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Abstract

Recent progress in treating the dynamically screened nature of the Coulomb interaction in

strongly correlated lattice models and materials is reviewed with a focus on computational schemes

based on the dynamical mean field approximation. We discuss approximate and exact methods for

the solution of impurity models with retarded interactions, and explain how these models appear as

auxiliary problems in various extensions of the dynamical mean field formalism. The current state

of the field is illustrated with results from recent applications of these schemes to U -V Hubbard

models and correlated materials.

PACS numbers: 71.10.Fd
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I. INTRODUCTION

Screening describes the way the electrons rearrange themselves to reduce the inter-particle

interaction and total energy of the system, while correlation describes how the electrons move

collectively in the system. Both concepts are closely related and connected. In Hartree-Fock

theory, the electrons are not correlated except for like-spin particles, which are constrained

by the Pauli exclusion principle. A consistent framework to improve upon this theory was

proposed by Hedin in his seminal 1965 paper [1]. He expanded the self-energy up to the

first-order in the dynamically screened interaction W , and thereby laid the foundation of

the GW theory [2–4]. The screened interaction W is the bare interaction reduced by the

dielectric function, determined by the charge-charge response function, which in turn is

sensitive to electronic correlations. Screening is thus a dynamical process, as it depends on

how the electrons respond to a given perturbation. It is obviously sensitive to the nature

of the underlying electronic states. One of the fingerprints of screening are the plasmon

satellites, collective excitations associated with long-range charge fluctuations, which are

seen in electron spectroscopy (such as, for instance, photoelectron spectroscopy (PES) [5]

and electron energy loss spectroscopy (EELS) [6]).

In correlated electron systems, where local atomic-like interactions are dominant, screen-

ing is also crucial to set the actual value of the Coulomb repulsion, and thus to determine the

level of correlation in the system. Describing within the same framework both the long-range

nature of screening and its role in tuning the local repulsion U has been a long-standing the-

oretical challenge. The GW approximation, while neglecting vertex corrections, takes into

account reasonably well dynamical long-range screening effects [7, 8], but it usually fails for

large and local Coulomb repulsions, which are better described within a Hubbard model.

This pushed Hedin to write in his review [3]: “Clearly, the GW approximation describing

long-range charge fluctuations, and a Hubbard model focusing on local on-site correlations,

are two extremes.”

These two extremes can now be merged into a coherent and unified picture, thanks

to recent progress in Green’s function embedding schemes, which have been developed as

extended dynamical mean field theories. In dynamical mean field theory (DMFT) the cor-

respondence between the local lattice Green’s function Gloc and the solution of an auxiliary

Anderson impurity problem is realized through the dynamical Weiss field G0, which mimics
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the effect of the lattice environment on the impurity site. In extended dynamical mean field

theory (EDMFT), the embedding is extended to the local screened interaction Wloc which

matches the impurity screened interaction and determines the dynamical bosonic field U ,

which represents the effect of non-local interactions on the auxiliary Anderson problem.

Thus, the EDMFT embedding procedure maps non-local interaction effects onto a local dy-

namical screening, and allows to treat these local interactions in a non-perturbative way.

Indeed, since the advent of continuous time quantum Monte Carlo (CTQMC) algorithms

[9], solving the Anderson impurity problem with retarded - aka frequency dependent - in-

teractions has become feasible. This has been a major advance in the field. However, in the

EDMFT framework the resulting self-energy is still local.

A further step forward is represented by the GW+DMFT theory, proposed in 2003 by

Biermann and coworkers [10], where the embedding is performed at the Green’s function

level between the local self-energy coming from the EDMFT solution of the impurity problem

and the non-local self-energy, taken from GW. Therefore, non-locality is included at the

GW level, and the method can be applied to study first-principles Hamiltonians. Different

schemes along these lines have become popular also in other contexts, such as in quantum

chemistry [11–13], where the quantum system is divided into two parts, one of which is

treated at the perturbative level, e. g. by the self-consistent second-order Green’s function

method (GF2), while the other is solved at a higher level by the configuration interaction

(CI) method [14, 15]. However, what distinguishes GW+DMFT from other approaches is the

double embedding in both the Green’s function G and the dynamically screened interaction

W . This has many advantages, as we will see in this review; one of the most important is

that it promotes the Hubbard U parameter to the Weiss field U , which is determined self-

consistently. Therefore, the underlying Hubbard Hamiltonian with retarded interactions is

no longer a model, but is an auxiliary system, making the GW+DMFT scheme a truly ab

initio approach. At the same time, non-locality is kept in both the self-energy Σ and the

electronic polarization P , which are related to G and W , respectively. The GW+DMFT

self-consistency in Gloc and Wloc closes the gap between the two extremes quoted by Hedin.

The general framework sketched above is conceptually appealing but still far from be-

ing a black-box machinery capable of solving generic correlated electron systems and first-

principles Hamiltonians. However, in the last few years, significant progress has been made

toward the final goal of a self-consistent description of dynamical screening effects in strongly
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correlated materials. In this review, we are going to introduce the theoretical and numerical

tools which made this progress possible, such as, for instance, the CTQMC algorithm for

frequency dependent interactions. Moreover, we are going to present the latest applications,

both at the model level and from first principles. Model applications are useful to understand

the limitations of the approximations underlying the EDMFT or GW+DMFT approaches,

while the latest applications to real materials are extremely interesting, as they suggest new

promising directions to approximate GW+DMFT schemes, which are computationally more

affordable, and can be applied to a wider class of ab initio systems.

In our review we will not only explain the general theory, but also focus on practical

aspects, with a twofold purpose: First, making tighter theoretical connections between var-

ious methods which deal with dynamical screening in ab initio correlated electron systems.

Second, presenting methodological details, which help the reader implement the methods in

a computer program. Throughout the review, we will use eV as energy units in the ab initio

applications, while the energy units will be set to the bandwidth, or some related hopping

scale, in model applications.

The general organization of this review is as follows. In Sec. II we explain how the

screening is modeled from first principles in strongly correlated materials. We show that

the retarded interactions emerge naturally from a multi-scale approach, where the coupling

parameters are dynamically screened by higher-energy degrees of freedom, which are traced

out in the derivation of the low-energy Hamiltonian.

In Sec. III, we introduce the main theoretical framework used throughout this review

(Sec. III A), namely the DMFT, employed to solve Hubbard-like low-energy Hamiltonians

with retarded local interactions U . We describe several solvers capable of tackling the

Anderson impurity problem with frequency dependent U , with a particular emphasis on

the CTQMC method (Sec. III B 3), which is formally exact and efficient in the case of

density-density interactions. Different approximations are proposed for solving the impurity

problem, such as the dynamic atomic-limit approximation (DALA) in Sec. III B 1 and the

Lang-Firsov approach in Sec. III B 2. These methods are explained first for the solution

of the Holstein-Hubbard model (Sec. III B), where the dynamic nature of the local inter-

action U derives from bosons (plasmons), locally coupled to the correlated electrons. This

formalism can be generalized to deal with arbitrary ab initio U(ω) (Sec. III C) and with

multi-band/multi-orbital systems typical of realistic materials (Sec. III E), thanks to the
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mapping to a continuum of bosonic modes. The physics behind the generalized Holstein-

Hubbard model can be made more transparent by the derivation of an effective static model,

with renormalized hoppings and interactions due to screening effects, detailed in Sec. III D.

With the tools of Sec. III, one would like to go beyond the local interaction picture,

which could be too rough for realistic materials. Dealing with non-local interactions is a

prerequisite for treating long-range screening effects, which lead to collective phenomena

in solids. In Sec. IV, we present different strategies for treating long-range interactions in

strongly correlated systems, both for extended U -V Hubbard models (Sec. IV A) and real-

istic materials (Sec. IV B). Thse approaches are based on the Green’s function embedding

theory, where both the local Green’s function and the local screened interaction are self-

consistently determined by the many-body solution of an auxiliary single-impurity problem,

which provides both the local electronic self-energy and local polarization of the physical

system. In this way, non-local interactions give rise to additional local screening for the

impurity problem with dynamic U . The Green’s function embedding can be done at the

extended-DMFT level (Sec. IV A 1), or at the GW+DMFT level (Sec. IV A 2). In the latter

scheme, the non-local self-energies and non-local polarizations, computed within the GW ap-

proximation, are self-consistently added to the corresponding local quantities, evaluated in a

non-perturbative way at the DMFT level. Additional approximations are necessary to apply

the GW+DMFT framework to realistic materials (Sec. IV B 1), due to the large number of

degrees of freedom of ab initio Hamiltonians. These approximate schemes are still under

active development. In this review, we report the frozen cRPA polarization (Sec. IV B 2),

the SEX+DMFT (Sec. IV B 3), and DMFT schemes bases on effective Hamiltonians renor-

malized by the non-local GW self-energy, such as the DMFT@nonlocal-GW (Sec. IV B 4)

and the quasi-particle self-consistent GW (QSGW) + DMFT (Sec. IV B 5). On the model

side, we briefly introduce the recently developed dual boson approach in Sec. IV A 3.

As the CTQMC impurity solver works in imaginary time, an analytic continuation to

real frequencies is necessary to obtain spectral functions which can be compared to exper-

iment. One needs to take particular care in the case of retarded interactions, in order to

resolve features such as satellites arising from screening plasmons. A detailed procedure to

incorporate these high-energy structures is explained in Sec. V A for the fermionic spectral

function. The properly normalized kernel for the bosonic spectral functions is derived in

Sec. V B.
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Applications to both model systems and realistic materials are presented in Secs. VI

and VII, respectively. On the model side, the U -V Hubbard Hamiltonian (Secs. VI A 1 and

VI B 1), photo-doped Mott insulators (Sec. VI A 2), and adatom systems on semi-conductor

surfaces (Sec. VI B 2) are discussed. On the ab initio side, we present results for the

SrVO3 transition metal oxide (Secs. VII A 1 and VII C), for the BaFe2As2 (Sec. VII A 2)

and BaCo2As2 (Sec. VII B) pnictides, and for the La2CuO4 cuprate (Sec. VII A 3).

Conclusions and perspectives are drawn in Sec. VIII.

II. DOWNFOLDING

Computational methods play an important role in the study of strongly correlated sys-

tems. Many interesting materials, such as the high-Tc cuprates, have been studied in great

detail using a broad range of experimental probes, which results in a detailed quantitative

knowledge of the correlated electronic structure. A good theoretical description should be

consistent with these experimental findings, and provide insights into the underlying physi-

cal mechanism. Ideally, the accuracy of the computational approach will enable quantitative

predictions of material properties. However, even the simplest model used to investigate the

physics of the cuprates, the two-dimensional (2D) single-band Hubbard model, does not

admit a closed-form solution in the most interesting parameter regimes, which are relevant

for the experimental situations. For instance, the solution of this model near the Mott

transition can be obtained in an approximate yet accurate way only if the most advanced

numerical techniques are employed [16–24].

Moreover, the complexity and richness of strongly correlated materials puts limitations

on the predictive power of simple models. The link between the model parameters and the

experimental conditions, such as doping, pressure, chemical substitution, and temperature,

may be difficult to establish. Yet, the validity of a theory is based on its ability to explain

unambiguously and quantitatively a variety of situations. Therefore, a systematic procedure

for the derivation of the model parameters is essential. Numerical approaches play a crucial

role in the calculation of model parameters, which are seamlessly connected to the physics

of actual compounds.

The idea is to use a multi-scale ab initio scheme [25, 26], which is able to treat and

predict material properties at a level of accuracy depending on the target energy. The
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common scheme is to first compute the full band structure by density functional theory

(DFT) [27–29], which takes into account electrons ranging from the deepest core levels to

the virtual empty states, and covers an energy range of several tens or hundreds of eV. As it

is well know, DFT is not the most accurate theory for strongly correlated materials, but it

is able to reproduce general trends starting from the first-principle Hamiltonian, including

several degrees of freedom. Its failure is usually related to the description of low-energy

states, i.e. the ones near the Fermi level. In the case of strong correlations, they are

poorly described by most of the functionals. At the same time, these states are primarily

responsible for a material’s macroscopic properties. Thus, we would like to improve upon

the DFT description, by applying more accurate, but computationally heavier, many-body

methods to this low-energy sector. In order to do this, we need to derive a low-energy

model by integrating out the high-energy degrees of freedom from the DFT solution. This

intermediate, crucial step, is called downfolding. The last step is the solution of the resulting

model using advanced and hopefully accurate many-body techniques.

