ Lqloc for every 1 < q < +∞, no matter
how large the ratio p2/p1 is, see [7, Theorem 1.1]. The idea of [7] is partially inspired from Choe’s
result [10, Theorem 3], which in turn seems to find its roots in DiBenedetto’s paper [15] (see [15,
Proposition 3.1]). It relies on a suitable integration by parts in conjunction with the Caccioppoli
inequality for ∇u. For functionals as in (1.5), this leads to an iterative scheme of the type

“gain of integrability on uxN
′′ =⇒ “gain of integrability on (ux1 , . . . , uxN−1

)
′′

and viceversa

“gain of integrability on (ux1 , . . . , uxN−1
)
′′

=⇒ “gain of integrability on uxN
′′.

By means of a doubly recursive scheme which is quite difficult to handle, [7] exploits the full power
of the above approach to avoid any unnecessary restriction on the exponents. In [10] instead, the
gain of integrability was extremely simplified, at the price of taking the assumption

pN < p1 + 1.

Incidentally, we point out that this is the same assumption as in the aforementioned paper [13],
which uses however different techniques.

We will try to detail the main difficulties of this method in a while. Before this, we point out
that (1.5) is only concerned with two growth exponents. Moreover, the type of degeneracy of the
functional (1.5) is much lighter than that of our functional Fp. For these reasons, even if our strategy
is greatly inspired by that of [7], all the estimates have to be recast and the resulting iterative scheme
becomes of far reaching complexity.
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We now come to explain such an iterative scheme: by proceeding as in [10] and [7], we get an
estimate of the type (see Proposition 4.3)ˆ

Br0

|Uxk |pk+2+α dx ≤ C + C
∑
i6=k

ˆ
BR0

|Uxi |
pi−2

pk
(pk+2+α)

dx, for k = 1, . . . , N,(1.6)

where C > 0 depends on the data and on the local L∞ norm of U , as well. Here the free parameter
α ≥ 0 has to be carefully chosen, in order to improve the gradient summability. We observe that,
technically speaking, this scheme is not of Moser-type. Indeed, the key point of (1.6) is that it entails
estimates on a fixed component Uxj , in terms of all the others.

• First step We start by using (1.6) as follows: we take k = N in (1.6) and choose α ≥ 0 in such

a way that
pi − 2

pN
(pN + 2 + α) ≤ pi, for i = 1, . . . , N − 1.

It is possible to make such a choice without imposing restrictions on pN/p1, the optimal choice being1

pN + 2 + α
(0)
N = pN min

1≤i≤N−1

pi
pi − 2

=: pN qN−1.

This permits to upgrade the integrability of UxN to L
pN qN−1

loc . This is the end of the first step.

• Second step Once we gain this property on UxN , we shift to UxN−1
: we take k = N − 1 in (1.6),

that we write in the following form
ˆ
Br0

|Uxk |pk+2+α dx ≤ C + C

N−2∑
i=1

ˆ
BR0

|Uxi |
pi−2

pk
(pk+2+α)

dx

+ C

ˆ
BR0

|UxN |
pN−2

pk
(pk+2+α)

dx.

Then by using that

Uxi ∈ L
pi
loc, for i = 1, . . . , N − 2 and UxN ∈ L

pN qN−1

loc ,

we choose α in such a way that
pi − 2

pN−1
(pN−1 + 2 + α) ≤ pi, for i = 1, . . . , N − 2,

pN − 2

pN−1
(pN−1 + 2 + α) ≤ pN qN−1

If we set as above
qi =

pi
pi − 2

,

the optimal choice is now

pN−1 + 2 + α
(0)
N−1 = pN−1 min

{
qN qN−1, min

1≤i≤N−2
qi

}
.

However, this is not the end of the second step. Indeed, rather than applying (1.6) directly to the
other components UxN−2

, . . . , Ux1 as above, we come back to UxN .
More precisely, we apply (1.6) to UxN taking into account the new information on UxN−1

. This
gives higher integrability for UxN . We next apply alternatively (1.6) to UxN−1 and UxN , taking into

1For ease of presentation, in what follows we assume that pi > 2 for every i = 1, . . . , N .
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account the higher integrability gain at each step. After a finite number of iterations, it can be
established that

UxN ∈ L
pN qN−2

loc and UxN−1
∈ LpN−1 qN−2

loc .

This is the end of the second step.

• j−th step (for 2 ≤ j ≤ N − 1) When we land on this step, we have iteratively acquired the

following knowledge

Uxi ∈ L
pi
loc, for i = 1, . . . , N − j and Uxi ∈ L

pN qN−j+1

loc , for i = N − j + 2, . . . , N.

We then start to get into play the component UxN−j+1
. We take k = N − j + 1 in (1.6) and we

choose α in such a way that
pi − 2

pN−j+1
(pN−j+1 + 2 + α) ≤ pi, for i = 1, . . . , N − j,

pi − 2

pN−j+1
(pN−j+1 + 2 + α) ≤ pi qN−j+1, for i = N − j + 2, . . . , N.

This permits to infer that

UxN−j+1
∈ LpN−j+2+α

(0)
N−j+1

loc ,

where

pN−j+1 + 2 + α
(0)
N−j+1 = pN−j+1 min

{
min

i=1,...,N−j
qi, qN−j+1 min

i=N−j+2,...,N
qi

}
.

As illustrated in the second step, we now use this information and start to cyclically use (1.6) on
UxN , UxN−1

, . . . , UxN−j , in order to improve their integrability. After a finite number of iterations of
this algorithm, we obtain

Uxi ∈ L
pi qN−j+1

loc , for i = N − j + 2, . . . , N.

This is the end of the j−th step.

• Last step. We fix q0 ≥ 2 arbitrary. We finally consider the last component Ux1
, as well. By

using the starting information

Uxi ∈ Lpi q1 , for i = 2, . . . , N,

and proceeding as above, we finally get

Uxi ∈ L
pi q0
loc , for 1 ≤ i ≤ N.

This yields the desired conclusion.

The main difficulty of B. is to prove that this algorithm does not require any restriction on the
exponents pi, and that each step ends up after a finite number of loops.

1.4. Plan of the paper. In Section 2 the reader will find the approximating scheme and all the basic
material needed to understand the sequel of the paper. Section 3 contains the crucial Caccioppoli-type
inequalities for the gradient, needed to build up the Moser’s scheme for point A. of the strategy presented
above. Then in Section 4, we prove integral estimates for the gradient: the first one is a Caccioppoli inequality
for power functions of the gradient (Proposition 4.2), while the second one is the self-improving scheme à la
Bildhauer-Fuchs-Zhong (Proposition 4.3). With Sections 5 and 6, we enter into the core of the paper: they
contain the L∞ − Lγ gradient estimate and the higher integrability estimate for the gradient, respectively.
Then in the short Section 7, we eventually prove our main result.



ORTHOTROPIC WITH NONSTANDARD GROWTH 9

Two technical appendices conclude the paper: they contain the study of all the intricate sequences of real
numbers needed in this paper.

Acknowledgments. Part of this work has been done during a visit of P. B. to Bologna & Ferrara in
February 2018 and during a visit of L. B. to Toulouse in June 2018. The latter has been financed by the
ANR project “Entropies, Flots, Inégalités”, we wish to thank Max Fathi. Hosting institutions are kindly
acknowledged.

2. Preliminaries

We will use the same approximation scheme as in [3, Section 2] and [6, Section 5]. We recall that are
interested in local minimizers of the following variational integral

Fp(u; Ω′) =

N∑
i=1

1

pi

ˆ
Ω′
|uxi |pi dx, u ∈W 1,p

loc (Ω), Ω′ b Ω,

where p = (p1, . . . , pN ) and 2 ≤ p1 ≤ · · · ≤ pN . In the rest of the paper, we fix U ∈ W 1,p
loc (Ω) a local

minimizer of Fp. We also fix a ball

B b Ω such that 2B b Ω as well.

We use the usual notation λB to denote the ball concentric with B, scaled by a factor λ > 0. Since we have
the continuous inclusion W 1,p(2B) ⊂W 1,p1(2B), by Poincaré inequality it holds

U ∈ Lp1(2B).

For every 0 < ε � 1 and every x ∈ B, we set Uε(x) = U ∗ %ε(x), where %ε is the usual family of Friedrichs
mollifiers, supported in a ball of radius ε centered at the origin. We also set

(2.1) gi,ε(t) =
1

pi
|t|pi +

ε

2
t2, t ∈ R, i = 1, . . . , N.

Finally, we define the regularized functional

Fp,ε(v;B) =

N∑
i=1

ˆ
B

gi,ε(vxi) dx.

The following preliminary result is standard, see [3, Lemma 2.5 and Lemma 2.8].

Lemma 2.1 (Basic energy estimate). There exists 0 < ε0 < 1 such that for every 0 < ε ≤ ε0, the problem

(2.2) min
{
Fp,ε(v;B) : v − Uε ∈W 1,p

0 (B)
}
,

admits a unique solution uε. Moreover, the following uniform estimate holds

N∑
i=1

1

pi

ˆ
B

|(uε)xi |pi dx ≤

(
N∑
i=1

1

pi

ˆ
2B

|Uxi |pi dx+
ε0

2

ˆ
2B

|∇U |2 dx

)
.

Finally, uε ∈ C2(B).

Proof. The only difference with respect to [3] is on the uniform energy estimate, due to the nonstandard
growth conditions. We show how to obtain this: it is sufficient to test the minimality of uε against Uε, this
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gives

N∑
i=1

1

pi

ˆ
B

|(uε)xi |pi dx ≤
N∑
i=1

1

pi

ˆ
B

|(U ∗ %ε)xi |pi dx+
ε

2

ˆ
B

|∇(U ∗ %ε)|2 dx

≤ ‖%ε‖L1(RN )

(
N∑
i=1

1

pi

ˆ
2B

|Uxi |pi dx+
ε

2

ˆ
2B

|∇U |2 dx

)
.