In order to downfold the DFT Hamiltonian, one needs to find a basis set which spans

the low-energy space. Usually, one takes the maximally localized Wannier functions, φmR

for the m-th orbital centered in the unit cell R, which give a reliable representation of the

correlated orbitals and their low-energy bands [30, 31]. Then, one projects the ab initio

Hamiltonian onto the basis set elements. The Coulomb matrix elements, which define the

bare U , are therefore

Ubare
mn (R) = 〈φm0φnR|v|φm0φnR〉 =

∫
dr dr′

|φm0(r)|2|φnR(r′)|2

|r− r′|
, (1)

where v is the Coulomb potential. Without loss of generality, we restrict our discussion here

to interactions of density-density form.

The above expression neglects the fundamental effect of screening from high-energy elec-

trons on the low-energy manifold. In the random phase approximation (RPA) framework,

the fully screened interaction is given by W = v/(1 − vP ), where P is the polarization

function, defined as P (r, r′, t) = −2iG0(r, r′, t)G0(r′, r,−t). In the latter definition, the fac-

tor of 2 comes from the spin summation in the spin-degenerate case, and G0 is the zero

temperature DFT Green’s function, which reads:

G0(r, r′, t) =

i
∑occ

l Ψl(r)Ψ
∗
l (r
′)e−iεlt, if t < 0

−i
∑unocc

l Ψl(r)Ψ
∗
l (r
′)e−iεlt, if t > 0

(2)
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(4)

subspace

low−energy
subspace

subspace
high−energy

energy

momentum

Fermi level

(1)

(2)

(3)

high−energy

FIG. 1: Schematic illustration of the screening processes in the constrained RPA framework. The

black bands are the so-called “screening bands”, while the red bands are assumed to be strongly

correlated. Only the transitions within the low-energy subspace (excitations of type (4)) contribute

to the low-energy polarization PL, while the “complement” PH includes excitations of type (1),

(2), and (3), i.e., excitations involving the high-energy bands.

where the {ψl, εl} are the one-particle Bloch eigenfunctions and eigenvalues corresponding

to the system’s band structure. In the frequency domain, and for temperature T = 0, the

above expression for the polarization becomes

P (r, r′, ω) = 2
occ∑
i

unocc∑
j

ψi(r)ψ
∗
i (r
′)ψ∗j (r)ψj(r

′)

{
1

ω − εj + εi + i0+
− 1

ω + εj − εi − i0+

}
.

(3)

One can then separate P into the two contributions P = PH + PL, with PL defined by

polarization channels fully contained in the low-energy (L) window around the Fermi level,

and PH its complement. Note that PH includes not only particle-hole excitations within

the high-energy (H) sector, but also those connecting the high- and the low-energy sector.

A schematic illustration of the division between PH and PL is reported in Fig. 1.

In the constrained RPA (cRPA) theory [32, 33], the partially screened interaction is given

by WL = v/(1−vPH). The physical interpretation is transparent: WL is the bare interaction

screened by scattering processes leaking from the low-energy sector. IfWL is further screened

by the polarization PL of the low-energy sector, the fully screened interaction is recovered:
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W = WL/(1−WLPL).

WL yields the matrix elements of the partially screened U :

Umn(R, ω) =
〈
φm0φnR

∣∣∣ v

1− vPH(ω)

∣∣∣φm0φnR

〉
. (4)

The above U defines the electron-electron interaction felt by the low-energy electrons in

the downfolded model, i.e., after the high-energy degrees of freedom have been integrated

out. The important thing to note here is that the partially screened U becomes frequency

dependent, a direct consequence of the frequency dependence of PH [34]. In the time-domain,

this implies that the effective interaction becomes retarded. This dynamical screening is the

main focus of our review. We will show that it can be explicitly taken into account in the

solution of the low-energy models, and that it will affect the results in nontrivial ways.

It is interesting to remark here that the frequency dependence is particularly strong for

monopole-monopole interactions (direct terms of the RPA expansion), while the screening

is less effective for multipolar charge distributions (“exchange” terms in RPA), like the ones

related to the estimate of the couplings J :

Jmn(R, ω) =
〈
φm0φnR

∣∣∣ v

1− vPH(ω)

∣∣∣φn0φmR

〉
. (5)

It turns out that Umn is reduced by an order of magnitude with respect to Ubare
mn , while Jmn

is almost unaffected by screening (change of typically less than 20% [35]). As an illustration,

we plot the cRPA results for the 3-band model of SrVO3 in Fig. 2.

We would like to stress that the cRPA values of U and J are not adjusted by fitting

schemes or empirical arguments. They are evaluated from first-principles [37–44], according

to a rigorous procedure, which has been recently extended also to the more involved case of

entangled bands [45, 46], where the separation between the low- and high-energy sectors is

not sharp, due to the hybridization between correlated orbitals and more extended ones.

Although the cRPA scheme seems plausible, it has some limitations, which originate

from two sources: First, it is built on the RPA method which is not exact; second, the

underlying DFT band structure is not exact either. While the first limitation can lead to

underscreening or overscreening depending on the particular case, the second one is most

severe in materials which are close to a Mott transition (which leads to strong modifications

in the starting DFT band structure, and rearrangements of the screening bands), or in the

case where the ligands are not included in the model (as usually the p− d hybridization is

11
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FIG. 2: cRPA U(ω) ≡ Unn(ω) and J(ω) ≡ Jnm(ω) (n 6= m) for the 3-band model of SrVO3.

(From Ref. [36].)

not well reproduced by DFT). A way to overcome the latter limitation is to use a better ab

initio scheme to solve the full Hamiltonian, e. g. by replacing DFT by GW, while the former

one can be reduced by improving upon the RPA theory. A possible approach is the recently

developed constrained functional renormalization group (cfRG) method [47]. Testing the

reliability of the cRPA method is a subject of current research [48].

Besides the cRPA method, other methods have been proposed to evaluate the local

electron-electron couplings from ab initio calculations, such as the linear response approach

[49, 50] and the constrained DFT [51, 52]. They however neglect the explicit frequency

dependence of the Hubbard parameters. A slight variation of the cRPA method, which

retains its full frequency dependence but is based on orbitals rather than bands, can be

found in Ref. [53]. Along the same lines, i.e. working in the maximally localized orbitals

space, Nomura et al. proposed to evaluate the partially screened U by undressing the fully

screened coupling via the local polarization (i.e. by also including non-local processes in the

low-energy manifold as active screening channels) [54]. This should give a U particularly

suited for embedding theories such as DMFT, where only local correlations are taken into

account. However, in our review, we will consider an alternative strategy, which is to include

non-local processes in an explicit way, using extended-DMFT frameworks.

While the two-body part of the downfolded Hamiltonian is provided by the matrix el-

ements of the partially screened interaction, Eqs. (4) and (5), the one-body part is given
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by

tmn(R) = 〈φm0|HDFT|φnR〉, (6)

where HDFT is the DFT Hamiltonian determined in the first step. This tmn(R) already

includes some correlation effects, as described by HDFT. Therefore, one needs to correct the

one-body part, i.e., subtract the low-energy correlation effects from the density functional, to

avoid their double counting (DC). The so-called “double-counting correction” is common to

all methods which augment the DFT band structure by explicit electron-electron interaction

terms, such as DFT+U [55, 56] or DFT+DMFT [57]. This is the weakest point of the

downfolding procedure, as an exact expression for the DC term is hard to derive. This is

because the exchange correlation potential Vxc in HDFT is a nonlinear functional of the total

density, which makes it impossible to separate it into low- and high-energy contributions.

Several forms of approximate DC corrections have been proposed in the literature. One

of the most successful for strongly correlated systems has proven to be the fully localized

limit (FLL) form [58], which reads

ΣFLL DC
mm′σ = δmm′

(
U

(
nd −

1

2

)
− J

(
nσd −

1

2

))
, (7)

where nσd is the spin-resolved occupancy of the correlated orbitals, and nd = n↑d +n↓d. In the

above equation, U = 1
N2

∑
mn Umn(0, 0) is the average local static Coulomb interaction (N

is the number of correlated bands), while the Hund’s coupling J is related to the couplings

in Eq. (5) through the relation J = U − 1
N(N−1)

∑
m 6=n (Umn(0, 0)− Jmn(0, 0)). The form in

Eq. (7) has been used in the ab initio applications presented in this review, unless otherwise

stated.

Very recently, Haule proposed an improved DC scheme, in which a V imp
xc potential for the

impurity system is constructed in terms of the local Green’s functions and a local energy

functional built on screened interactions [59]. He found that this procedure leads to double

counting shifts in good agreement with an approximate DC correction obtained from Eq. (7),

by replacing n with its closest integer value n0 = [nd] (nominal DFT occupancy [60]), i.e.

Σnominal DC
mm′σ = δmm′

(
U

(
n0 − 1

2

)
− J

2

(
n0 − 1

))
. (8)

Another interesting solution of the double counting problem has been proposed recently

in Ref. [26]. It is based on the replacement of the exchange-correlation functional Vxc by

the perturbative expansion of the potential to first order in the fully screened interaction
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W , as it is done in the GW approach [1]. In contrast to Vxc, in the GW framework one can

easily separate the low-energy contributions (ΣL = GLW ) from the high-energy ones (ΣH =

GHW ), where GH (GL) is the unperturbed Green’s function living in the high- (low-) energy

subspace. The off-diagonal matrix elements connecting the two subspaces are disregarded

in the quasiparticle approximation. This leaves us with the operator HDFT − Vxc + ΣH ,

which is well defined in the high-energy space, although being frequency dependent. To

get rid of the frequency dependence, the dynamic part included in the ΣH self-energy is

treated as a first-order variation around the Fermi energy, and condensed into a bandwidth

renormalization factor ZH = (1− ∂ReΣH

∂ω
)−1. The corresponding DC-free hoppings read

teff
mn(R) = 〈φm0|Heff|φnR〉, (9)

with Heff = ZH
(
HDFT − Vxc + ReΣH(0)

)
. It turns out that the effective band structure in

Eq. (9) has a larger bandwidth than the one in Eq. (6). Therefore, a proper treatment of the

double counting correction leads to a much more complex rearrangement of the low-energy

bands than the simple rigid (orbital independent) shift of the correlated manifold implied

by Eq. (7). In most of the applications presented in this review, we are however going to

use the latter correction, even though it is less accurate. It is simpler to compute, because

it does not require a single-shot GW calculation of the full problem.

Usually, in the downfolded model one considers only local contributions in the two-body

part, i.e. for R = 0 in Eqs. (4) and (5), as the screening reduces the range of the interaction,

making Umn(R, ω) a localized function in space. Of course the localization of these matrix

elements depends on the type of system and on the correlation strength. In fact, the elimi-

nation of the low-energy metallic screening (by unscreening W with PL) makes the partially

screened interactions longer-ranged than the fully screened ones. Therefore, Hubbard-type

approximations with only on-site interactions could be problematic. In fact, the restriction

to Hubbard-like terms in most existing calculations is mainly due to the difficulty of dealing

with long-ranged interactions in the solution of the low-energy model. Downfolded extended

U -V models have however been taken into account in recent DMFT studies [61], and one of

the purposes of this review is to explain the techniques which enable these simulations.

There has also been a vast amount of work focusing on the explicit solution of extended

lattice models. These calculations keep the full spatial dependence of the Hamiltonian,

both in the one- and two-body parts, but neglect dynamical effects. Successful methods
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of this kind are for instance lattice and diagrammatic quantum Monte Carlo (although

affected by the sign problem and/or by finite-size effects) [21, 62–66], exact diagonalization

(which is limited to very small sizes), and methods based on matrix product states and their

variants (most appropriate for low-dimensional systems) [67–69]. For models with purely

local interactions, the exact diagonalization approach is also useful within cluster embedding

theories [16], such as the variational cluster approximation (VCA) [70], cellular dynamical

mean field theory (CDMFT) [71], or the dynamical cluster approximation (DCA) [72]).

Here, we focus our attention on Green’s function methods, and Green’s function embedding

approaches, such as the DMFT, where significant progress has been made in the consistent

treatment of dynamically screened interaction parameters and the corresponding retardation

effects.

From the point of view of including dynamically screened non-local interactions, a very

appealing framework is the GW+DMFT theory, which treats the k-dependent electron

correlations at the GW level, while the local diagrams are summed up to infinite order

by the DMFT solver. This is justified by the interaction-range reduction from screening,

which makes the U matrix more localized in R. Therefore, a perturbative expansion of

the self-energy may be a good approximation for the non-local U terms. However, we

recall that a k-dependent Σ can also arise from purely local interactions, particularly in low

dimensional systems (1D and 2D), where the strength of the resulting k-modulation can

seriously challenge the validity of the perturbative nature of GW. As it will be explained

in Sec. IV A 2, in the GW+DMFT formalism the dynamically screened interaction U(ω) is

replaced by an auxiliary local interaction U(ω), which becomes frequency dependent due

to screening provided not only by high-energy states (related to downfolding) but also by

non-local contributions which enter the local polarization function (related to two-particle

embedding). This double nature of screening is captured by the GW+DMFT self-consistency

construction, where the effective hybridization G0 and effective local interaction U are fixed

by a double constraint imposed on the local Green’s function and the local polarization,

respectively.
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FIG. 3: Mapping of the Hubbard model to an effective single-site model (quantum impurity

model).

III. SOLVING LOW-ENERGY MODELS WITH DYNAMICALLY SCREENED

U(ω)

Once a low energy lattice model with a few correlated orbitals and a frequency-dependent

(retarded) monopole interaction U has been derived, we need a suitable method to solve it.

Here, we focus on dynamical mean field based methods, which are adequate for the de-

scription of systems with a large coordination number, or systems in the strongly correlated

(Mott insulating) regime, where the local physics is dominant. We will start by introducing

the dynamical mean field approximation (Sec. III A), and then discuss various strategies

for dealing with the retarded interaction originating from the coupling to a single bosonic

mode (Sec. III B). These techniques will then be generalized to arbitrary U(ω), in Sec. III C.

We also discuss the proper definition of effective low-energy models with static interactions

(Sec. III D).

A. Dynamical mean field theory

For simplicity, we discuss the dynamical mean field approximation [73] for a simple, but

fundamentally important model for correlated electron materials, the single-orbital Hubbard

model with a retarded on-site interaction U(τ). Written in terms of fermionic creation and
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annihilation operators d† and d, the action of the lattice model is given by

SHubbard =− t
∑
〈ij〉σ

∫ β

0

dτ
[
d†iσ(τ)djσ(τ) + d†jσ(τ)diσ(τ)

]
− µ

∑
iσ

∫ β

0

dτniσ(τ)

+
1

2

∑
i

∫ β

0

dτdτ ′U(τ − τ ′)ni(τ)ni(τ
′), (10)

with nσ = d†σdσ, n = n↑+n↓, t the hopping amplitude and β = 1/T the inverse temperature.

The partition function of the lattice model is Z = Tr[T e−SHubbard ], with T the time-ordering

operator. Note that the retarded interaction also couples electrons of the same spin. In

the spirit of mean-field approximations, we now focus on one particular site of the lattice

(black dot in the left panel of Fig. 3) and replace the remaining degrees of freedom of the

model by a hybridization term, which describes the hopping of electrons in and out of the

impurity. The effective single-site problem then becomes an Anderson impurity model [74]

with retarded interaction,

Simp =
∑
σ

∫ β

0

dτdτ ′d†σ(τ)∆σ(τ − τ ′)dσ(τ ′)− µ
∑
σ

∫ β

0

dτnσ(τ)

+
1

2

∫ β

0

dτdτ ′U(τ − τ ′)n(τ)n(τ ′). (11)

The hybridization function ∆(τ) plays the role of the dynamical mean field, which is com-

puted self-consistently in such a way that the Anderson impurity model mimics the lattice

environment as closely as possible. More precisely, the self-consistent solution is constructed

such that the impurity Green’s function Gimp(iωn) reproduces the local lattice Green’s func-

tion Gloc(iωn) ≡ Gi,i(iωn). If G(k, iωn) is the momentum-dependent lattice Green’s function

of the Hubbard model, we thus seek a hybridization function such that∫
(dk)G(k, iωn) ≡ Gimp(iωn), (12)

where
∫

(dk) denotes a normalized integral over the Brillouin zone.

It is also useful to introduce the Green’s function of the non-interacting impurity (“Weiss

Green’s function”) G0, which is related to the hybridization function by

[G0σ]−1(iωn) = iωn + µ−∆σ(iωn). (13)

Depending on the method used, it is more natural to work with the Weiss Green’s function

G0 rather than the hybridization function ∆.
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1. DMFT approximation

We obtain the solution of Eq. (12) iteratively. However, it is not immediately clear how

we can use this self-consistency condition to update the dynamical mean field. To define

a practical procedure, we have to relate the left-hand-side of Eq. (12) to impurity model

quantities. This step involves, as the essential approximation of the DMFT method, a

simplification of the momentum-dependence of the lattice self-energy.

The self-energy describes the effect of interactions on the propagation of electrons. In the

non-interacting model, the lattice Green’s function is G0(k, iωn) = [iωn + µ− εk]−1, with εk

the Fourier transform of the hopping matrix. The Green’s function of the interacting model

is G(k, iωn) = [iωn + µ− εk − Σ(k, iωn)]−1 with Σ(k, iωn) the lattice self-energy. Therefore

Σ(k, iωn) = G−1
0 (k, iωn)−G−1(k, iωn). (14)

Similarly, we obtain the impurity self-energy as

Σimp(iωn) = G−1
0 (iωn)−G−1

imp(iωn), (15)

with G−1
0 defined in Eq. (13). The DMFT approximation is the identification of the lattice

self-energy with the momentum-independent impurity self-energy,

Σ(k, iωn) ≈ Σimp(iωn). (16)

This approximation enables us to rewrite the self-consistency equation (12) as∫
(dk)[iωn + µ− εk − Σimp(iωn)]−1 ≡ Gimp(iωn). (17)

Since both Gimp(iωn) and Σimp(iωn) are determined by the hybridization function ∆(τ) (or

G0(τ)), Eq. (17) defines a self-consistency condition for these functions.

2. DMFT self-consistency loop

We now formulate the self-consistency loop for the Weiss Green’s function G0(iωn). Start-

ing from an arbitrary initial G0(iωn) (for example, the local Green’s function of the non-

interacting lattice model), we iterate the following steps until convergence:

1. Solve the impurity problem, that is, compute the impurity Green’s function Gimp(iωn)

for the given G0(iωn),
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2. Extract the self-energy of the impurity model: Σimp(iωn) = G−1
0 (iωn)−G−1

imp(iωn),

3. Identify the lattice self-energy with the impurity self-energy, Σ(k, iωn) = Σimp(iωn)

(DMFT approximation), and compute the local lattice Green’s function Gloc(iωn) =∫
(dk)[iωn + µ− εk − Σimp(iωn)]−1,

4. Apply the DMFT self-consistency condition, Gloc(iωn) = Gimp(iωn), and use it to

define a new Weiss Green’s function G−1
0 (iωn) = G−1

loc(iωn) + Σimp(iωn).

The computationally expensive step is the solution of the impurity problem (Step (i)).

When the loop converges, the Weiss Green’s function contains information about the topol-

ogy of the lattice (through the density of states), and about the phase (metal, Mott insulator,

antiferromagnetic insulator, . . . ). The impurity thus behaves, at least to some extent, as if

it were a site of the lattice.

Obviously, a single-site impurity model does not capture all the physics. In particular, the

DMFT approximation neglects all spatial fluctuations. These fluctuations are important,

for example, in low-dimensional systems. The DMFT formalism is believed to provide a

qualitatively correct description of three-dimensional unfrustrated lattice models. It becomes

exact in the limit of infinite dimension [75, 76] or infinite coordination number (where spatial

fluctuations are negligible), in the non-interacting limit (U = 0 implies Σ = 0), and in the

atomic limit (t = 0 implies ∆ = 0).

B. Holstein-Hubbard model

In a Hamiltonian formulation, a lattice model with dynamically screened U(ω) can be

represented by coupling the electron density on a given site to a continuum of bosonic modes

with frequency ω, with appropriately chosen coupling strengths gω. If there is only a single

bosonic mode with frequency ω0 and coupling g, this corresponds to the Holstein-Hubbard

model

HHH =− t
∑
〈ij〉σ

(d†iσdjσ + d†jσdiσ) + U
∑
i

ni↑ni↓ − µ
∑
iσ

niσ

+ g
∑
i

(b†i + bi)(ni↑ + ni↓ − 1) + ω0

∑
i

b†ibi. (18)
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Here, b† denotes the boson creation operator. In the DMFT approximation, this lattice

model is mapped onto a single-site impurity model with Hamiltonian Himp = Hloc +Hhyb +

Hbath, where

Hloc = Un↑n↓ − µ(n↑ + n↓) + g(n↑ + n↓ − 1)(b† + b) + ω0b
†b, (19)

Hhyb =
∑
pσ

[
Vpσd

†
σapσ + V ∗pσa

†
pσdσ

]
, (20)

Hbath =
∑
pσ

εpa
†
pσapσ. (21)

In terms of the harmonic oscillator position and momentum operators

X = (b† + b)/
√

2, P = i(b† − b)/
√

2, (22)

the local Hamiltonian can (up to a constant) be written as

Hloc = Un↑n↓ − µ(n↑ + n↓) +
√

2g(n↑ + n↓ − 1)X +
ω0

2
(X2 + P 2), (23)

so the physics of this model is that the charge couples to bosons describing either local

lattice distortions (phonons) or local density fluctuations (plasmons).

The hybridization term Hhyb and the fermionic bath Hbath are defined such that the

parameters Vpσ and εp encode the hybridization function

∆σ(iωn) =
∑
p

|Vpσ|2

iωn − εp
. (24)

On the other hand, integrating out the bosons yields the frequency-dependent interaction

U(iνn) = U +
2g2ω0

(iνn)2 − ω2
0

, (25)

or, after analytical continuation to the real-frequency axis,

ReU(ω) = U +
2g2ω0

ω2 − ω2
0

, (26)

ImU(ω) = −g2π(δ(ω − ω0)− δ(ω + ω0)). (27)

The real part of the frequency-dependent interaction, illustrated in the left panel of Fig. 4

therefore has poles at the boson energy ±ω0 and ranges from the unscreened interaction

Ubare = U at high frequencies to a static (screened) interaction

Usrc = U − 2g2/ω0 (28)
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FIG. 4: Retarded interaction corresponding to the Holstein-Hubbard model with on-site interac-

tion U = Ubare, bosonic frequency ω0 and electron-boson coupling g. The difference between bare

and screened interaction is λ = 2g2/ω0.

at ω = 0.

While the DMFT approximation simplifies the problem considerably, by mapping the

Holstein-Hubbard lattice model onto an auxiliary single-site impurity model, this effective

model is still a complicated interacting many-body system. The electron-boson coupling

introduces additional energy scales, besides the bandwidth and Kondo scale of the Ander-

son impurity model, namely the boson frequency ω0 and the effective coupling strength

λ = 2g2/ω0. (In the high-frequency limit, the Holstein-Hubbard model simplifies to the

Hubbard model with interaction Uscr = U − λ.) Even in the DMFT approximation, and in

the absence of long-range order, the Holstein-Hubbard model features a rich phase diagram

with metallic, Mott insulating and bipolaronic insulating phases (Sec. III B 4) [77–81]. An-

tiferromagnetic, charge-ordered, superconducting and supersolid phases can also be found

[82–84] if symmetry breaking is allowed. In the following, we will discuss efficient, yet ac-

curate numerical approaches for solving the Holstein-Hubbard impurity problem, and also

show how these techniques can be generalized to models with a coupling to a continuum of

bosonic modes (or arbitrary retarded interactions). In fact, in the context of DMFT based ab

initio simulations of correlated materials, the numerical challenge of treating dynamically

screened interactions has been a major bottleneck which has hampered the implementa-

tion of advanced LDA+DMFT or GW+DMFT schemes for many years. The techniques
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introduced in the following sections eliminate this bottleneck.

1. DALA approach

An approximate, but often very useful scheme is the so-called dynamic atomic-limit

approximation (DALA) [85]. The main idea behind the DALA is to assume the following

ansatz for the Green’s function in imaginary time:

G(τ) = Gstatic(τ, µ, Uscr) exp

(
1

β

∑
n6=0

U(iνn)− Uscr

ν2
n

(
eiνnτ − 1

))
, (29)

whereGstatic(τ, µ, Uscr) is the “standard” Green’s function of the model with static interaction

Uscr. The factor which multiplies this Green’s function takes into account the dynamic nature

of the interaction. For the Holstein-Hubbard model, U(iνn) is defined in Eq. (25) and Uscr is

the static screened interaction, defined in Eq. (28) as the zero-frequency limit of U(ω). This

ansatz can be extended to arbitrary retarded interactions, fillings and number of orbitals.