By using the scaling properties of the family of mollifiers, we get the conclusion. �

As usual, we will also rely on the following convergence result.

Lemma 2.2 (Convergence to a minimizer). With the same notation as above, we have

(2.3) lim
ε→0

[
‖uε − U‖Lp1 (B) +

N∑
i=1

‖(uε − U)xi‖Lpi (B)

]
= 0.

Proof. We observe that uε − Uε ∈ W 1,p
0 (B) and the set B is bounded in every direction. Thus by Poincaré

inequality, we have

(2.4)

ˆ
B

|uε − Uε|pi ≤ Ci |B|−
pi
N

ˆ
B

|(uε − Uε)xi |pi dx, i = 1, . . . , N,

for some Ci = Ci(N, pi) > 0. For i = 1, this in turn gives

‖uε‖Lp1 (B) ≤ ‖uε − Uε‖Lp1 (B) + ‖Uε‖Lp1 (B)

≤ C ‖(uε − Uε)x1‖Lp1 (B) + ‖Uε‖Lp1 (B)

≤ C ‖(uε)x1‖Lp1 (B) + C ‖U‖W 1,p1 (2B),

for a constant C = C(N, p1) > 0. By Lemma 2.1, the last term is uniformly bounded for 0 < ε ≤ ε0.
Thus the family {uε}0<ε≤ε0 is bounded in W 1,p1(B). We can infer the weak convergence in W 1,p1(B) of a
subsequence {uεk}k∈N to a function u ∈ W 1,p1(B). This convergence is strong in Lp1(B), by the Rellich-
Kondrašov Theorem.

For every ϕ ∈W 1,p
0 (B), we test the minimality of uεk against ϕ+ Uεk . Thus, by lower semicontinuity of

the Lpi norms on Lp1(B), we can infer

N∑
i=1

1

pi

ˆ
B

|uxi |pi dx ≤ lim inf
k→+∞

N∑
i=1

1

pi

ˆ
B

|(uεk)xi |pi dx

≤ lim
k→+∞

N∑
i=1

1

pi

ˆ
B

|(ϕ+ Uεk)xi |pi dx+
εk
2

ˆ
B

|∇ϕ+∇Uεk |2 dx

=

N∑
i=1

1

pi

ˆ
B

|(ϕ+ U)xi |pi dx.

(2.5)

This shows that uxi ∈ Lpi(B) for i = 1, . . . , N and u solves

min
{
Fp(v;B) : v − U ∈W 1,p

0 (B)
}
.

By strict convexity of the functional Fp, we thus obtain u = U .
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We can now take ϕ ≡ 0 in (2.5). Since we know that u = U , we have equality everywhere in (2.5), thus
in particular

(2.6) lim
k→+∞

N∑
i=1

1

pi

ˆ
B

|(uεk)xi |
p
dx =

N∑
i=1

1

pi

ˆ
B

|Uxi |
p
dx, i = 1, . . . , N.

We next observe that the weak convergence of {uεk)xi}k∈N to Uxi and the lower semicontinuity of the Lpi

norm on Lp1 imply that

(2.7) lim inf
k→+∞

ˆ
B

∣∣∣∣ (uεk)xi + Uxi
2

∣∣∣∣pi dx ≥ ˆ
B

|Uxi |
pi dx, i = 1, . . . , N.

Moreover, by Clarkson’s inequality for pi ≥ 2, one has∥∥∥∥ (uεk)xi + Uxi
2

∥∥∥∥pi
Lpi (B)

+

∥∥∥∥ (uεk)xi − Uxi
2

∥∥∥∥pi
Lpi (B)

≤ 1

2

(
‖(uεk)xi‖

pi
Lpi (B) + ‖Uxi‖

pi
Lpi (B)

)
.

We divide by pi, sum over i = 1, . . . , N and rely on (2.6) and (2.7) to obtain

lim
k→+∞

N∑
i=1

1

pi
‖(uεk)xi − Uxi‖

pi
Lpi (B) = 0.

By using this into (2.4) with i = 1 and using the strong convergence of Uεk to U , we get

lim
k→+∞

[
‖uεk − U‖Lp1 (B) +

N∑
i=1

‖(uεk)xi − Uxi‖Lpi (B)

]
= 0.

Finally, we observe that we can repeat this argument with any subsequence of the original family {(uε)ε>0}.
Thus the above limit holds true for the whole family {uε}0<ε≤ε0 instead of {uεk}k∈N and (2.3) follows. �

We recall that our main result Theorem 1.1 is valid for bounded local minimizers. Thus, the following
simple uniform L∞ estimate will be crucial.

Proposition 2.3 (Uniform L∞ estimate). With the notation above, let us further assume that U ∈ L∞(2B).
Then for every 0 < ε ≤ ε0 we have

‖uε‖L∞(B) ≤ ‖U‖L∞(2B).

Proof. By the maximum principle, see for example [33, Theorem 2.1], we have

max
B
|uε| = max

∂B
|uε| = max

∂B
|Uε| ≤ max

B
|Uε|.

By recalling the construction of Uε and using the hypothesis on U , we get the desired conclusion. �

As in [4], the following standard technical result will be useful. The proof can be found in [22, Lemma
6.1], for example.

Lemma 2.4. Let 0 < r < R and let Z(t) : [r,R] → [0,∞) be a bounded function. Assume that for
r ≤ t < s ≤ R we have

Z(t) ≤ A
(s− t)α0

+
B

(s− t)β0
+ C + ϑZ(s),

with A,B, C ≥ 0, α0 ≥ β0 > 0 and 0 ≤ ϑ < 1. Then we have

Z(r) ≤
(

1

(1− λ)α0

λα0

λα0 − ϑ

) [
A

(R− r)α0
+

B
(R− r)β0

+ C
]
,

where λ is any number such that

ϑ
1
α0 < λ < 1.
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3. Caccioppoli-type inequalities

The solution uε of the problem (2.2) satisfies the Euler-Lagrange equation

(3.1)

N∑
i=1

ˆ
g′i,ε((uε)xi)ϕxi dx = 0, for every ϕ ∈W 1,p

0 (B).

From now on we will systematically suppress the subscript ε on uε and simply write u.
In order to prove the gradient regularity, we need the equation satisfied by the gradient∇u. Thus we insert

a test function of the form ϕ = ψxj ∈W
1,p
0 (B) in (3.1), compactly supported in B. After an integration by

parts, we get

(3.2)

N∑
i=1

ˆ
g′′i,ε(uxi)uxi xj ψxi dx = 0,

for j = 1, . . . , N . We thus found the equation solved by uxj . Observe that we are legitimate to integrate by

parts, since u ∈ C2(B) by Lemma 2.1.

The following Caccioppoli inequality can be proved exactly as [3, Lemma 3.2], we omit the details.

Lemma 3.1. Let Φ : R → R+ be a C1 convex function. Then there exists a constant C = C(p) > 0 such
that for every function η ∈ C∞0 (B) and every j = 1, . . . , N , we have

(3.3)

N∑
i=1

ˆ
g′′i,ε(uxi)

∣∣∣(Φ(uxj )
)
xi

∣∣∣2 η2 dx ≤ C
N∑
i=1

ˆ
g′′i,ε(uxi) |Φ(uxj )|2 η2

xi dx.

Actually, we can drop the requirement that Φ has to be convex, under some circumstances. The resulting
Caccioppoli inequality is of interest.

Lemma 3.2. Let −1 < α ≤ 0. For every function η ∈ C∞0 (B) and every j = 1, . . . , N , we have

N∑
i=1

ˆ
g′′i,ε(uxi)u

2
xi xj |uxj |

α η2 dx ≤ 4

(1 + α)2

N∑
i=1

ˆ
g′′i,ε(uxi) |uxj |α+2 |ηxi |2 dx.

When α < 0, in the left hand side of the above inequality, the quantity u2
xi xj |uxj |

α is defined to be 0 on
the set where uxj vanishes.

Proof. Let κ > 0. We take in (3.2) the test function

ψ = uxj (κ+ |uxj |2)
α
2 η2,

where η is as in the statement. We get

N∑
i=1

ˆ
g′′i,ε(uxi)u

2
xi xj (κ+ |uxj |2)

α
2 η2 dx

+ α

N∑
i=1

ˆ
g′′i,ε(uxi)u

2
xi xj (κ+ |uxj |2)

α−2
2 |uxj |2 η2 dx

= −2

N∑
i=1

ˆ
g′′i,ε(uxi)uxi xj (κ+ |uxj |2)

α
2 uxj η ηxi dx.

We observe that

(κ+ |uxj |2)
α−2

2 |uxj |2 ≤ (κ+ |uxj |2)
α
2 and (κ+ |uxj |2)

α
2 |uxj | ≤ (κ+ |uxj |2)

α+1
2 .
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From the previous identity, we get (remember that α is non positive)

(1 + α)

N∑
i=1

ˆ
g′′i,ε(uxi)u

2
xi xj (κ+ |uxj |2)

α
2 η2 dx ≤ 2

N∑
i=1

ˆ
g′′i,ε(uxi) |uxi xj | (κ+ |uxj |2)

α+1
2 |η| |ηxi | dx.

By using Young’s inequality, we can absorb the Hessian term in the right-hand side, to get

N∑
i=1

ˆ
g′′i,ε(uxi)u

2
xi xj (κ+ |uxj |2)

α
2 η2 dx ≤ 4

(1 + α)2

N∑
i=1

ˆ
g′′i,ε(uxi) (κ+ |uxj |2)

α+2
2 |ηxi |2 dx.

By taking the limit as κ goes to 0 on both sides, and using Fatou Lemma on the left-hand side and the
Dominated Convergence Theorem in the right-hand side, we get the conclusion. �

As in the standard growth case p1 = · · · = pN = p, a key role is played by the following sophisticated
Caccioppoli-type inequality for the gradient. The proof is the same as that of [4, Proposition 3.2] and we
omit it. It is sufficient to observe that the proof in [4] does not depend on the particular form of the functions
gi,ε.

Proposition 3.3 (Weird Caccioppoli inequality). Let Φ,Ψ : [0,+∞) → [0,+∞) be two non-decreasing
continuous functions. We further assume that Ψ is convex and C1. Let η ∈ C∞0 (B) and 0 ≤ θ ≤ 2, then for
every k, j = 1, . . . , N ,

N∑
i=1

ˆ
g′′i,ε(uxi)u

2
xixj Φ(u2

xj ) Ψ(u2
xk

) η2 dx

≤ C
N∑
i=1

ˆ
g′′i,ε(uxi)u

2
xj Φ(u2

xj ) Ψ(u2
xk

) |∇η|2 dx

+ C

(
N∑
i=1

ˆ
g′′i,ε(uxi)u

2
xixj u

2
xj Φ(u2

xj )
2 Ψ′(u2

xk
)θ η2 dx

) 1
2

×

(
N∑
i=1

ˆ
g′′i,ε(uxi) |uxk |2θ Ψ(u2

xk
)2−θ |∇η|2 dx

) 1
2

.

(3.4)

4. Local energy estimates for the regularized problem

4.1. Towards an iterative Moser’s scheme. We recall that

(4.1) g′′i,ε(t) = (pi − 1) |t|pi−2 + ε.

We use Proposition 3.3 with the following choices

(4.2) Φ(t) = ts−1 and Ψ(t) = tm, for t ≥ 0,

with 1 ≤ s ≤ m. The proof of the following result is exactly the same as that of [4, Proposition 4.1].
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Proposition 4.1 (Staircase to the full Caccioppoli). Let 2 ≤ p1 ≤ p2 ≤ · · · ≤ pN and let η ∈ C∞0 (B). Then
for every k, j = 1, . . . , N and 1 ≤ s ≤ m,

N∑
i=1

ˆ
Ω

g′′i,ε(uxi)u
2
xixj |uxj |

2 s−2 |uxk |2m η2 dx ≤ C
N∑
i=1

ˆ
g′′i,ε(uxi) |uxj |2 s+2m |∇η|2 dx

+ C (m+ 1)

N∑
i=1

ˆ
g′′i,ε(uxi) |uxk |2 s+2m |∇η|2 dx

+

N∑
i=1

ˆ
g′′i,ε(uxi)u

2
xixj |uxj |

4 s−2 |uxk |2m−2 s η2 dx.

(4.3)

By iterating a finite number of times the previous estimate, we get the following

Proposition 4.2 (Caccioppoli for power functions). Take an exponent q of the form

q = 2`0 − 1, for a given `0 ∈ N \ {0}.
Let 2 ≤ p1 ≤ p2 ≤ · · · ≤ pN and let η ∈ C∞0 (B). Then for every k = 1, . . . , N , we have

ˆ ∣∣∣∇(|uxk |q+ pk−2

2 uxk

)∣∣∣2 η2 dx ≤ C q5
N∑

i,j=1

ˆ
g′′i,ε(uxi) |uxj |2 q+2 |∇η|2 dx

+ C q5
N∑
i=1

ˆ
g′′i,ε(uxi) |uxk |2 q+2 |∇η|2 dx,

(4.4)

for some C = C(N, pk) > 0.

Proof. The proof is essentially the same as that of [4, Proposition 4.2]. We define the two finite families of
indices {s`} and {m`} through

s` = 2`, m` = q + 1− 2`, ` ∈ {0, . . . , `0}.
By definition, we have

1 ≤ s` ≤ m`, ` ∈ {0, . . . , `0 − 1},
s` +m` = q + 1, ` ∈ {0, . . . , `0},

4 s` − 2 = 2 s`+1 − 2, 2m` − 2 s` = 2m`+1,

and
s0 = 1, m0 = q, s`0 = 2`0 , m`0 = 0.

From inequality (4.3), we get for every ` ∈ {0, . . . , `0 − 1},
N∑
i=1

ˆ
g′′i,ε(uxi)u

2
xixj |uxj |

2 s`−2 |uxk |2m` η2 dx

≤ C
N∑
i=1

ˆ
g′′i,ε(uxi) |uxj |2 q+2 |∇η|2 dx

+ C (m` + 1)

N∑
i=1

ˆ
g′′i,ε(uxi) |uxk |2 q+2 |∇η|2 dx

+

N∑
i=1

ˆ
g′′i,ε(uxi)u

2
xixj |uxj |

2 s`+1−2 |uxk |2m`+1 η2 dx,
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for some C > 0 universal. By starting from ` = 0 and iterating the previous estimate up to ` = `0 − 1, we
then get

N∑
i=1

ˆ
g′′i,ε(uxi)u

2
xixj |uxk |

2 q η2 dx ≤ C q2
N∑
i=1

ˆ
g′′i,ε(uxi) |uxj |2 q+2 |∇η|2 dx

+ C q2
N∑
i=1

ˆ
g′′i,ε(uxi) |uxk |2 q+2 |∇η|2 dx

+

N∑
i=1

ˆ
g′′i,ε(uxi)u

2
xixj |uxj |

2 q η2 dx,

for a universal constant C > 0. For the last term, we apply the Caccioppoli inequality (3.3) with

Φ(t) =
|t|q+1

q + 1
, t ∈ R,

thus we get

N∑
i=1

ˆ
g′′i,ε(uxi)u

2
xixj |uxk |

2 q η2 dx ≤ C q2
N∑
i=1

ˆ
g′′i,ε(uxi) |uxj |2 q+2 |∇η|2 dx

+ C q2
N∑
i=1

ˆ
g′′i,ε(uxi) |uxk |2 q+2 |∇η|2 dx

+
C

(q + 1)2

N∑
i=1

ˆ
g′′i,ε(uxi) |uxj |2 q+2 |∇η|2 dx;

that is,

N∑
i=1

ˆ
g′′i,ε(uxi)u

2
xixj |uxk |

2 q η2 dx ≤ C q2
N∑
i=1

ˆ
g′′i,ε(uxi) |uxj |2 q+2 |∇η|2 dx

+ C q2
N∑
i=1

ˆ
g′′i,ε(uxi) |uxk |2 q+2 |∇η|2 dx,

(4.5)

possibly for a different universal constant C > 0.
We now recall (4.1), thus we get

N∑
i=1

ˆ
g′′i,ε(uxi)u

2
xixj |uxk |

2 q η2 dx ≥
ˆ
|uxk |pk−2 u2

xkxj
|uxk |2 q η2 dx

=

(
2

2 q + pk

)2 ˆ ∣∣∣∣(|uxk |q+ pk−2

2 uxk

)
xj

∣∣∣∣2 η2 dx.

We can sum over j = 1, . . . , N to obtain

N∑
i,j=1

ˆ
g′′i,ε(uxi)u

2
xixj |uxk |

2 q η2 dx ≥
(

2

2 q + pk

)2 ˆ ∣∣∣∇(|uxk |q+ pk−2

2 uxk

)∣∣∣2 η2 dx.

This proves the desired inequality. �
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4.2. Towards higher integrability. In order to prove the higher integrability of the gradient, we will need
the following self-improving estimate. This is analogous to the estimate at the basis of [7, Theorem 1.1],
which deals with the case p1 = · · · = pN−1 < pN only. As pointed out in the Introduction, our case will be
much more involved.

Proposition 4.3. For every α > −1 and every k = 1, . . . , N , there exists a constant C = C(N, pk, α) > 0
such that for every pair of concentric balls Br0 ⊂ BR0

b B, we have

ˆ
Br0

|uxk |pk+2+α dx ≤ C RN0

((‖u‖L∞(B)

R0 − r0

)pk+2+α

+ ε0

)

+ C

(‖u‖L∞(B)

R0 − r0

) 2
pk

(pk+2+α) ˆ
BR0

∑
i 6=k

|uxi |
pi−2

pk
(pk+2+α)

dx.

(4.6)

Proof. We fix k ∈ {1, . . . , N} and take η ∈ C∞0 (B) a positive cut-off function. For every α > −1, we estimate
the quantity ˆ

|uxk |pk+2+α η2 dx =

ˆ
uxkuxk |uxk |pk+αη2 dx.

By integration by parts (recall that u ∈ C2(B)), one getsˆ
|uxk |pk+2+α η2 dx = −

ˆ
u
(
uxk |uxk |pk+α η2

)
xk
dx

= −(pk + α+ 1)

ˆ
uuxkxk |uxk |pk+αη2 dx− 2

ˆ
uuxk |uxk |pk+αη ηxk dx.

Hence, we have

(4.7)

ˆ
|uxk |pk+2+α η2 dx ≤ (pk+α+1) ‖u‖L∞(B)

(ˆ
|uxkxk | |uxk |pk+α η2 dx+

ˆ
|uxk |pk+α+1 η |∇η| dx

)
.

We now use the Young’s inequality for the two terms in the right-hand side: for every τ > 0,

|uxkxk | |uxk |pk+α ≤ τ |uxk |pk+α+2 +
1

4 τ
|uxk |pk+α−2|uxkxk |2

and

|uxk |pk+α+1 η |∇η| ≤ τ |uxk |pk+α+2 η2 +
1

4 τ
|uxk |pk+α|∇η|2.

In the first inequality, when pk + α − 2 < 0, the quantity |uxk |pk+α−2|uxkxk |2 is defined to be 0 on the set
where uxk = 0.