The latter dependence enters only through Gstatic. The above ansatz is exact in the atomic

limit, that is, when the hybridization function ∆ is set to zero and the impurity is isolated

from the bath. In that limit the Green’s function exactly factorizes into the Bose factor

FDALA(τ) = exp

(
1

β

∑
n6=0

U(iνn)− Uscr

ν2
n

(
eiνnτ − 1

))
, (30)

depending only on dynamic U quantities, and a fermionic part Gstatic, which is the Green’s

function of the atomic limit with static screened Uscr. Other trivial exact limits are the

static and non-interacting regimes, where FDALA = 1.

Away from the atomic limit, one can still define the Bose factor F by

F (τ) =
G(τ)

Gstatic(τ)
, (31)

where G(τ) is the exact Green’s function of the dynamic U(ω) problem and Gstatic(τ) is the

exact Green’s function of the Hubbard model with the same hybridization ∆ as G but with

the static Hubbard repulsion Uscr. One may then approximate the exact F by its atomic

limit form FDALA in Eq. (30). On the other hand, Gstatic(τ) can be obtained quite accurately

by the solution of the Anderson model with static Uscr via “standard” methods. Therefore,

in the DALA framework, the Green’s function G of the full problem is approximated by the

product GstaticFDALA.
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Several remarks are in order here: (i) the DALA approach is non-perturbative in both the

electron-electron screened interaction (through the Gstatic solution) and the electron-boson

interaction, as one may argue from the exponential form of FDALA. In fact, FDALA can also

be seen as a cumulant expansion of the Green’s function in the retarded interaction around

∆ = 0. A similar formalism has been used to compute the multiple plasmon satellites in

silicon within the GW framework [8]. (ii) It has been shown that the DALA works quite

well even away from the atomic limit, as long as Uscr and ω0 are large compared to ∆.

The approximation is problematic when the hybridization becomes essential for the low-

energy low-temperature properties of the system. In particular, the DALA does not fulfill

the Friedel sum rule, which sets the zero frequency limit of the exact Green’s function,

ImG(i0+) = −4/D, in a half-filled system with a semicircular density of states of bandwidth

D. On the other hand, the DALA gives the right high-energy properties of the Green’s

function. (iii) Once the DALA solution of the Anderson impurity model with retarded

interaction (Eq. (11)) is plugged into the DMFT cycle, the high-energy tails of the impurity

Green’s function, correctly modulated by the Bose factor FDALA, can have a strong impact

on the self-consistent solution. In general, in the strongly correlated regime, the Mott

transition line modified by retardation effects is quite accurately described by the DALA-

DMFT solution of the lattice problem, as shown by a direct comparison with more advanced

and accurate methods such as CTQMC (see Sec. III B 3 and Fig. 6). (iv) The very simple

structure of the factorization ansatz used in the DALA framework is suggestive of the

physics of the system. Indeed, the analytic form of FDALA is the basis for a very effective

analytic continuation method, described in Sec. V, which can produce the correct strength

and position of the plasmon/phonon satellites in the spectral function of G. These high

energy features are fingerprints of the dynamically screened electron-electron interaction

and the DALA inspired analytic continuation can successfully resolve them.

2. Lang-Firsov approach

To introduce the Lang-Firsov (LF) approach, let us start with Himp, the single-band

single-boson impurity Hamiltonian, introduced in Sec. III B. The Lang-Firsov transforma-

tion is a unitary transformation O of the fermion and boson local (impurity) operators, which

eliminates the explicit electron-boson interaction and introduces dressed fermion quasipar-
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ticles [86]. It is defined as follows:

O = exp

(
− g

ω0

(b† + b) (n↑ + n↓ − 1)

)
, (32)

b̃ = O−1bO = b− g

ω0

(n↑ + n↓ − 1) , (33)

d̃ = O−1dO = exp

(
− g

ω0

(b† − b)
)
d, (34)

where b̃ and d̃ are the transformed boson and fermion local operators, respectively. Therefore,

the transformed impurity Hamiltonian H̃imp = O−1HimpO reads

H̃imp =
∑
σ

(−µ+ g2/ω0)d†σdσ + (U − 2g2/ω0)n↑n↓ + ω0b
†b

+
∑
pσ

[
Vpσ exp

(
g

ω0

(b† − b)
)
d†σapσ + V ∗pσ exp

(
− g

ω0

(b† − b)
)
a†pσdσ

]
+
∑
pσ

εpa
†
pσapσ. (35)

A nontrivial effect of the LF transformation is that it changes the bare local Hubbard repul-

sion to the screened value Uscr (Eq. (28)). The interaction between dressed quasiparticles

d̃†|0〉 is reduced by the presence of bosons. Analogously, we can write the impurity Green’s

function expressed in the transformed coordinates as

G(τ) = Z−1〈T d̃†(0)d̃(τ) exp(−βH̃)〉. (36)

While the LF transformation reveals the role of bosons as mediators of the effective screened

electron-electron interaction, which is the core of the screening theory presented in this re-

view, the transformed Himp in Eq. (35) is not immediately useful, as it shifts all the complex-

ity of the electron-boson interaction into “electronic polarons”, the dressed quasiparticles,

i.e. electrons coupled to their surrounding polarization cloud. We need to make some ap-

proximation, which exploits the form of Eq. (35). A widely used one is to project the full

Fock space onto the zero boson mode, the so-called LF approximation. The dynamic nature

of the bosons is thereby reduced to their lowest harmonic level. It is clear that this approxi-

mation is good when ω0 � E∗, with E∗ the relevant energy scale (bandwidth, hybridization,

or Hubbard U repulsion) of the purely fermionic part. In this regime, the fermionic degrees

of freedom are well separated from the bosonic high-energy ones. The LF approximation

is exact in the antiadiabatic ω0 → ∞ limit. It turns out that many realistic cases fall into
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the antiadiabatic regime, as the characteristic screening frequency is usually the plasma fre-

quency ω0 of the homogeneous electron gas evaluated at the same average density as the real

system. As shown in Ref. [85], ω0 ≥ 15 eV in many correlated materials, which is normally

larger than the energy scale of the correlated bands.

Once H̃imp in Eq. (35) is projected onto the boson vacuum, the resulting LF approximated

Anderson model becomes a standard (non-retarded) one with renormalized hybridization,

shifted chemical potential, and screened on-site interaction:

H0 =
∑
σ

(−µ+ g2/ω0)d†σdσ + (U − 2g2/ω0)n↑n↓ + ω0b
†b

+
∑
pσ

(
Vpσ exp

(
− g2

2ω2
0

)
d†σapσ + V ∗pσ exp

(
− g2

2ω2
0

)
a†pσdσ

)
+
∑
pσ

εpa
†
pσapσ. (37)

Analogously, the LF approximated form of the Green’s function in Eq. (36) is

GLF (τ) = exp
(
−g2/ω2

0

)
Z−1〈Td†(0)d(τ) exp(−βH0)〉

≡ exp
(
−g2/ω2

0

)
GH0(τ). (38)

After integration over the fermionic bath, one obtains the following Lang-Firsov Green’s

function for the Anderson-Holstein model in Eqs. (19)-(21):

GLF (iωn) =
exp(−g2/ω2

0)

iωn + µ− g2/ω2
0 − exp(−g2/ω2

0)∆(iωn)− Σ[Uscr](iωn)
, (39)

where ∆(iωn) =
∑

pσ |Vpσ|2/(iωn − εp) is the hybridization function and Σ[Uscr](iωn) is the

self-energy, which depends on the screened value of U .

We note that the same exp (−g2/ω2
0) factor renormalizes both the hybridization function

and the Green’s function. Therefore, the physical effect of retarding bosons, at least in the

antiadiabatic regime, is threefold: (i) They reduce the Hubbard repulsion U to its screened

value, (ii) they reduce the hopping elements between the impurity and the bath, which

in the DMFT framework means reducing the bandwidth of the related lattice model, and

(iii) they reduce the weight of the low-energy Green’s function, which mimics the spectral

weight transfer from the correlated manifold to higher-energy satellites, due to boson shake-

off processes. All these physical insights provided by the LF approximation will be used in

Sec. III D to derive an effective static model which properly describes the low-energy effects

of screening in realistic strongly correlated systems.
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In contrast to the DALA approximation, the LF Green’s function of Eq. (39) fulfills the

Friedel sum rule. Therefore the LF approximation can be used to correct the low-energy

behavior of the DALA, as suggested in Ref. [85]. However, the combination of the two

theories is quite cumbersome. If a numerically exact result is desirable, it is better to use

the continuous-time Monte Carlo approach extended to dynamic interactions, which we

describe in the next subsection.

3. Continuous-time Monte Carlo approach

Continuous-time Monte Carlo simulations rely on an expansion of the partition function

into a series of diagrams and the stochastic sampling of (collections) of these diagrams. We

represent the partition function as a sum (or, more precisely, integral) of configurations c

with weight wc,

Z =
∑
c

wc, (40)

and implement a random walk c1 → c2 → c3 → . . . in configuration space in such a way that

each configuration can be reached from any other in a finite number of steps (ergodicity)

and that detailed balance is satisfied,

|wc1|p(c1 → c2) = |wc2|p(c2 → c1). (41)

This assures that each configuration c is visited with a probability proportional to |wc|. One

can thus obtain an estimate for the Green’s function from a finite number N of measure-

ments:

g =

∑
cwcgc∑
cwc

=

∑
c |wc|signcgc∑
c |wc|signc

≈
∑N

i=1 signcigci∑N
i=1 signci

=
〈sign · g〉MC

〈sign〉MC

. (42)

The error on this estimate decreases like 1/
√
N .

The first step in the derivation of the continuous-time impurity solver [9] is to rewrite

the partition function Z = Tr[e−βHimp ] as a time ordered exponential using some interaction

representation. We split the impurity Hamiltonian into two parts, H = H1 + H2 and

define the time-dependent operators in the interaction picture as O(τ) = eτH1Oe−τH1 . We

furthermore introduce the operator A(β) = eβH1e−βH and write the partition function as

Z = Tr[e−βH1A(β)]. The operator A(β) satisfies dA/dβ = eβH1(H1−H)e−βH = −H2(β)A(β)

and can be expressed as A(β) = T exp[−
∫ β

0
dτH2(τ)].
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In a second step, the time-ordered exponential is expanded into a power series,

Z = Tr
[
e−βH1T e−

∫ β
0 dτH2(τ)

]
=

∞∑
n=0

∫ β

0

dτ1 . . .

∫ β

τn−1

dτnTr
[
e−(β−τn)H1(−H2) . . . e−(τ2−τ1)H1(−H2)e−τ1H1

]
,

which is a representation of the partition function of the form (40), namely the sum of all

configurations c = {τ1, . . . , τn}, n = 0, 1, . . ., τi ∈ [0, β) with weight

wc = Tr
[
e−(β−τn)H1(−H2) . . . e−(τ2−τ1)H1(−H2)e−τ1H1

]
dτn. (43)

In the following we will discuss the so-called “hybridization-expansion” approach [87, 88],

which is based on an expansion of Z in powers of the impurity-bath hybridization term Hhyb,

and an interaction representation in which the time evolution is determined by the local part

Hloc +Hbath.

In the case of the Holstein-Hubbard model [89] the trace in Eq. (43) is over the Fock states

of the impurity, the fermionic bath and the bosonic bath (Tr = TrdTrcTrd), or an equiv-

alent basis. After the expansion in the hybridization operators, the time-evolution from

one hybridization event to the next does no longer couple the impurity and the fermionic

bath. Since the fermionic bath is noninteracting, the trace over the c-states can be evaluated

analytically, resulting in two determinants (one for each spin) of matrices M−1
σ , whose ele-

ments are the hybridization functions ∆ evaluated at the time-intervals determined by the

hybridization operator positions. The weight of a Monte Carlo configuration corresponding

to a perturbation order
∑

σ 2nσ (nσ creation operators d†σ(τσ) and nσ annihilation operators

dσ(τ ′σ)) can thus be expressed as

w({Oi(τi)}) = Z0,cTrdTrb

[
T e−βHloc

∏
σ

dσ(τσ,nσ)d†σ(τ ′σ,nσ) . . .

. . . dσ(τσ,1)d†σ(τ ′σ,1)
]∏

σ

(detM−1
σ )(dτ)2nσ , (44)

where the the matrix elements are M−1
σ (i, j) = ∆σ(τ ′σ,i − τσ,j). We denote the time-ordered

sequence of impurity creation and annihilation operators by {Oi(τi)} (1 ≤ i ≤ 2n, n =∑
σ nσ). At this stage, the time-evolution from one operator to the next still includes the

coupling to the bosons. In order to evaluate the trace over the boson states, we perform

the Lang-Firsov [86] transformation introduced in the previous subsection. Here, we express

it in terms of the boson position and momentum operators X and P defined in Eq. (22).
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FIG. 5: Illustration of a segment configuration with one segment for spin up and spin down. The

interaction and chemical potential contribution to the configuration weight can be obtained from

the lengths and overlaps of the segments. The boson contribution is indicated by the blue dashed

lines, which connect all pairs of operators.

The unitary transformation specified by eiPX0 shifts X by X0, and if we choose X0 =

(
√

2g/ω0)(n↑ + n↓ − 1), the transformed local Hamiltonian (23),

H̃loc = e−iPX0Hloce
iPX0

= Ũ ñ↑ñ↓ − µ̃(ñ↑ + ñ↓) +
ω0

2
(X2 + P 2), (45)

has no explicit electron-phonon coupling anymore. H̃loc is of the Hubbard form but with

modified chemical potential and interaction strength,

µ̃ = µ− g2/ω0, (46)

Ũ = U − 2g2/ω0. (47)

Note that Ũ = Uscr (Eq. (28)). The transformation also affects the impurity creation and

annihilation operators, which acquire a boson factor:

d̃†σ = eiPX0d†σe
−iPX0 = e

g
ω0

(b†−b)
d†σ, (48)

d̃σ = eiPX0dσe
−iPX0 = e

− g
ω0

(b†−b)
dσ. (49)

After this transformation, the electron and boson sectors are decoupled and the trace in

Eq. (44) becomes the product of a term involving electron operators which is identical to

the weight appearing in a Hubbard model simulation (with shifted Ũ and µ̃), and a phonon

term which is the expectation value of a product of exponentials of boson operators, to be
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evaluated with the noninteracting boson Hamiltonian ω0b
†b. The phonon contribution wb to

the weight (44) can be written as

wb({Oi(τi)}) = Z0,b

〈
es2nA(τ2n)es2n−1A(τ2n−1) · · · es1A(τ1)

〉
b
, (50)

with Z0,b the noninteracting boson partition function, 〈. . .〉b = Trb[. . .]/Z0,b, 0 ≤ τ1 < τ2 <

. . . < τ2n < β, si = 1 (−1) if the ith operator is a creation (annihilation) operator and A(τ)

given by

A(τ) =
g

ω0

(eω0τb† − e−ω0τb). (51)

The expectation value is to be taken in the thermal state of free bosons. Using esA(τ) =

e−g
2/(2ω2

0)es(g/ω0)eω0τ b†e−s(g/ω0)e−ω0τ b, one finds the disentangled expression

wb({Oi(τi)}) = Z0,be
−n(g2/ω2

0)e−
∑

2n≥i>j≥1 sisj(g
2/ω2

0)e−ω0(τi−τj)

×
〈
e
∑
j sj(g/ω0)eω0τj b†e−

∑
j sj(g/ω0)e−ω0τj b

〉
b
. (52)

For thermal expectation values, we have the formula [90] 〈eub†evb〉b = euv/(e
βω0−1), which

gives the final expression for the bosonic weight

wb({Oi(τi)}) =Z0,b exp

[ ∑
2n≥i>j≥1

sisjK(τi − τj)
]
, (53)

K(τ) =− g2

ω2
0

cosh(ω0(β/2− τ))− cosh(βω0/2)

sinh(βω0/2)
. (54)

The total weight (44) can be expressed as

w({Oi(τi)}) = wb({Oi(τi)})w̃Hubbard({Oi(τi)}), (55)

where w̃Hubbard denotes the weight of a corresponding configuration in the pure Hubbard

impurity model (with parameters modified according to Eqs. (46) and (47)). This weight

can be efficiently computed using the segment picture [87] (see Fig. 5). For each spin, we

mark the imaginary-time intervals corresponding to an occupied impurity state by a segment.

Then, wHubbard({Oi(τi)}) can be obtained from the total length lσ of these segments and the

total length loverlap of the overlaps between up-spin and down-spin segments:

wHubbard({Oi(τi)}) = sZ0,ce
µ̃(l↑+l↓)−Ũ loverlap

∏
σ

(detM−1
σ )(dτ)2n, (56)

with s a permutation sign related to the time-ordering of the impurity creation and annihi-

lation operators.
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In a segment insertion move, a pair of σ-operators is added to the sequence {Oi(τi)}.

For the Metropolis test, one has to compute the ratio wnew
b /wold

b and a determinant ratio

detM−1
σ,new/ detM−1

σ,old, both at a cost O(n). The ratio of the traces over the impurity states

(evaluated from the segment lengths and overlaps) is also at most O(n). If the move is

accepted, the matrix Mσ needs to be updated. This is the computationally most expensive

step requiring an effort O(n2), but this is identical to the effort in the Hubbard model

without electron-phonon coupling [9]. Hence, the treatment of the bosons does not affect

the scaling of the algorithm.

Observables such as the Green’s function or double occupation can be measured as in the

case with static interaction [87], i.e. from the elements of the inverse hybridization matrix

and the segment overlaps. Specifically, the formula for the Green’s function reads

Gσ(τ) =

〈
−
∑
ij

1

β
δ(τ, τi − τ ′j)(Mσ)ij

〉
(57)

with δ(τ, τ ′) = δ(τ − τ ′) for τ ′ > 0, δ(τ, τ ′) = −δ(τ − τ ′− β) for τ ′ < 0, and τi (τ ′j) denoting

the time of the ith annihilation (jth creation) operator. Efficient measurement schemes for

the self-energy and vertex function [91] on the other hand need to be specifically adapted

to the case of retarded interactions. A detailed discussion of these techniques can be found

in Ref. [92].

As a final remark, we note that the DALA Bose factor reported in Eq. (30) of Sec. III B 1

can be written in terms of the K function (54) as FDALA(τ) = exp(−K(τ)). In the atomic

limit, i.e. zero hybridization, only the 0-th order term in the hybridization expansion sur-

vives, leading to a total Green’s function Gσ(τ) consisting of the product of the global factor

FDALA(τ) and the static Green’s function, as explained in Sec. III B 1. Therefore, the exact

CTQMC hybridization expansion algorithm with retarded interactions naturally reduces to

the DALA result in the atomic limit.

4. Phase diagram

We illustrate the DMFT phase diagram of the half-filled Holstein-Hubbard model in the

left panel of Fig. 6. The results are for a semi-circular density of states with bandwidth

4 and inverse temperature β = 50. A paramagnetic solution is enforced. At weak boson

coupling g, there is a metallic phase at small Ubare and a Mott insulating phase for sufficiently
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FIG. 6: Left panel: half-filled metal-insulator phase diagram for β = 50 in the space of bare

interaction Ubare and boson coupling strength g for different values of the screening frequency

ω0 (DMFT solution for a semi-circular density of states with bandwidth 4). The dashed lines

indicate the boson coupling at which the screened interaction Uscr changes sign. Right panel:

phase diagram in the space of screened and bare interaction. The approximated DALA results

(Sec. III B 1), corrected by the low-energy Lang-Firsov behavior, are also reported for ω0 = 20 and

different coupling strengths. (Adapted from Ref. [93].)

large Ubare. As g is increased, the effective on-site interaction is reduced and eventually, the

system makes a transition to a bipolaronic insulating phase. The dashed line indicates the

value of g at which the screened interaction Uscr = Ubare − 2g2/ω0 vanishes. For small

boson frequency, the sign change in Uscr essentially coincides with the transition from Mott

insulator to bipolaronic insulator, while for large boson frequency, there exists a metallic

solution near Uscr = 0, which separates the two insulators.

The right panel shows the metal-to-Mott insulator phase boundary in the space of

Ubare/Uscr and Uscr, for different values of the boson frequency. A larger Ubare/Uscr stabilizes

the Mott insulator, and this effect is most pronounced for a low screening frequency.

C. General U(ω)

It follows from Eq. (27) that the Holstein-Hubbard model corresponds to a frequency-

dependent interaction U(ω), whose imaginary part is a δ-function at ω = ±ω0, with a weight
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given by ∓g2π. An arbitrary U(ω) can thus be thought of as arising from a Holstein-type

coupling to a continuum of bosonic modes with energy ω and coupling strength gω given

by g2
ω = −ImU(ω)/π. According to the derivation in Sec. III B 3 each boson contributes an

effective “interaction” K(τi−τj) = − g2ω
ω2

cosh(ω(β/2−(τi−τj))−cosh(βω/2)

sinh(βω/2)
between impurity creation

or annihilation operators at imaginary times τi and τj (Eq. (54)). Hence, the hybridization

expansion Monte Carlo simulation for a model with general U(ω) proceeds exactly as in the

case of the Holstein-Hubbard model, but with the K-function replaced by [93]

K(τ) =

∫ ∞
0

dω
ImU(ω)

πω2

cosh(ω(β/2− τ))− cosh(βω/2)

sinh(βω/2)
(58)

and the shifted interaction and chemical potential (Eqs. (46) and (47)) given by

µ̃ = µ+

∫ ∞
0

dω
ImU(ω)

πω
, (59)

Ũ = U + 2

∫ ∞
0

dω
ImU(ω)

πω
= Uscr. (60)

The last identity follows from the Kramers-Kronig relation and the anti-symmetry of

ImU(ω).

These formulas can also be derived from the impurity action with retarded U(τ), without

the detour through the Hamiltonian representation [94]. In fact, it is easy to evaluate the

interaction contribution 1
2

∫ β
0
dτdτ ′U(τ − τ ′)n(τ)n(τ ′) in the action (11) for a given segment

configuration. In a first step, we split the interaction into its instantaneous contribution and

a retarded part:

U(τ) = Ubareδ(τ) + Uret(τ − τ ′), (61)

U(ω) = Ubare + Uret(ω). (62)

Uret(ω) has the same imaginary part as U(ω), but its real part approaches 0 in the high

frequency limit. Therefore, we have the spectral representation (0 ≤ τ ≤ β)

Uret(τ) = − 1

π

∫ ∞
−∞

dωImU(ω)
e−ωτ

e−ωβ − 1
=

1

π

∫ ∞
0

dωImU(ω)
cosh(ω(β/2− τ))

sinh(ωβ/2)
. (63)

Plugging Eq. (63) into the expression for the interaction contribution and using n = n↑+n↓,

as well as n2
σ = nσ, we find

1

2

∫ β

0

dτdτ ′U(τ − τ ′)n(τ)n(τ ′) = Ubare

∫ β

0

dτn↑(τ)n↓(τ) +
Ubare

2

∫ β

0

dτ(n↑(τ) + n↓(τ))

+

∫ β

0

dτdτ ′n↑(τ)Uret(τ − τ ′)n↓(τ ′) +
∑
σ

1

2

∫ β

0

dτdτ ′nσ(τ)Uret(τ − τ ′)nσ(τ ′). (64)
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The first term yields Ubareloverlap and the second term a shift of the chemical potential. The

contribution from the retarded interaction, which acts both between same and opposite spin

electrons, is given by the last two terms. Since nσ is 1 only on a segment of spin σ, and zero

otherwise, we can express the retarded contribution as∑
k1 6=k2

∫
k1

dτ1

∫
k2

dτ2Uret(τ1 − τ2) +
1

2

∑
k

∫
k

dτ1

∫
k

dτ2Uret(τ1 − τ2), (65)

Where ki denotes the segment i. The first term is the inter-segment contribution and the

second term the intra-segment contribution of the retarded interaction. Now, let as assume

that we know a β-periodic function h(τ), which is even, and satisfies d2h
dτ2

= Uret(τ) in the

interval 0 < τ < β. With the help of this function, we can express the integral over a pair of

segments as
∫
k1
dτ1

∫
k2
dτ2Uret(τ1− τ2) = −h(τ e1 − τ e2 ) + h(τ e1 − τ s2 ) + h(τ s1 − τ e2 )− h(τ s1 − τ s2 ),

where τ si (τ ei ) denotes the start and end points of segment ki. Similarly, the double integral

over segment k evaluates to h(τe − τs)− h(0). Hence, the retarded interaction energy for a

segment configuration with n creation and n annihilation operators can be written as

−
∑
i>j

sisj(h(τi − τj)− h(0)), (66)

where we assumed that the operators are time-ordered (τi > τj for i > j) and the sign si is

+1 if the ith operator is a creation operator, and −1 if it is an annihilation operator.