Inserting these two inequalities into (4.7) and choosing

τ =
1

4 (pk + α+ 1) ‖u‖L∞(B)
,

we can absorb the two terms multiplied by τ in the left-hand side. This leads toˆ
η2 |uxk |pk+2+α dx ≤ C ‖u‖2L∞(B)

(ˆ
|uxkxk |2 |uxk |pk+α−2 η2 dx+

ˆ
|uxk |pk+α |∇η|2 dx

)
,

for a constant C = C(pk, α) > 0. Observe that

|uxkxk |2 |uxk |pk+α−2 = |uxkxk |2 |uxk |pk−2 |uxk |α ≤ g′′k,ε(uxk) |uxkxk |2 |uxk |α.
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Thus, if α > 0, we can apply the Caccioppoli inequality of Lemma 3.1 with the convex function Φ(t) = |t|α2 +1.
Otherwise, if −1 < α ≤ 0, we can apply Lemma 3.2. This gives

ˆ
|uxkxk |2 |uxk |pk+α−2 η2 dx ≤ C

N∑
i=1

ˆ
B

g′′i,ε(uxi) |uxk |α+2 |ηxi |2 dx,

and thus we obtain

ˆ
η2 |uxk |pk+2+α dx ≤ C ‖u‖2L∞(B)

ˆ (
|uxk |α+2

N∑
i=1

g′′i,ε(uxi) + |uxk |pk+α

)
|∇η|2 dx

≤ C ‖u‖2L∞(B)

ˆ |uxk |α+2
∑
i 6=k

|uxi |pi−2 + |uxk |pk+α + ε |uxk |α+2

 |∇η|2 dx,
where in the second inequality the constant C may differ from the previous one. There we used (4.1).

We now fix a pair concentric balls Br ⊂ BR b B. Applying the above estimate to a non negative cut-off
function η ∈ C∞0 (BR) such that

η ≡ 1 on Br and ‖∇η‖L∞(BR) ≤
C

R− r
,

one gets

ˆ
Br

|uxk |pk+2+α dx ≤
C ‖u‖2L∞(B)

(R− r)2

ˆ
BR

|uxk |α+2
∑
i 6=k

|uxi |pi−2 + |uxk |pk+α + ε |uxk |α+2

 dx.(4.8)

We now want to absorb all the terms containing uxk from the right-hand side. Thus, we apply again the
Young’s inequality. For every τ > 0, there exists C0 > 0 which depends only on N, pk and α such that

|uxk |α+2
∑
i 6=k

|uxi |pi−2 ≤ τ |uxk |pk+α+2 +
C0

τ
α+2
pk

∑
i 6=k

|uxi |
(pi−2)

pk+α+2

pk ,

and

|uxk |pk+α ≤ τ |uxk |pk+α+2 +
C0

τ
pk+α

2

.

Moreover, we use that

ε |uxk |α+2 ≤ ε+ |uxk |pk+α+2.

thanks to the fact that ε < 1 and pk ≥ 2. Inserting these inequalities into (4.8) and choosing

τ =
(R− r)2

4C ‖u‖2L∞(BR)

,

one obtainsˆ
Br

|uxk |pk+2+α dx ≤ 1

2

ˆ
BR

|uxk |pk+2+α dx

+
C ‖u‖2L∞(BR)

(R− r)2

 RN

τ
pk+α

2

+
1

τ
α+2
pk

∑
i 6=k

ˆ
BR

|uxi |
(pi−2)

pk+2+α

pk dx+ εRN

 .
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By recalling the choice of τ above, this is the same as

ˆ
Br

|uxk |pk+2+α dx ≤ 1

2

ˆ
BR

|uxk |pk+2+α dx+ C RN

((‖u‖L∞(B)

R− r

)pk+α+2

+ ε0

)

+ C

(‖u‖L∞(B)

R− r

)2
α+2+pk
pk

ˆ
BR

∑
i 6=k

|uxi |
(pi−2)

pk+2+α

pk dx

 .

We now fix r0 < R0 as in the statement and use the previous estimate for r0 ≤ r < R ≤ R0. By applying
Lemma 2.4, one finally obtains that

ˆ
Br0

|uxk |pk+2+α dx ≤ C RN0

((‖u‖L∞(B)

R0 − r0

)pk+α+2

+ ε0

)

+ C

(‖u‖L∞(B)

R0 − r0

)2
pk+α+2

pk

ˆ
BR0

∑
i 6=k

|uxi |
(pi−2)

pk+2+α

pk dx

 .

Here, the constant C depends on N, pk and α. This concludes the proof. �

5. A Lipschitz estimate

Proposition 5.1. Let 2 ≤ p1 ≤ · · · ≤ pN and 0 < ε ≤ ε0. There exist an exponent γ ≥ pN + 2, two
exponents Θ, β > 1 and a constant C > 0 such that for every Br0 ⊂ BR0

b B with 0 < r0 < R0 ≤ 1,

(5.1) ‖∇u‖L∞(Br0 ) ≤
C

(R0 − r0)β

(ˆ
BR0

|∇u|γ dx+ 1

)Θ
γ

.

The parameters γ, β,Θ and the constant C are independent of ε.

Proof. The proof is very similar to that of [4, Theorem 5.1], though some important technical modifications
have to be taken into account. For simplicity, we assume throughout the proof that N ≥ 3, so in this
case the Sobolev exponent 2∗ is finite. Observe that the case N = 2, which could be treated with minor
modifications, is already contained in [6, Theorem 1.4] (the proof there is different).

As in [4], we divide the proof into four steps.

Step 1: a first iterative scheme. We can proceed as in [4, Proposition 5.1, Step 1] by replacing the termˆ
|∇η|2 |uxk |2 q+p dx,

there, with the following one ˆ
|∇η|2 |uxk |2 q+pk dx.

Then the relevant outcome is nowˆ ( N∑
k=1

|uxk |2 q+pk
) 2∗

2

η2∗ dx


2

2∗

≤ C q5
N∑

i,k=1

ˆ
g′′i,ε(uxi) |uxk |2 q+2 |∇η|2 dx

+ C

ˆ
|∇η|2

N∑
k=1

|uxk |2 q+pk dx.

(5.2)
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We now introduce the function

U(x) := max
k=1,...,N

|uxk(x)|,

and observe that

|uxk |2 q+p1 − 1 ≤ |uxk |2 q+pk ≤ |uxk |2 q+pN + 1, for k = 1, . . . , N.

This in turn gives

U2 q+p1 − 1 ≤
N∑
k=1

|uxk |2 q+pk ≤ N U2 q+pN +N.

Also, we have that

g′′i,ε(uxi) |uxk |2 q+2 ≤ C U2 q+pN + C, for every 1 ≤ i, k ≤ N.
By further observing that

(
U2 q+p1

) 2∗
2 ≤

(
1 +

N∑
k=1

|uxk |2 q+pk
) 2∗

2

≤ C

1 +

(
N∑
k=1

|uxk |2 q+pk
) 2∗

2

 ,

we obtain from (5.2)(ˆ
U 2∗

2 (2 q+p1) η2∗
) 2

2∗

≤ C q5

ˆ
U2 q+pN |∇η|2 dx+ C q5

ˆ
|∇η|2 dx+ C q5

(ˆ
η2∗ dx

) 2
2∗

,

for a possibly different C = C(N,p) > 1. By using the Sobolev embedding W 1,2
0 (B) ↪→ L2∗(B)(ˆ

η2∗ dx

) 2
2∗

≤ C
ˆ
|∇η|2 dx,

thus the previous estimate leads to

(5.3)

(ˆ
U 2∗

2 (2 q+p1) η2∗ dx

) 2
2∗

≤ C q5

ˆ
|∇η|2

(
U2 q+pN + 1

)
dx.

We fix two concentric balls Br ⊂ BR b B, with 0 < r < R ≤ 1. Then for every pair of radius r ≤ t < s ≤ R
we take in (5.3) a standard cut-off function

(5.4) η ∈ C∞0 (Bs), η ≡ 1 on Bt, 0 ≤ η ≤ 1, ‖∇η‖L∞ ≤
C

s− t
.

This yields

(5.5)

(ˆ
Bt

U 2∗
2 (2 q+p1) dx

) 2
2∗

≤ C q5

(s− t)2

ˆ
Bs

(
U2 q+pN + 1

)
dx.

We define the sequence of exponents

γj = pN + 2j+2 − 2, j ≥ 0,

and take in (5.5) q = 2j+1 − 1. This gives for every j ≥ 0,(ˆ
Bt

U 2∗
2 (γj+p1−pN ) dx

) 2
2∗

≤ C 25 j

(s− t)2

ˆ
Bs

(
Uγj + 1

)
dx,(5.6)

for a possibly different constant C = C(N,p) > 1. Observe that we always have

γj + p1 − pN ≥ 2j+2, j ∈ N,



20 BOUSQUET AND BRASCO

thanks to the definition of γj .

Step 2: filling the gaps. By using the definition of γj , it is not difficult to see that

γj <
2∗

2
(γj + p1 − pN ) ⇐⇒ j > log2

(
N − 2

2
(pN − 2)− N

2
(p1 − 2)

)
− 2.

Thus we introduce the starting index2

j0 = min

{
j ∈ N : j > log2

(
N − 2

2
(pN − 2)− N

2
(p1 − 2)

)
− 2

}
.

By definition, this entails that

γj−1 < γj <
2∗

2
(γj + p1 − pN ), for every j ≥ j0 + 1.

By interpolation in Lebesgue spaces, we obtain

ˆ
Bt

Uγj dx ≤
(ˆ

Bt

Uγj−1 dx

) τj γj
γj−1

(ˆ
Bt

U 2∗
2 (γj+p1−pN ) dx

) 2
2∗

(1−τj) γj
γj+p1−pN

,

where the interpolation exponent 0 < τj < 1 is given by

τj =
γj−1

γj

2∗

2
(γj + p1 − pN )− γj

2∗

2
(γj + p1 − pN )− γj−1

.

We now rely on (5.6) to get

ˆ
Bt

Uγj dx ≤
(ˆ

Bt

Uγj−1 dx

) τj γj
γj−1

(
C

25 j

(s− t)2

ˆ
Bs

(
Uγj + 1

)
dx

) (1−τj) γj
γj+p1−pN

=

(C 25 j

(s− t)2

) 1−τj
τj

γj
γj+p1−pN

(ˆ
Bt

Uγj−1 dx

) γj
γj−1

τj (ˆ
Bs

(
Uγj + 1

)
dx

) (1−τj) γj
γj+p1−pN

.

By Young’s inequality, for every j ≥ j0 + 1, we get

ˆ
Bt

Uγj dx ≤ (1− τj) γj
γj + p1 − pN

ˆ
Bs

(
Uγj + 1

)
dx

+
1(

γj + p1 − pN
(1− τj) γj

)′ (C 25 j

(s− t)2

) (1−τj) γj
γj+p1−pN

(
γj+p1−pN
(1−τj) γj

)′ (ˆ
Bt

Uγj−1 dx

) γj
γj−1

τj
(
γj+p1−pN
(1−τj) γj

)′
.

(5.7)

We also introduce the second index

j1 = min {j ∈ N : j > log2 ((N − 2) (pN − 2)−N (p1 − 2))− 2} .

2We use the convention that

log t = −∞ for t ≤ 0.

Observe that j0 = 0 whenever

N − 2

2
(pN − 2)−

N

2
(p1 − 2) < 4 i. e. pN < 2 +

N (p1 − 2) + 8

N − 2
.
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If we finally set

J = 1 + max{j0, j1},
then by Lemma A.1 we know that

(5.8) 0 < C1 ≤
(1− τj) γj
γj + p1 − pN

≤ C2 < 1, for every j ≥ J.

This in turn implies that for every j ≥ J
1(

γj + p1 − pN
(1− τj) γj

)′ ≤ 1(
1

C1

)′ = 1− C1.

Thus from (5.7) we getˆ
Bt

Uγj dx ≤ C2

ˆ
Bs

(
Uγj + 1

)
dx

+ (1− C1)

(
C

25 j

(s− t)2

)β (ˆ
Bt

Uγj−1 dx

) γj
γj−1

τj
(
γj+p1−pN
(1−τj) γj

)′(5.9)

for some 1 < β < ∞, depending on N, p1 and pN . In the last inequality we also used that s ≤ R ≤ 1 and
C > 1, together with (5.8). Finally we set

εj = τj

(
γj + p1 − pN

(1− τj) γj

)′
− 1, for j ≥ J,

and rewrite (5.9) asˆ
Bt

Uγj dx ≤ C2

ˆ
Bs

Uγj dx

+ (1− C1)

(
C

25 j

(s− t)2

)β (ˆ
Bt

Uγj−1 dx

) γj
γj−1

(1+εj)

+ C2 |BR|,
(5.10)

which holds for every r ≤ s < t ≤ R. By applying Lemma 2.4 with

Z(t) =

ˆ
Bt

Uγj dx, α0 = 2β, and ϑ = C2,

we finally obtain for every j ≥ J ,

(5.11)

ˆ
Br

Uγj dx ≤ C

(
25 j β (R− r)−2 β

(ˆ
BR

Uγj−1 dx

) γj
γj−1

(1+εj)

+ 1

)
,

for some C = C(N, p1, pN ) > 1.

Step 3: Moser’s iteration. We now iterate the previous estimate on a sequence of shrinking balls. We
fix two radii 0 < r < R ≤ 1 and define the sequence

Rj = r +
R− r
2j−J

, j ≥ J.

We use (5.11) with Rj+1 < Rj in place of r < R. Thus we get

(5.12)

ˆ
BRj+1

Uγj dx ≤ C

27 j β (R− r)−2 β

(ˆ
BRj

Uγj−1 dx

) γj
γj−1

(1+εj)

+ 1
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where the constant C > 1 depends on N and p1, pN only.
We introduce the notation

Yj =

ˆ
BRj

Uγj−1 dx,

thus (5.12) reads

Yj+1 ≤ C

(
27 j β (R− r)−2 β Y

γj
γj−1

(1+εj)

j + 1

)
≤
(
C 27 β (R− r)−2 β

)j
(Yj + 1)

γj
γj−1

(1+εj)
.

Here, we have used again that C > 1 and R ≤ 1, so that the term multiplying Yj is larger than 1. By
iterating the previous estimate starting from j = J and using some standard manipulations, we obtain

Yn+1 ≤
(
C 27 β (R− r)−2 β

)n
(Yn + 1)

γn
γn−1

(1+εn)

≤
(
C 27 β (R− r)−2 β

)n ((
C 27 β (R− r)−2 β

)n−1
(Yn−1 + 1)

γn−1
γn−2

(1+εn−1)
+ 1

) γn
γn−1

(1+εn)

≤
(
C 27 β (R− r)−2 β

)n (
2
(
C 27 β (R− r)−2 β

)n−1
(Yn−1 + 1)

γn−1
γn−2

(1+εn−1)
) γn
γn−1

(1+εn)

≤ . . .

≤
(

2C 27 β (R− r)−2 β
) n∑
j=J

(
j γnγj

n∏
k=j+1

(1+εk)

) [
YJ + 1

] γn
γJ−1

n∏
j=J

(1+εj)

,

where we used that C 27 β (R − r)−2 β > 1. We now simply write C in place of 2C 27 β and take the power
1/γn on both sides:

Y
1
γn
n+1 ≤

(
C (R− r)−2 β

) n∑
j=J

j
γj

n∏
k=j+1

(1+εk) [
YJ + 1

] n∏
j=J

(1+εj)

γJ−1

≤
(
C (R− r)−2 β

)Θ
n∑
j=J

j
γj
[
YJ + 1

] Θ
γJ−1 .

In the previous estimate, we set

Θ = lim
n→∞

n∏
j=0

(1 + εj),

which is a finite number, thanks to Lemma A.2. We observe that γj ∼ 2j+2 as j goes to ∞. This implies
the convergence of the series above and we thus get

‖U‖L∞(Br) = lim
n→∞

(ˆ
BRn+1

Uγn+1 dx

) 1
γn+1

≤ C (R− r)−β
′
(ˆ

BR

UγJ−1 dx+ 1

) Θ
γJ−1

,

for some C = C(N, p1, pN ) > 1 and β′ = β′(N, p1, pN ) > 0. By recalling the definition of U , we finally
obtain

‖∇u‖L∞(Br) ≤ C (R− r)−β
′
(ˆ

BR

|∇u|γJ−1 dx+ 1

) Θ
γJ−1

.

This concludes the proof. �
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6. A recursive gain of integrability for the gradient

The main outcome of estimate (5.1) is the following: assume that our local minimizer U has a gradient
with a sufficiently high integrability, then one would be able to conclude that ∇U has to be bounded. We
notice that since the explicit determination of the exponent γ in (5.1) is actually very intricate (unless some
upper bounds on pN/p1 are imposed), we essentially need to prove that

∇U ∈ Lqloc for every q <∞,

in order to be on the safe side. Thus, in order to infer the desired local Lipschitz regularity on U , we are
going to prove a higher integrability estimate on ∇uε, which is uniform with respect to 0 < ε ≤ ε0. This is
the content of the result of this section. Remember that we simplify the notation uε and replace it by u.

Proposition 6.1. Let 2 ≤ p1 ≤ · · · ≤ pN < +∞ and 0 < ε ≤ ε0. For every 2 ≤ q0 < +∞ and every
BR0 b B, there exists a constant C > 0 such that

N∑
i=1

ˆ
BR0

|uxi |pi q0 dx ≤ C.

The constant C depends on N,p, q0, R0,dist(BR0 , ∂B),

‖u‖L∞(B) and

N∑
i=1

ˆ
B

|uxi |pi dx.

Proof. We proceed to exploit the scheme of Proposition 4.3. In what follows, we use the convention that

p

p− 2
= +∞,

whenever p = 2. We can also assume without loss of generality that

pN > 2,

otherwise p1 = · · · = pN = 2 and in this case the regularity theory for our problem is well-established (U
would be a harmonic function in such a situation).

We fix q0 as in the statement and introduce the exponents

(6.1) qj = min

{
pj

pj − 2
, q0

}
= min

{(pj
2

)′
, q0

}
, j = 1, . . . , N.

Since p1 ≤ · · · ≤ pN , we get that q1 ≥ q2 ≥ · · · ≥ qN and thus

(6.2) min
i=1,...,k

qi = qk, for every k ∈ {1, . . . , N}.

We now prove by downward induction on j = N, . . . , 1 that the following fact holds: for every BR b B, one
has

(6.3)
for every j ∈ {1, . . . , N}

and every BR b B,

N∑
i=j

ˆ
BR

|uxi |pi qj−1 dx ≤ C, with C > 0 independent of ε.

In particular, for j = 1, (6.3) implies
N∑
i=1

ˆ
BR

|uxi |pi q0 dx ≤ C,

for a uniform constant C > 0. The statement on the quality of the constant C will be clear from the
computations below.
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Initialization step. We start from j = N . We observe that in this case the right-hand side of (4.6) (written
for k = N) is uniformly bounded with respect to ε > 0, provided that α > −1 is chosen in such a way that
for every i ∈ {1, . . . , N − 1}, one has

(pi − 2)
pN + 2 + α

pN
≤ pi.

If pi = 2, this is automatically satisfied. Otherwise, this is equivalent to

pN + 2 + α ≤ pN
pi

pi − 2
.