From the expression (63) we find by double-integration that h(τ) − h(0) = K(τ), the

function defined in Eq. (58). Hence, the nonlocal interaction contribution to the weight

becomes exp
[∑

i>j sisjK(τi − τj)
]
, as derived in section III B 3.

There is one subtlety which we need to consider: due to the slope-discontinuity in the

β-periodic function h(τ) at τ = 0, the second derivative yields a delta-function contribution

with weight

− 2

π

∫ ∞
0

dω
ImU(ω)

ω
= −ReUret(ω = 0) = −(Uscr − Ubare). (67)

So, if we use this h(τ) in the formula for the retarded interaction contribution, we have

to subtract −(Uscr−Ubare)δ(τ) from the instantaneous interaction. The total instantaneous

interaction thus becomes (Ubare+(Uscr−Ubare))δ(τ) = Uscrδ(τ), which means that the overlap

contribution to the weight of a segment configuration has to be evaluated with the screened

interaction. A similar shift is introduced to the chemical potential, so that the end result is

identical to Eqs. (59) and (60).
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D. Effective static model

Even though there exist efficient numerical methods for treating dynamically screened

monopole interactions, it is conceptually interesting to ask how to define a low-energy model

with static interactions, which properly captures the low-energy physics. To derive this

model, we again first consider the simple case of the Holstein-Hubbard model (18). Applying

the Lang-Firsov transformation [86] HHH → HLF = eSHHHe
−S with S = g

ω0

∑
i(ni↑ + ni↓ −

1)(b†i + bi) yields a decoupled Hamiltonian in terms of the polaron operators (48) and (49):

HLF = −t
∑
〈ij〉σ

(d̃†iσd̃jσ + d̃†jσd̃iσ) + Uscr

∑
i

ni↑ni↓ − µ
∑
iσ

niσ +
∑
i

ω0b
†
ibi, (68)

with Uscr = U − 2g2/ω0. As shown in Ref. [95], the low-energy effective model can now be

defined by projecting this Hamiltonian onto the zero-boson subspace:

Heff = 〈0|HLF|0〉 = −ZBt
∑
〈ij〉σ

(d†iσdjσ + d†jσdiσ) + Uscr

∑
i

ni↑ni↓ − µ
∑
iσ

niσ. (69)

Heff is of the Hubbard form and involves the original fermionic operators d† and d, the

screened interaction Uscr, and a hopping term reduced by a factor

ZB = exp[−g2/ω2
0]. (70)

Hence, a crucial effect of the dynamical screening is an effective bandwidth reduction.

The projection onto the zero boson subspace is a good approximation if the screening

frequency ω0 is large. As an illustration of this, we list in Tab. I the critical interaction

strengths for the Mott transition in a DMFT simulation of the Holstein-Hubbard model

with semi-circular density of states of bandwidth 4, at inverse temperature β = 100. The

result from the exact DMFT treatment based on the method explained in Sec. III B 3 is

compared to the result of a DMFT treatment of the effective static model (69), with the

bandwidth renormalization (70).

In a model with a general U(ω) we can again view the frequency dependence as arising

from a coupling to a continuum of bosonic modes with frequency ω and coupling strength

g2
ω = −ImU(ω)/π. The screened interaction is then given by Eq. (60) (or simply ReU(ω =

0)), and the formula for the Lang-Firsov renormalization factor becomes

ZB = exp
[ 1

π

∫ ∞
0

dω
ImU(ω)

ω2

]
. (71)
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TABLE I: Critical interaction strength U exact
0,crit for the Mott transition obtained from the single-site

DMFT approximation to model (18) at inverse temperature β = 100, compared to the estimate

U eff
0,crit from the solution of the effective static model (69) for different values of the screening

frequency ω0 and coupling strength g. Also shown is the Lang-Firsov renormalization factor (70).

(From Ref. [95].)

ω0 g ZB U exact
crit U eff

crit

1.5 0.820 0.74 2.103 1.891

1.5 2.010 0.17 0.613 0.423

2.5 1.330 0.75 2.085 1.921

2.5 2.770 0.29 0.861 0.747

10.0 3.725 0.87 2.225 2.220

10.0 6.465 0.66 1.640 1.679

In a model with strongly correlated “d” states and itinerant “p” states, and associated

hopping parameters Tpp, Tpd and Tdd, the Lang-Firsov transformation and subsequent pro-

jection onto the zero-boson sector leads to a renormalization of each d operator by a factor
√
ZB = 〈0| exp( g

ω0
(bi − b†i ))|0〉. Hence, the hopping part of the one-particle Hamiltonian is

renormalized as (
p†d†

) Tpp
√
ZBTpd

√
ZBT †pd ZBTdd

 p

d

 . (72)

This expression shows that the bandwidth reduction implied by the effective model cannot

simply be translated into an effective increase of the on-site interaction in the multi-band

situation typically considered in first-principles calculations.

E. Multiorbital systems

Up to now, we have discussed dynamically screened on-site interactions in a single-orbital

model. The extension of these techniques to multi-orbital systems is straight-forward if

the total charge on a given site is screened, that is, if the electron-boson coupling in a
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Hamiltonian formulation is of the type

Hel-b =
∑
i,λ

gi,λn
tot
i (b†i,λ + bi,λ), (73)

with i the site index, bi,λ the annihilation operator for the oscillator of frequency ωi,λ

at site i and gi,λ the corresponding coupling strength. The total charge on site i is

ntot
i =

∑Norbitals

α=1

∑
σ ni,α,σ. Within DMFT, one then has to solve a multi-orbital impurity

system with an analogous electron-boson coupling. In the hybridization expansion formal-

ism introduced in Sec. III B 3, each hybridization operator changes the total charge on the

multi-orbital impurity by ±1 and hence excites the bosons. After integrating out the bosons,

one again finds an “interaction” of the form (58) between each operator pair, with a sign

that depends on the operator types (creation or annihilation operators). Now, U(ω) denotes

the dynamically screened monopole interaction. In the trace calculation, the intra- and

inter-orbital interaction parameters are replaced by the static values, in analogy to Eq. (60).

Note that this procedure works both in the case of density-density interactions (segment

formalism [87]), and for models with rotationally invariant interactions (matrix formalism

[88]), because spin-flips and pair-hoppings do not change the total charge on the impurity

and hence do not couple to the bosons.

A more complicated situation arises if the Hund coupling has a significant frequency

dependence, such as in alkali-doped fullerides [42, 96], where Jahn-Teller screening may

even produce an overscreened (negative) static J . In this case, the changes in the orbital

occupation associated with spin-flips and pair-hoppings will couple to bosonic modes and

the rotationally invariant system becomes much more difficult to simulate. After integrating

out the phonons, the interaction part of the action reads [97]

Sint =
1

2

∑
α,σ
β,σ′

∫ β

0

dτ

∫ β

0

dτ ′nα,σ(τ)Uβ,σ′

α,σ (τ − τ ′)nβ,σ′(τ ′)

+
1

2

∑
α,β,σ,σ′

α<β

∫ β

0

dτ

∫ β

0

dτ ′J(τ − τ ′)
[
Xαβ
σ (τ)Xβα

σ′ (τ ′)

+Xβα
σ (τ)Xαβ

σ′ (τ ′) +Xαβ
σ (τ)Xαβ

σ′ (τ ′) +Xβα
σ (τ)Xβα

σ′ (τ ′)
]
, (74)

with Xαβ
σ = c†α,σcβ,σ and retarded density-density interaction and Hund coupling parameters.

A possible algorithm based on a double-expansion in the hybridization and Hund coupling

has recently been presented in Ref. [97]. The full problem with retarded spin-flips and
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pair-hoppings however suffers from a sign problem, so that in practice it seems necessary

to treat these operators as instantaneous and keep the retardation only in the density-

density component. Note that even the simulation of such a simplified model requires a

double-expansion approach. To illustrate this, let us consider an on-site electron-boson

coupling term of the form Hel-b =
∑

α,λ gα,λnα(b†λ + bλ) and the multi-orbital and multi-

boson version of the Lang-Firsov transformation (48), (49): d̃†α,σ = e
∑
λ

gα,λ
ωλ

(b†λ−bλ)
d†α,σ, d̃α,σ =

e
−

∑
λ

gα,λ
ωλ

(b†λ−bλ)
dα,σ. This transformation leaves density operators unchanged, ñα = nα,

while a pair hopping operator d†α,↑d
†
α,↓dβ↑dβ,↓ acquires a factor e

∑
λ

2(gα,λ−gβ,λ)
ωλ

(b†λ−bλ)
, which

for example in the case of a Jahn-Teller coupling (gα = −gβ) is nonzero. Hence, we cannot

keep such non-density-density terms in the time-evolution operators, but need to expand in

them.

IV. TOWARDS A SELF-CONSISTENT DESCRIPTION OF SCREENING

In the previous sections, we have discussed the cRPA technique for computing low-energy

effective models for correlated materials, and different approximate and exact schemes for

treating the resulting dynamically screened interactions within DMFT. We also mentioned

the fact that the elimination of low-energy screening processes in cRPA generically leads

to rather long-ranged interactions. In this section, we would like to improve the DMFT

description by (i) including the screening effect from long-ranged Coulomb interactions, and

(ii) considering nonlocal correlations. First, we will focus on the single orbital extended

Hubbard model (Sec. IV A), which allows us to introduce these advanced schemes in the

simplest possible set-up, and then discuss how some of these techniques can be implemented

in an ab initio context (Sec. IV B). The goal is to provide a self-consistent description of

screening and correlations within the low-energy window defined by the cRPA downfolding,

and in the future perhaps even within a larger window containing some of the screening

bands.
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A. U-V Hubbard model

1. Extended DMFT

The screening from nonlocal Coulomb interactions can be described by the so-called

extended DMFT (EDMFT) formalism [94, 98–100]. This method is still based on an effective

single-site impurity model, but involves two self-consistently computed dynamical mean

fields: the Weiss Green’s function G0(iωn) (or hybridization function ∆(iωn)), which controls

the hopping of electrons in and out of the impurity site, and the dynamical on-site interaction

U(iνn), which incorporates the effect of screening. While G0 is β-antiperiodic, U is β-periodic.

We denote the fermionic Matsubara frequencies by ωn and the bosonic Matsubara frequencies

by νn.

For simplicity, we derive the EDMFT formalism for the U -V Hubbard model

HUV-Hubbard = −t
∑
〈ij〉σ

(d†iσdjσ + d†jσdiσ)− µ
∑
iσ

niσ + U
∑
i

ni↑ni↓ +
V

2

∑
〈ij〉

ninj, (75)

with ni = ni↑+ni↓. Here, we assume that the hoppings and off-site interactions are between

nearest-neighbor sites, although the generalization to arbitrary hoppings and longer range

interactions is straightforward. We furthermore take the bare interactions U and V as static.

If the U -V Hubbard model is a low-energy effective theory derived from some downfolding

procedure, then these bare parameters can themselves have a frequency-dependence. Again,

the generalization of the following formalism to the case of frequency-dependent bare inter-

actions is straightforward, and merely involves the replacement of U by U(τ) or U(iνn) and

similarly for V .