We define α by

pN + 2 + α = pN qN−1.

By definition of qN−1,

pN + 2 + α = pN min

{
pN−1

pN−1 − 2
, q0

}
≤ pN min

1≤i≤N−1

pi
pi − 2

,

as desired. We need to check that α > −1, or equivalently

(6.4) pN min

{
pN−1

pN−1 − 2
, q0

}
> pN + 1.

Since q0 ≥ 2, one has pN q0 > pN + 1. Moreover, using that pN−1 ≤ pN , one gets 2 pN > pN−1 − 2 which in
turn is equivalent to

pN
pN−1

pN−1 − 2
> pN + 1.

This proves (6.4).
Thus for every BR b BR′ b B, it follows from (4.6) thatˆ

BR

|uxN |pN qN−1 dx ≤ C (R′)N
((‖u‖L∞(B)

R′ −R

)pN qN−1

+ ε0

)
+ C

(‖u‖L∞(B)

R′ −R

)2 qN−1 ˆ
BR′

N−1∑
i=1

|uxi |
pi−2

pN
(pN qN−1)

dx.

Since qi ≥ qN−1 for 1 ≤ i ≤ N − 1, one has

pi
qN−1 (pi − 2)

≥ 1.

Using Hölder’s inequality for each term of the sum of the right-hand side, with the exponent pi/(qN−1(pi−2))
and its conjugate, one getsˆ

BR

|uxN |pN qN−1 dx ≤ C (R′)N
((‖u‖L∞(B)

R′ −R

)pN qN−1

+ ε0

)

+ C

(‖u‖L∞(B)

R′ −R

)2 qN−1 N−1∑
i=1

(ˆ
BR′

|uxi |pi dx

) (pi−2) qN−1
pi

.

By using Lemma 2.1 and Proposition 2.3 in order to control the two terms on the right-hand side, we get
a uniform (in ε) control on the LpN qN−1(BR) norm of uxN . This finally establishes the initialization step
j = N , i.e.

for every BR b B, we have

ˆ
BR

|uxN |pN qN−1 dx ≤ C, with C > 0 independent of ε.



ORTHOTROPIC WITH NONSTANDARD GROWTH 25

Inductive step. We then assume that the assertion (6.3) is true for some j ∈ {2, . . . , N} and we prove it
for j − 1. By the induction assumption, we thus know that

(6.5)
for some j ∈ {2, . . . , N}

and every BR b B,

N∑
i=j

ˆ
BR

|uxi |pi qj−1 dx ≤ C, with C > 0 independent of ε.

In the rest of the proof, we establish that (6.5) implies

(6.6) for every BR b B,
N∑

i=j−1

ˆ
BR

|uxi |pi qj−2 dx ≤ C, with C > 0 independent of ε.

In order to prove this, as explained in the Introduction, we need to employ a multiply iterative scheme based
on Proposition 4.3. More specifically, we start by relying on (4.6) with the choices

k = j − 1 and pj−1 + 2 + α = pj−1 min

{
min

0≤i≤j−2
qi, qj−1 min

j≤i≤N
qi

}
.

We first justify the fact that such a choice for α is feasible. Observe that

min
0≤i≤j−2

qi = qj−2 and min
j≤i≤N

qi = qN ,

hence the condition on α is equivalent to

(6.7) pj−1 + 2 + α = pj−1 min {qj−2, qj−1 qN} .
Since

qj−1 = min

{
pj−1

pj−1 − 2
, q0

}
with q0 ≥ 2,

one has pj−1 + 2 ≤ pj−1 qj−1. By recalling that the exponents qj are non increasing and larger than 1, this
implies that

pj−1 + 2 ≤ pj−1 qj−2 and pj−1 + 2 < pj−1 qj−1 qN ,

and thus

pj−1 + 2 + α = pj−1 min{qj−2, qj−1 qN} ≥ pj−1 + 2.

This implies that α ≥ 0 as desired.
We next rely on the fact that by Lemma 2.1 and Proposition 2.3, we have

‖u‖L∞(B) +

N∑
i=1

ˆ
B

|uxi |pi dx ≤ C,

with a constant C > 0 independent of ε > 0 and on the induction assumption (6.5), which gives a local
uniform (in ε) control on

N∑
i=j

ˆ
BR

|uxi |pi qj−1 dx,

for BR b B. Hence, the definition (6.7) of α ensures that the right-hand side of (4.6) is uniformly bounded.
Thus from Proposition 4.3, we get that for every BR b B we have

(6.8)

ˆ
BR

|uxj−1
|β

(0)
j−1 dx ≤ C,

with C > 0 independent of ε. Here, the exponent β
(0)
j−1 is given by

β
(0)
j−1 = pj−1 + 2 + α = pj−1 min {qj−2, qj−1qN} .
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We can summarize the previous integrability information as the following estimate: for every BR b B,

(6.9)

N∑
i=j−1

ˆ
BR

|uxi |β
(0)
i dx ≤ C,

with C > 0 independent of ε > 0 and

(6.10)


β

(0)
j−1 = pj−1 min {qj−2, qj−1 qN} ,

β
(0)
i = pi qj−1, for i = j, . . . , N.

We proceed to define by induction a vector sequence(
β

(`)
j−1, . . . , β

(`)
N

)
, ` ∈ N,

as follows: for ` = 0 this is given by (6.10) and then we use the following multiply recursive scheme

(6.11)



β
(`+1)
N = pN min

{
qj−2, min

j−1≤k≤N−1

β
(`)
k

pk − 2

}

β
(`+1)
N−1 = pN−1 min

{
qj−2, min

j−1≤k≤N−2

β
(`)
k

pk − 2
,
β

(`+1)
N

pN − 2

}

β
(`+1)
N−2 = pN−2 min

{
qj−2, min

j−1≤k≤N−3

β
(`)
k

pk − 2
, min
N−1≤k≤N

β
(`+1)
k

pk − 2

}
... =

...

β
(`+1)
j−1 = pj−1 min

{
qj−2, min

j≤k≤N

β
(`+1)
k

pk − 2

}
.

We first observe that this scheme is well-defined, since each β
(`+1)
i is determined either by (β

(`)
j−1, . . . , β

(`)
N )

or by an updated information on the β
(`+1)
k , with k ≥ i + 1. Moreover, thanks to Lemma A.3 and Lemma

A.4 below, we have that {
β

(`)
i

}
`∈N

is nondecreasing, for every j − 1 ≤ i ≤ N,

and there exists `0 ∈ N such that

(6.12) for every ` ≥ `0, β
(`)
i = pi qj−2, for i = j − 1, . . . , N.

With these definitions at hand, we now prove that
(6.13)

for every BR b B,
N∑

i=j−1

ˆ
BR

|uxi |β
(`)
i dx ≤ C, for every ` ∈ N, with C > 0 independent of ε.

By taking into account (6.12), this will eventually establish (6.6), thus concluding the proof.

In turn, the proof of (6.13) relies on an induction argument. The assertion (6.13) is true for ` = 0, thanks
to (6.9).

We now assume (6.13) to hold for some ` ∈ N and establish the same for `+ 1, i.e.

for every BR b B,
N∑

i=j−1

ˆ
BR

|uxi |β
(`+1)
i dx ≤ C,
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with C independent of ε. Actually, by a downward induction on m = N, . . . , j − 1, we prove that

N∑
i=m

ˆ
BR

|uxi |β
(`+1)
i dx ≤ C, with C independent of ε.

For the initialization step m = N , we apply (4.6) with k = N and for the following choice of α:

pN + 2 + α = pN min

{
qj−2, min

j−1≤k≤N−1

β
(`)
k

pk − 2

}
= β

(`+1)
N .

In order to justify that α defined as such is non negative, we rely on the fact that for every i ∈ {j−1, . . . , N},
the sequence {β(`)

i }`∈N is nondecreasing. This implies that

α ≥ β(0)
N − (pN + 2) = pN qj−1 − (pN + 2) ≥ pN qN − (pN + 2) ≥ 0.

Hence, such a choice of α is feasible.
We get that for every BR b BR′ b B,

ˆ
BR

|uxN |β
(`+1)
N dx ≤ C (R′)N

(‖u‖L∞(B)

R′ −R

)β(`+1)
N

+ ε0


+ C

(‖u‖L∞(B)

R′ −R

) 2
pN

β
(`+1)
N

ˆ
BR′

j−2∑
i=1

|uxi |
(pi−2)

β
(`+1)
N
pN dx

+ C

(‖u‖L∞(B)

R′ −R

) 2
pN

β
(`+1)
N

ˆ
BR′

N−1∑
i=j−1

|uxi |
pi−2

pN
β

(`+1)
N dx.

For the terms in the first sum of the right hand side, we use Hölder’s inequality with the exponent

pi
pi − 2

pN

β
(`+1)
N

,

and its conjugate3. In the second sum, we use Hölder’s inequality with the exponent4

pN
pi − 2

β
(`)
i

β
(`+1)
N

.

3Observe that for pi = 2 there is no need of Hölder’s inequality. If pi > 2, one can easily check that these exponents are

larger than 1 by observing that

β
(`+1)
N ≤ pN qj−2 ≤ pN qi, for i ≤ j − 2.

4As before, there is no need of Hölder’s inequality for pi = 2. For pi > 2, we rely on the fact that by definition

β
(`+1)
N ≤ β(`)

i

pN

pi − 2
, for j − 1 ≤ i ≤ N − 1.

This justifies that the exponent is larger than 1.
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One gets

ˆ
BR

|uxN |β
(`+1)
N dx ≤ C (R′)N

(‖u‖L∞(B)

R′ −R

)β(`+1)
N

+ ε0



+ C

(‖u‖L∞(B)

R′ −R

)2
β

(`+1)
N
pN

j−2∑
i=1

(ˆ
BR′

|uxi |pi dx

) pi−2

pi

β
(`+1)
N
pN

+ C

(‖u‖L∞(B)

R′ −R

)2
β

(`+1)
N
pN

N−1∑
i=j−1

(ˆ
BR′

|uxi |β
(`)
i dx

) pi−2

pN

β
(`+1)
N

β
(`)
i

.

By using the induction assumption (6.13) to control the last term, Lemma 2.1 and Proposition 2.3 in order
to control the other two, uniformly in ε, we get the desired estimate for uxN .

We now assume that for some m ∈ {j, . . . , N}, we have

(6.14) for every BR b B,
N∑
i=m

ˆ
BR

|uxi |β
(`+1)
i dx ≤ C, with C > 0 independent of ε,

and prove that this entails

for every BR b B,
N∑

i=m−1

ˆ
BR

|uxi |β
(`+1)
i dx ≤ C, with C > 0 independent of ε.

Obviously, we only need to improve the control on the last component of the gradient, i.e. on uxm−1
. We

still rely on Proposition 4.3, this time with the choices

k = m− 1 and pm−1 + 2 + α = pm−1 min

{
qj−2, min

j−1≤i≤m−2

β
(`)
i

pi − 2
, min
m≤i≤N

β
(`+1)
i

pi − 2

}
= β

(`+1)
m−1 .

The fact that β
(`+1)
m−1 ≥ β

(0)
m−1 ≥ pm−1 + 2 ensures that α ≥ 0. Hence, for every BR b BR′ b B,

ˆ
BR

|uxm−1
|β

(`+1)
m−1 dx ≤ C (R′)N

(‖u‖L∞(B)

R′ −R

)β(`+1)
m−1

+ ε0


+ C

(‖u‖L∞(B)

R′ −R

) 2
pm−1

β
(`+1)
m−1

ˆ
BR′

j−2∑
i=1

|uxi |
(pi−2)

β
(`+1)
m−1
pm−1 dx

+ C

(‖u‖L∞(B)

R′ −R

) 2
pm−1

β
(`+1)
m−1

ˆ
BR′

m−2∑
i=j−1

|uxi |
(pi−2)

β
(`+1)
m−1
pm−1 dx

+ C

(‖u‖L∞(B)

R′ −R

) 2
pm−1

β
(`+1)
m−1

ˆ
BR′

N∑
i=m

|uxi |
(pi−2)

β
(`+1)
m−1
pm−1 dx.

We now proceed as above: we control the last term by using the induction assumption (6.14) and the fact
that if

β
(`+1)
m−1

pm−1
(pi − 2) ≤ β(`+1)

i , if m ≤ i ≤ N.
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The third term is estimated thanks to the induction assumption (6.13) and the inequality5

β
(`+1)
m−1

pm−1
(pi − 2) ≤ β(`)

i , if j − 1 ≤ i ≤ m− 2.

Finally, on the two first terms, we use Lemma 2.1 and Proposition 2.3, and also that 6

β
(`+1)
m−1

pm−1
(pi − 2) ≤ pi, if 1 ≤ i ≤ j − 2.

This finally establishes that

for every BR b B,
N∑

i=j−1

ˆ
BR

|uxi |β
(`+1)
i dx ≤ C,

with C independent of ε. As already explained, this is enough to safely conclude the proof. �

7. Proof of Theorem 1.1

The cornerstones of the proof of Theorem 1.1 are the uniform L∞ estimate for the gradient of Proposition
5.1 and the uniform higher integrability estimate of Proposition 6.1. Indeed, by using Proposition 6.1 with
the choice q0 = γ (i.e. the exponent in (5.1)), we get that for every Br0 b B with r0 < 1

‖∇uε‖L∞(Br0 ) ≤ C,

with C > 0 independent of ε. Observe that to infer that C is independent of ε, we use Lemma 2.1 and
Proposition 2.3. Once we have this uniform estimate at our disposal, the Lipschitz regularity of U follows
with a standard covering argument, by taking into account that uε converges to U (see Lemma 2.2). We
refer to the proof of [3, Theorem A] for details. �

Once we have Theorem 1.1 at our disposal, we can prove a higher differentiability result à la Uhlenbeck.
For the model case of the functional

N∑
i=1

1

pi

ˆ
|uxi |pi dx,

the following result considerably improves [6, Theorem 1.1].

Corollary 7.1. Let p = (p1, . . . , pN ) be such that 2 ≤ p1 ≤ · · · ≤ pN . Let U ∈W 1,p
loc (Ω) be a local minimizer

of Fp such that

U ∈ L∞loc(Ω).

Then

|Uxi |
pi−2

2 Uxi ∈W
1,2
loc (Ω), for i = 1, . . . , N.

Proof. The proof is the same as the one in [6, Proposition 3.2]. It is based on Nirenberg’s method of
incremental quotients, which aims at differentiating the equation

N∑
i=1

(|Uxi |pi−2 Uxi) = 0,

5This part of the discussion is void when m = j.
6This part of the discussion is void when j = 2.
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in a discrete sense. By proceeding as in [6], we get for every j = 1, . . . , N and every pair of concentric balls
Br0 b BR0

b Ω

N∑
i=1

ˆ
Br0

∣∣∣∣∣∣
δhej

(
|Uxi |

pi−2

2 Uxi

)
|h|

sj+1

2

∣∣∣∣∣∣
2

dx ≤ C

(R0 − r0)2

N∑
i=1

(ˆ
BR0

|Uxi |pi dx

) pi−2

pi
(ˆ

BR0

∣∣∣∣∣ δhejU|h|
sj+1

2

∣∣∣∣∣
pi) 2

pi

,

see [6, equation (3.6)]. By using that ∇U ∈ L∞loc, we can choose

sj = 1 so that
sj + 1

2
= 1,

to control the last term on the right-hand side and obtain an estimate on

N∑
i=1

ˆ
Br0

∣∣∣∣∣∣
δhej

(
|Uxi |

pi−2

2 Uxi

)
|h|

∣∣∣∣∣∣
2

dx, j = 1, . . . , N,

which is uniform in |h| � 1. By appealing to the difference quotient characterization of Sobolev spaces, we
get the conclusion. �

Appendix A. Calculus lemmas

In this section, we separately present some proofs on the elementary facts for the sequences needed in the
proof of our main result.

A.1. Tools for the Lipschitz estimate. In what follows, we denote as usual

2∗ =
2N

N − 2
, for N ≥ 3.

Lemma A.1. Let 2 ≤ p1 ≤ pN . We define

j0 = min

{
j ∈ N : j > log2

(
N − 2

2
(pN − 2)− N

2
(p1 − 2)

)
− 2

}
,

j1 = min

{
j ∈ N : j > log2

(
(N − 2) (pN − 2)−N (p1 − 2)

)
− 2

}
.

and J = 1 + max{j0, j1}. We set

γj = 2j+2 + pN − 2,

and

τj =
γj−1

γj

2∗

2
(γj + p1 − pN )− γj

2∗

2
(γj + p1 − pN )− γj−1

.

Then there exist two constants 0 < C1 < C2 < 1 depending on N, p1 and pN such that

C1 ≤
(1− τj) γj
γj + p1 − pN

≤ C2, for every j ≥ J.

Proof. It is easily seen that the sequence {γj}j∈N is increasing. Moreover, by definition of j0, we have that

γj <
2∗

2
(γj + p1 − pN ), for every j ≥ j0,
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thus τj is well-defined and positive for j ≥ j0. The definition of τj entails that

(A.1)
1

γj
=

τj
γj−1

+
1− τj

2∗

2
(γj + p1 − pN )

.

thus the previous discussion mplies that

0 < τj < 1, for every j ≥ j0.

Then the proof is by direct computation: we have

(1− τj) γj
γj + p1 − pN

=

1− γj−1

γj

2∗

2
(γj + p1 − pN )− γj

2∗

2
(γj + p1 − pN )− γj−1

 γj
γj + p1 − pN

=
γj

2∗

2
(γj + p1 − pN )− γj−1

2∗

2
(γj + p1 − pN )

2∗

2
(γj + p1 − pN )− γj−1

1

γj + p1 − pN

=
2∗

2

γj − γj−1

2∗

2
(γj + p1 − pN )− γj−1

=
2∗

2

2j+2 − 2j+1

2∗

2
(2j+2 + p1 − 2)− pN − 2j+1 + 2

=
2∗

4

2j+2(
2∗ − 1

2

)
2j+2 +

2∗

2
(p1 − 2)− (pN − 2)

.

We have to distinguish two cases: if

pN <
N

N − 2
(p1 − 2) + 2,

then the function

(A.2) t 7→ t(
2∗ − 1

2

)
t+

2∗

2
(p1 − 2)− (pN − 2)

,

is well-defined for every t > 0 and monotonically increasing. We have in this case

0 <
(1− τj0) γj0
γj0 + p1 − pN

≤ (1− τj) γj
γj + p1 − pN

< lim
j→∞

2∗

4

2j+2(
2∗ − 1

2

)
2j+2 +

2∗

2
(p1 − 2)− (pN − 2)

=
1

2

2∗

2∗ − 1
< 1,

for every j ≥ j0.
On the other hand, if

(A.3) pN ≥
N

N − 2
(p1 − 2) + 2,
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then the function (A.2) is well-defined and monotonically decreasing for

(A.4) t >
2

2∗ − 1

(
(pN − 2)− 2∗

2
(p1 − 2)

)
.