We start by writing the action of the lattice model in terms of Grassmann fields d∗, d as

S =

∫ β

0

dτ
[∑
ijσ

d∗iσ(τ)((∂τ − µ)δij + tij)djσ(τ) + U
∑
i

ni↑(τ)ni↓(τ) +
1

2

∑
ij

vijni(τ)nj(τ)
]

(76)

=

∫ β

0

dτ
[∑
ijσ

d∗iσ(τ)((∂τ − µ̃)δij + tij)djσ(τ) +
1

2

∑
ij

ṽijni(τ)nj(τ)
]
. (77)

In the second expression, we have written the interaction contributions in terms of ṽij =

Uδij + vij, and shifted the chemical potential as µ̃ = µ+ U
2

. Note that for the U -V Hubbard

model, tij = −tδ〈ij〉 and vij = V δ〈ij〉, but it is more convenient to use the general notation.
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Since we want to map the lattice model onto a single-site impurity model, we next

decouple the interaction term by a Hubbard-Stratonovich transformation, thereby replacing

the (on-site and off-site) interaction by a local coupling to a real, β-periodic field φ [101]:

exp

[
− 1

2

∫ β

0

dτ
∑
ij

ni(τ)ṽijnj(τ)

]
= ((2π)N det v)−1/2

∫
D[φ1, . . . , φN ]

× exp

[
−
∫ β

0

dτ
{1

2

∑
ij

φi(τ)(ṽ−1)ijφj(τ) + i
∑
j

φj(τ)nj(τ)
}]
. (78)

After this decoupling, the action of the lattice model can be written as

S =

∫ β

0

dτ
[
−
∑
ijσ

d∗iσ(τ)(G−1
0 )ijdjσ(τ) +

1

2

∑
ij

φi(τ)(ṽ−1)ijφj(τ) + i
∑
j

φj(τ)nj(τ)
]
, (79)

where we have introduced the inverse of the noninteracting lattice Green’s function,

(G−1
0 )ij = ((−∂τ + µ̃)δij − tij) to simplify the first term. In EDMFT, this lattice model

is self-consistently mapped onto an impurity model with action

SφEDMFT =−
∫ β

0

dτdτ ′
∑
σ

d∗σ(τ)G−1(τ − τ ′)dσ(τ ′) +
1

2

∫ β

0

dτdτ ′φ(τ)U−1(τ − τ ′)φ(τ ′)

+ i

∫ β

0

dτφ(τ)n(τ). (80)

A detailed derivation can be found in Refs. [100] and [94]. For the present purpose it suffices

to note that in addition to the fermionic Weiss field G, there also appears a β-periodic Weiss

field U , which has to be adjusted in such a way that the local dynamics of the Hubbard-

Stratonovich field is well reproduced. In the self-consistency loop, one computes the impurity

Green’s functions

Gimp = −〈T d(τ)d∗(0)〉SEDMFT
, (81)

Wimp = 〈T φ(τ)φ(0)〉SEDMFT
, (82)

and identifies them with the corresponding local lattice Green’s functions Glatt
i,i =

−〈T di(τ)d∗i (0)〉Slatt
and W latt

i,i = 〈T φi(τ)φi(0)〉Slatt
, where the latter are computed using

a local approximation for the lattice self-energies Σ and P :

Σ(k, iωn) ≈ Σimp(iωn), Σimp(iωn) = G−1(iωn)−Gimp(iωn), (83)

P (k, iνn) ≈ Pimp(iνn), Pimp(iνn) = U−1(iνn)−Wimp(iνn). (84)
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Physically, P (k, iνn) (Pimp(iνn)) represents the lattice (impurity) polarization. For the actual

calculations, it is convenient to integrate out the φ-field from the impurity action (80), to

obtain

SEDMFT =−
∫ β

0

dτdτ ′
∑
σ

d∗σ(τ)G−1(τ − τ ′)dσ(τ ′)

+
1

2

∫ β

0

dτdτ ′n(τ)U(τ − τ ′)n(τ ′)− 1

2
Tr lnU . (85)

This impurity problem with retarded density-density interaction can be solved for example

using the hybridization expansion Monte Carlo method discussed in Sec. III B 3. While

the fermionic Green’s function (81) can be measured directly, the evaluation of the bosonic

Green’s function (82) requires an intermediate step. From Eq. (80) it follows that δlnZ
δU−1 =

−2U δlnZ
δU U , while Eq. (85) implies δlnZ

δU = 1
2
〈T n(τ)n(0)〉SEDMFT

− 1
2U . Combining the two

expressions yields the measurement formula

Wimp = U − UχlocU , χloc = 〈T n(τ)n(0)〉SEDMFT
. (86)

The density density correlation function χloc can be easily evaluated in the hybridization

expansion Monte Carlo method discussed in Sec. III B 3.

The fermionic self-consistency loop in an EDMFT calculation is identical to usual DMFT:

1. Compute Gimp(iωn) for the given SEDMFT,

2. Extract fermionic self-energy: Σimp(iωn) = G−1
0 (iωn)−G−1

imp(iωn),

3. Use DMFT approximation Σ(k, iωn) = Σimp(iωn) to compute the local lattice Green’s

function Gloc(iωn) =
∫

(dk)[(G0)−1 − Σimp(iωn)]−1,

4. Use DMFT self-consistency condition Gloc(iωn) = Gimp(iωn) to define a new Weiss

Green’s function G−1
0 (iωn) = G−1

loc(iωn) + Σimp(iωn),

while the bosonic self-consistency loop is analogous,

1. Compute Wimp(iνn) for the given SEDMFT (Eq. (86)),

2. Extract bosonic self-energy: Pimp(iνn) = U−1(iνn)−W−1
imp(iνn),

3. Use DMFT approximation P (k, iνn) = Pimp(iνn) to compute the local lattice Green’s

function Wloc(iνn) =
∫

(dk)[1
2
(ṽ)−1 − Pimp(iνn)]−1,
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4. Use DMFT self-consistency condition Wloc(iνn) = Wimp(iνn) to define a new retarded

interaction U−1(iνn) = W−1
loc (iνn) + Pimp(iνn).

In an EDMFT calculation, these two loops are typically solved in parallel, i.e., both the

Weiss Green’s function G and the retarded interaction U is updated before the next impurity

calculation is started. We finally remark that in the case of frequency dependent U and V ,

the bosonic Dyson equation which allows to update Wloc from Pimp will have frequency

dependent (ṽ)−1. Therefore, retarded U and V are readily included in this framework, as

already mentioned before.

2. GW+DMFT

We next discuss the implementation of the GW+DMFT method for the U -V Hubbard

model (75), for which fully self-consistent calculations have recently been implemented

[94, 102, 103]. GW+DMFT is based on the EDMFT framework, but involves momen-

tum dependent fermionic and bosonic self-energies, which are obtained by combining the

(local) EDMFT self-energies with the nonlocal components of the GW self-energies:

ΣGW+DMFT
jk (iωn) = ΣEDMFT

jj (iωn)δjk + ΣGW
jk (iωn)(1− δjk), (87)

PGW+DMFT
jk (iνn) = PEDMFT

jj (iνn)δjk + PGW
jk (iνn)(1− δjk). (88)

We note that this is not the only combination which avoids a double counting of self-

energy diagrams. In fact, the subtraction of all the local GW diagrams also removes con-

tributions (e. g. with nonlocal polarization bubbles) which are not accounted for in the

EDMFT self-energy. An alternative strategy would be to remove the subset of GW diagrams

which contains only local propagators: ΣGW+DMFT
jk (iωn) = ΣEDMFT

jj (iωn)δjk + ΣGW
jk (iωn) −

ΣGW
jj [Gii](iωn)δjk, and similarly for P . In the case of the two-dimensional Hubbard model in

the weak-coupling regime, both double counting corrections were found to produce similar

results [22], but in more general situations, the effect of different double counting schemes

has not yet been studied systematically.

The computational steps in the self-consistent GW+DMFT calculation are the following:

1. Start, e. g., from the converged EDMFT solution (Σimp(iωn), Pimp(iνn)), and define

approximate lattice self-energies:

Σ(k, iωn) = Σimp(iωn), P (k, iνn) = Pimp(iνn), (89)
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2. Update the lattice Green’s functions:

G(k, iωn) = [G−1
0 (k, iωn)− Σ(k, iωn)]−1, (90)

W (k, iνn) = [1
2
ṽ(k)−1 − P (k, iνn)]−1, (91)

3. Compute the local lattice Green’s functions and the new Weiss fields G0 and U :

Gloc(iωn) =

∫
(dk)G(k, iωn) → G−1

0 (iωn) = Gloc(iωn)−1 + Σimp(iωn), (92)

Wloc(iνn) =

∫
(dk)W (k, iνn) → U−1(iνn) = Wloc(iνn)−1 + Pimp(iνn), (93)

4. Solve the impurity problem, i.e. compute Gimp and χloc → Wimp = U − UχlocU .

Compute the fermionic and bosonic self-energies

Σimp(iωn) = G−1
0 (iωn)−G−1

imp(iωn), (94)

Pimp(iνn) = U−1(iνn)−W−1
imp(iνn), (95)

5. Calculate the GW+DMFT self-energies:

• Calculate the GW self-energies,

ΣGW (k, iωn) = − T

Nk

∑
q

∑
νm

G(q, iωn − iνm)W (k− q, iνm), (96)

PGW (k, iνn) = 2
T

Nk

∑
q

∑
ωm

G(q, iωm)G(q− k, iωm − iνn), (97)

• Extract the nonlocal parts,

ΣGW
nonlocal(k, iωn) = ΣGW (k, iωn)−

∫
(dk)ΣGW (k, iωn), (98)

PGW
nonlocal(k, iνn) = PGW (k, iνn)−

∫
(dk)PGW (k, iνn), (99)

• Combine GW and EDMFT self-energies

Σ(k, iωn) = Σimp(iωn) + ΣGW
nonlocal(k, iωn), (100)

P (k, iνn) = Pimp(iνn) + PGW
nonlocal(k, iνn), (101)

6. Go back to (ii) until convergence is reached.
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Note that the GW self-energy defined in Eq. (96) contains a Hartree contribution involving

the bare local interaction. This contribution is however removed in the definition of ΣGW
nonlocal

(Eq. (98)).

An interesting question is how accurately the GW+DMFT method captures the mo-

mentum and energy dependence of the nonlocal self-energies. While a complete picture is

lacking, some systematic tests against numerically exact diagrammatic Monte Carlo results

[104] have recently been performed for the two-dimensional square-lattice Hubbard model

in the weak-coupling regime [22]. It was shown that the DMFT approximation provides a

very good description of Σloc(iωn), and that the GW+DMFT result is of comparable accu-

racy (Fig. 7). While the nonlocal components are of the correct order of magnitude in the

weak-coupling regime, their relative errors are large. Apparently, the GW approximation

does not capture the correct momentum dependence at weak U and away from half-filling,

and the result can only be expected to get worse in the intermediate coupling regime and

closer to half-filling. In particular, GW+DMFT does not reproduce the strong differentia-

tion between node and antinode which is found in cluster DMFT simulations [18, 19] in the

intermediate coupling regime. Figure 7 also shows the comparison to alternative many-body

perturbation theory + DMFT schemes, namely the bare second order perturbation theory

(Σ(2)) + DMFT [100] and the fluctuation exchange approximation (FLEX) + DMFT meth-

ods. They are of similar accuracy, but also fail to correctly capture the nonlocal components.

Σ(2)+DMFT at least ensures the correct high-frequency behavior of the local self-energy.

While GW+DMFT produces rather poor results for the momentum dependence of the

two-dimensional Hubbard model, it should be kept in mind that (i) DMFT based methods

are by construction most appropriate for high-dimensional systems, and (ii) that the main

advantage of the GW+DMFT lies in the self-consistent description of the screening, and thus

in the possibility to self-consistently compute the appropriate “Hubbard-U” parameters in

an ab initio simulation.

Finally, let us note that the factor of two in the GW polarization (97) comes from the

sum over spin orientations. For the Hubbard model, with its spin-dependent instantaneous

on-site interaction, the RPA polarization diagrams should in fact only include odd numbers

of bubbles with alternating spin. To avoid unphysical diagrams, one should implement a

spin-dependent GW formalism, which involves 2 × 2 matrices in spin space. While the

polarization P is diagonal, the Hubbard interaction becomes an off-diagonal matrix Uσx.
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FIG. 7: Comparison of the local and nonlocal self-energies from different many-body perturbation

theory + DMFT approximations to the numerically exact diagrammatic Monte Carlo results for

the square lattice Hubbard model with bandwidth 8. The left panels show the imaginary part

of the local self-energy for indicated values of the interaction U and filling n. The error bars are

estimated from different cutoff orders in the diagrammatic sampling. The right panels show the

imaginary part of the non-local self-energy for nearest neighbor sites, with the gray and blue shaded

bands corresponding to the diagrammatic Monte Carlo result. Note the much smaller y-axis scale

compared to the left panels. (From Ref. [22].)