Thus we now obtain

1

2

2∗

2∗ − 1
≤ (1− τj) γj
γj + p1 − pN

≤ 2∗

4

2j1+2(
2∗ − 1

2

)
2j1+2 +

2∗

2
(p1 − 2)− (pN − 2)

,

for every j ≥ j1. Observe that the choice of j1 assures firstly that t = 2j+2 satisfies (A.4) whenever j ≥ j1
(here we use (A.3)) and secondly, that the right-hand side above is strictly smaller than 1. �

Lemma A.2. With the notation of Lemma A.1, we define the sequence {εj}j≥j0 by

(A.5) 1 + εj = τj

(
γj + p1 − pN

(1− τj) γj

)′
, for j ≥ j0.

Then

εj ∼
N

4

pN − p1

2

1

2j
, for j →∞.

In particular, we have

lim
n→∞

n∏
i=j0

(1 + εj) < +∞.

Proof. We start by computing explicitly the conjugate exponent appearing in (A.5). We have(
γj + p1 − pN

(1− τj) γj

)′
=

(
1

1− τj

(
1 +

p1 − pN
γj

))′

=

1

1− τj

(
1 +

p1 − pN
γj

)
1

1− τj

(
1 +

p1 − pN
γj

)
− 1

=

1− pN − p1

γj

τj −
pN − p1

γj

.

Thus we have

εj = τj

(
γj + p1 − pN

(1− τj) γj

)′
− 1 =

τj

(
1− pN − p1

γj

)
τj −

pN − p1

γj

− 1 =
pN − p1

γj

1− τj
τj −

pN − p1

γj

.

We now observe that
pN − p1

γj

1− τj
τj −

pN − p1

γj

∼ pN − p1

γj

1− τj
τj

, for j →∞.

Moreover, by using the definitions of γj and τj , we have

1− τj
τj

=
1

τj
− 1 ∼ N

2
, for j →∞,

which implies that

εj ∼
N

2

pN − p1

γj
, for j →∞.

By observing that γj ∼ 2j+2, we get the desired conclusion.
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In order to prove the last part, it is enough to notice that

n∏
j=j0

(1 + εj) = exp

 n∑
j=j0

log(1 + εj)

 and log(1 + εj) ∼ εj , for j →∞.

By using the first part of the proof and the definition of γj , we see that

lim
n→∞

n∑
j=j0

εj < +∞.

This concludes the proof. �

A.2. Tools for the higher integrability. In this section, we present some properties of the vector-valued
sequence {(β`j−1, . . . , β

`
N )} which were needed in the proof of Proposition 6.1, in order to complete the

inductive step. We use the same notation as before: in particular, we fix 2 ≤ q0 < +∞ and set

qj = min

{(pj
2

)′
, q0

}
, j = 1, . . . , N.

Then for a fixed index j ∈ {2, . . . , N}, we define

(A.6)


β

(0)
j−1 = pj−1 min {qj−2, qj−1 qN} ,

β
(0)
i = pi qj−1, for i = j, . . . , N,

and by a recursive scheme

(A.7)



β
(`+1)
N = pN min

{
qj−2, min

j−1≤k≤N−1

β
(`)
k

pk − 2

}

β
(`+1)
N−1 = pN−1 min

{
qj−2, min

j−1≤k≤N−2

β
(`)
k

pk − 2
,
β

(`+1)
N

pN − 2

}

β
(`+1)
N−2 = pN−2 min

{
qj−2, min

j−1≤k≤N−3

β
(`)
k

pk − 2
, min
N−1≤k≤N

β
(`+1)
k

pk − 2

}
... =

...

β
(`+1)
j−1 = pj−1 min

{
qj−2, min

j≤k≤N

β
(`+1)
k

pk − 2

}

Lemma A.3. For every i ∈ {j − 1, . . . , N}, the sequence {β(`)
i }`∈N is nondecreasing.

Proof. We proceed again by induction on `.

Initialization step. We first need to prove that

(A.8) β
(1)
i ≥ β(0)

i , for i = j − 1, . . . , N.

We establish this by downward induction on i = N, . . . , j − 1. Indeed, for i = N , one has by definition

β
(1)
N = pN min

{
qj−2, min

j−1≤k≤N−1

β
(0)
k

pk − 2

}
.
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By using the definition of β
(0)
k , the previous is the same as

β
(1)
N = pN min

{
qj−2, qj−1 min{qj−2, qN qj−1}, qj−1 min

j≤k≤N−1
qk

}
.

By recalling that qj−2 ≥ · · · ≥ qN , this gives

β
(1)
N = pN min

{
qj−2, qj−1 min{qj−2, qN qj−1}, qj−1 qN−1

}
≥ pN min{qj−2, qj−1 qN}.

Hence,

β
(0)
N = pN qj−1 ≤ pN min{qj−2, qj−1 qN} = β

(1)
N .

This proves (A.8) for i = N .
We now assume that for some i ∈ {j − 1, . . . , N}, property (A.8) holds for every k ∈ {i+ 1, . . . , N}. One

proceeds to prove that (A.8) holds for i, as well. By definition of β
(1)
i ,

β
(1)
i = pi min

{
qj−2, min

j−1≤k≤i−1

β
(0)
k

pk − 2
, min
i+1≤k≤N

β
(1)
k

pk − 2

}
.

By the induction assumption, β
(1)
k ≥ β(0)

k for k ≥ i+ 1 and thus

β
(1)
i ≥ pi min

{
qj−2, min

j−1≤k≤i−1

β
(0)
k

pk − 2
, min
i+1≤k≤N

β
(0)
k

pk − 2

}

= pi min

qj−2,
β

(0)
j−1

pj−1 − 2
, min
j≤k≤N,
k 6=i

β
(0)
k

pk − 2

 .

By definition of β
(0)
i , this gives

β
(1)
i ≥ pi min

{
qj−2, qj−1 min{qj−2, qN qj−1}, qj−1 min

j≤k≤N,
k 6=i

qk

}
= pi min{qj−2, qj−1 qN}.

When i ≥ j, this implies β
(1)
i ≥ pi qj−1 = β

(0)
i , while when i = j − 1, one has

β
(1)
j−1 ≥ pj−1 min{qj−2, qN qj−1} = β

(0)
j−1.

We have thus proved (A.8) for i, which completes the proof.

Inductive step. We now assume that for an index ` ≥ 1, we have

(A.9) β
(`)
i ≥ β

(`−1)
i , for i = j − 1, . . . , N.

We need to prove that this entails

β
(`+1)
i ≥ β(`)

i , for i = j − 1, . . . , N,

as well.
We rely again on a downward induction on i = N, . . . , j − 1. Indeed, for i = N , we can use (A.9), which

gives

β
(`+1)
N = pN min

{
qj−2, min

j−1≤k≤N−1

β
(`)
k

pk − 2

}
≥ pN min

{
qj−2, min

j−1≤k≤N−1

β
(`−1)
k

pk − 2

}
= β

(`)
N .
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We now assume that for some i ≥ j − 1, one has

β
(`+1)
k ≥ β(`)

k , for every k ∈ {i+ 1, . . . , N}.

Then

β
(`+1)
i = pi min

{
qj−2, min

j−1≤k≤i−1

β
(`)
k

pk − 2
, min
i+1≤k≤N

β
(`+1)
k

pk − 2

}

≥ pi min

{
qj−2, min

j−1≤k≤i−1

β
(`)
k

pk − 2
, min
i+1≤k≤N

β
(`)
k

pk − 2

}
.

Relying now on the induction assumption (A.9), one gets

β
(`+1)
i ≥ pi min

{
qj−2, min

j−1≤k≤i−1

β
(`−1)
k

pk − 2
, min
i+1≤k≤N

β
(`)
k

pk − 2

}
= β

(`)
i .

This completes the proof. �

Lemma A.4. With the notation of the previous lemma, there exists `0 ∈ N such that for every ` ≥ `0, one
has

β
(`)
i = pi qj−2, for every i = j − 1, . . . , N.

Proof. By using the monotonicity proved in the previous lemma, we get in particular for i = j − 1, . . . , N ,

β
(`+1)
i = pi min

{
qj−2, min

j−1≤k≤i−1

β
(`)
k

pk − 2
, min
i+1≤k≤N

β
(`+1)
k

pk − 2

}

≥ pi min

qj−2, min
j−1≤k≤N,

k 6=i

β
(`)
k

pk − 2

 ≥ pi min

{
qj−2, min

j−1≤k≤N

β
(`)
k

pk − 2

}
.

(A.10)

Dividing by pi and observing that

β
(`)
k

pk − 2
≥
β

(`)
k

pk
qk ≥

β
(`)
k

pk
qN ,

one deduces that

β
(`+1)
i

pi
≥ min

{
qj−2, qN min

j−1≤k≤N

β
(`)
k

pk

}
.

Since this is true for every i = j − 1, . . . , N , this implies

(A.11) δ(`+1) ≥ min
{
qj−2, qN δ

(`)
}
, where δ(`) = min

j−1≤k≤N

β
(`)
k

pk
.

The monotonicity of each sequence {β(`)
k }`∈N entails the monotonicity of {δ(`)}`∈N. We claim that there

exists `0 ∈ N such that one has

(A.12) qN δ
(`) ≥ qj−2, for every ` ≥ `0.

Indeed, assume by contradiction that qN δ
(`) < qj−2 for every ` ≥ 0. Then it follows from (A.11) that

δ(`+1) ≥ qN δ(`), for every ` ≥ 0.



36 BOUSQUET AND BRASCO

which implies in turn that δ(`) ↗ +∞, as ` → ∞. This contradicts that qNδ
(`) < qj−2 for every ` ≥ 0.

Hence, the claim (A.12) is established. By (A.11) again, this implies that

β
(`+1)
i

pi
≥ min
j−1≤k≤N

β
(`+1)
k

pk
= δ(`+1) ≥ qj−2, for i = j − 1, . . . , N, for every ` ≥ `0 − 1.

Since the opposite estimate on β
(`+1)
i /pi is a consequence of the definition of β

(`+1)
i , we obtain the desired

conclusion. �
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