Therefore, in a spin-dependent GW calculation for the Hubbard model, the self-energy Σ is

constructed with the following diagonal element of the screened interaction:

Wσσ(k, iνn) =
U2P (k, iνn)

1− [UP (k, iνn)]2
. (102)

Systematic tests of the spin-dependent and spin-independent GW schemes for the two-

dimensional Hubbard model [22] have shown that the spin-dependent formulation indeed

cures the most obvious deficiencies of the spin-independent scheme. However, in models

with nonlocal interactions and realistic material simulations within GW or GW+DMFT,

this issue becomes less relevant.
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3. Dual boson

The dual boson formalism [105, 106] is a systematic extension of EDMFT, which incor-

porates momentum-dependent correlations and enables a consistent description of collective

excitations. This method is still under active development, so we will content ourselves here

with a sketch of the main ideas, and references to the original papers, where the mathemat-

ical details can be found. As in the previous sections, we will consider the U -V Hubbard

model and start the discussion by rewriting the Grassmann path-integral for the lattice

action (77) in the Matsubara formalism:

S =− T
∑
jωnσ

d∗jσ(iωn)[iωn + µ̃]djσ(iωn) + T
∑
〈jl〉ωnσ

tjld
∗
jσ(iωn)dlσ(iωn)

+
UT

2

∑
jνn

nj(iνn)nj(iνn) +
V T

2

∑
〈jl〉νn

nj(−iνn)nl(iνn), (103)

where the angular brackets denote the sum over nearest neighbors, and we have split ṽij =

Uδij +V δ〈ij〉 into the on-site and nearest-neighbor contributions. We next rewrite Eq. (103)

as a sum of EDMFT-type impurity actions and a rest

S =
∑
j

Simp,j + Srest, (104)

Simp = −T
∑
ωnσ

d∗σ(iωn)[iωn + µ̃−∆σ(iωn)]dσ(iωn) +
T

2

∑
νn

n(iνn)[U +D(iνn)]n(iνn),

(105)

with at this stage an unspecified hybridization function ∆ and retarded interaction D (see

illustration in Fig. 8). In the next step, Srest, which contains hopping and hybridization

terms, the nonlocal interactions and a local retarded interaction, is decoupled using Hubbard-

Stratonovich transformations. The decoupling of the interactions is analogous to EDMFT

(Eq. (78)) and introduces the bosonic fields φj, which in the present context are called

‘dual bosons’. At the same time, the fermionic hopping and hybridization terms in Srest

are decoupled by an appropriate Hubbard-Stratonovich transformation, which introduces

auxiliary fermions fj, called ‘dual fermions’ [107], and replaces the nonlocal quadratic term

in the d-operators by a local coupling between d- and f -fermions (see bottom right panel of

Fig. 8). In the final step, the d-electrons are integrated out, which generates a dual action

for the f and φ variables, with a complicated interaction Ṽ (fj, f
∗
j , φj), which can be related

to (high-order) vertices of the impurity model Simp. The explicit form of the dual action is
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FIG. 8: Illustration of the dual boson formalism. In the first step, the lattice model is split into a

collection of impurity models with retarded interaction D and a rest. In the second step, the rest

term is decoupled by Hubbard-Stratonovich transformations, which introduce a local coupling to

dual fermions (f) and dual bosons (φ). In the last step, the original d-fermions are integrated out,

which yields a dual theory with an interaction Ṽ , which is of arbitrary order in f , f∗ and φ.

S̃ = −T
∑
kωnσ

f ∗kσ(iωn)G̃−1
0,kσ(iωn)fkσ(iωn)− T

2

∑
kνn

φk(iνn)X̃−1
0,k(iνn)φk(iνn) +

∑
j

Ṽ (fj, f
∗
j , φj),

(106)

where the bare dual propagators, expressed in terms of the impurity Green’s func-

tion g(iωn) = −〈d∗(iωn)d(iωn)〉Simp
and impurity charge susceptibility χ(iνn) =

−〈n(iνn)n(−iνn)〉Simp
are [106]

G̃0,kσ(iωn) = [g−1(iωn) + ∆(iωn)− εk]−1 − g(iωn), (107)

X̃0,k(iνn) = [χ(iνn)−1 +D(iνn)− Vk]−1 − χ(iνn), (108)

with εk and Vk the Fourier transforms of the hopping and nearest neighbor interaction.

The dual action (106) is treated in perturbation theory, where in practice one only retains

low-order or ladder-type diagrams in Ṽ . The main idea is to exploit the freedom of choosing

∆(iωn) and D(iνn), and to define these quantities in such a way that the strong correlation
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effects are captured at the level of the impurity model Simp, which can be solved exactly

using the technique described in Sec. III B 3, so that only weaker correlations must be treated

by the dual perturbation theory. For example, the EDMFT solution can be incorporated as

the zeroth order of this dual perturbation theory, in which case the dual boson formalism

becomes a systematic expansion around EDMFT. Better choices for ∆ and D, which take

into account a feedback from the lattice solution onto the impurity problem may exist, as

has been recently discussed in Ref. [106].

From the dual perturbation theory, one obtains a dual self-energy Σ̃k(iωn) and a dual

polarization P̃k(iνn). These can then be used to obtain the lattice Green’s function Gk(iωn)

and lattice susceptibility Xk(iνn) of the original d-fermions:

G−1
k (iωn) = [g(iωn) + g(iωn)Σ̃k(iωn)g(iωn)]−1 + ∆(iωn)− εk, (109)

X−1
k (iνn) = [χ(iνn) + χ(iνn)P̃k(iνn)χ(iνn)]−1 +D(iνn)− Vk. (110)

While an appropriately formulated dual boson theory is self-consistent both on the single-

particle and two-particle level [106], in contrast to GW+DMFT, this appealing feature comes

at the cost of having to calculate and manipulate vertex functions. This makes it challenging

to apply this formalism to realistic multiband systems.

B. Realistic materials

1. GW+DMFT

The full implementation of the GW+DMFT scheme as proposed in Ref. [10] is doable in

practice only for simple Hamiltonians, such as the U -V extended Hubbard model discussed

above. This represents already a significant step forward with respect to the situation just

a few years ago, when only static and non-self-consistent GW+DMFT applications had

been performed. The methods which allow to treat the dynamically screened nature of

U , inherent in the GW+DMFT formalism, and to determine it self-consistently in some

particular cases, have been discussed in Secs. III B and III C. However, in an ab initio

framework, the local dynamical impurity problem is too large to be solved in a reasonable

computer time. Indeed, the local basis set of an ab initio Hamiltonian can be very large,

and in the genuine GW+DMFT formulation all local orbitals should be taken into account
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in the embedded site, as they all contribute to the screening of the effective local interaction

U .

A practical GW+DMFT implementation recently introduced is the so-called “orbital-

separated” scheme, where only the correlated orbitals are kept in the impurity problem,

whose size becomes then manageable by state-of-the-art CTQMC solvers, provided the low

energy model is a single-site multiorbital system, and not a cluster. On one hand, it is

reasonable to include only the most correlated orbitals in the impurity problem. On the

other hand, separating the self-energy contribution of the local, correlated manifold from

the non-local or non-correlated one has no unique solution, as there is no rigorous free

energy functional which generates this separation unambiguously, as discussed in Ref. [108].

Therefore, in defining the local self energy, one needs to make an ad hoc choice. The one

which seems the most general is

Σxc(k, iωn)LL′ = Σxc
GW (k, iωn)LL′ −

∑
k

[Σxc,d
GW (k, iωn)]LL′ + [Σxc,d

imp(iωn)]LL′ , (111)

where L is the full-orbital index, and d denotes the projection onto the low-energy correlated

space. The corresponding equation for the total polarization is

P (k, iνn)αβ = PGW (k, iνn)αβ −
∑
q

[P d
GW (k, iνn)]αβ + [P d

imp(iνn)]αβ, (112)

where α and β are indices of a two-particle basis, constructed from the full one-body basis

set L. Equations (111) and (112) are analogous to Eqs. (87) and (88), written for the

GW+DMFT calculation of the U -V Hubbard model. Σxc,d
imp and P d

imp are the (fermionic)

self-energy and polarization (bosonic self-energy) computed as solutions of the impurity

problem in the correlated local basis (see the extended DMFT description in Sec. IV A 1).

From Σxc(k, iωn)LL′ and P (k, iνn)αβ one obtains the dressed Green’s function G(k, iωn)LL′

and the fully screened interaction W (k, iνn)αβ by standard procedures. As in step (ii)

of the GW+DMFT loop in Sec. IV A 2, one then computes the “Weiss” fields G0 and U ,

after projection of the local Gloc and W loc onto d. Thus, the orbital-separated framework

follows the usual GW+DMFT self-consistency loop, where the non-perturbative many-body

solution is provided only in a correlated subspace, and the convergence is reached when the

local lattice Green’s function and polarization projected to the correlated subspace become

identical to the impurity Green’s function and impurity polarization, respectively.
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Significant effort has also been devoted to the development of simplified and numerically

more efficient approaches, based on some approximations. On the one hand, the double self-

consistency in the Green’s function and polarization has been replaced by only one based on

the Green’s function. In these calculations, the polarization is frozen to the cRPA value, but

the corresponding retarded interaction is kept in the impurity problem. This approximate

scheme is detailed in Sec. IV B 2. On the other hand, a series of approximations has been

proposed, which simplify the frequency and spatial dependence of the GW self-energy, which

is one of the heaviest ingredients to compute. We will give a short survey of these simplified

methods, which in order of increasing complexity are (i) SEX+DMFT (Sec. IV B 3), (ii)

DMFT@nonlocal-GW (Sec. IV B 4), and (iii) quasi-particle self-consistent GW (QSGW) +

DMFT (Sec. IV B 5).

2. Frozen polarization: U replaced by the cRPA U(ω)

Instead of computing explicitly Pimp to update the bosonic Weiss field U at each

GW+DMFT iteration, one can approximate it by its RPA value, i.e. Pimp = 2Gloc,dGloc,d,

with Gloc,d the local starting Green’s function, taken from LDA and projected onto the cor-

related manifold [108, 109]. Therefore, the total polarization in Eq. (112) can be written as

P = 2GLDAGLDA. Its value is frozen during the self-consistency cycle, which is performed

only on G. This also implies that the interaction U of the impurity model is frozen. More-

over, instead of evaluating this interaction as U−1(iνn) = Wloc(iνn)−1 + Pimp(iνn) (step (ii)

of the GW+DMFT loop), which involves local quantities only, U is calculated as

U =

[∑
q

[W−1 + P d]−1

]
d

, (113)

where W is the fully screened interaction. Hence, W is undressed by P d, which is the

RPA polarization function containing electron-hole processes in the d manifold only. Note

that the “locality” operation (
∑

q) is performed after undressing W , and the matrix is

projected onto the d-manifold only at the end. Equation (113) is the partially screened

cRPA value of Umn(0, ω) in Eq. (4), where n, m are indices of the d subspace. Therefore, in

this approach, U is kept fixed at the cRPA value. At a first glance, this might seem a very

rough approximation, with respect to the double loop on G and W . However, if compared

to available electron energy loss spectroscopy (EELS) measurements, the RPA polarization
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function computed from the LDA band structure looks usually reasonable. This suggests

that the cRPA estimate of U is quantitatively correct, particularly at not-so-low frequencies,

where the interplay with the low-energy correlated manifold is supposed to be weak. In the

impurity calculation, the cRPA frequency dependence of U is taken into account and the self-

consistent solution for G is hence affected by retardation effects contained in the impurity

model.

As far as Σxc
GW is concerned, one needs to carry out a one-shot GW calculation on top of

the LDA band structure to compute the initial non-local self-energy part. In the simplified

implementation based on a constant P , the non-local part does not change, while the local

part is changed according to the solution of the dynamic impurity model. Thus, the resulting

lattice Green’s function is G(k, iω) = [iω + µ−H0 −Σ(k, iω)]−1, where H0 = HLDA − V xc
LDA

is the LDA Hamiltonian without the exchange-correlation potential, and Σ(k, iω) is the one

defined in Eq. (111).

We note that if instead of replacing Vxc by Σxc
GW one keeps Vxc and adds a local Σ only,

the above scheme reduces to the DFT+DMFT+U(ω) approach. From this perspective, the

DFT+DMFT+U(ω) can be regarded as an embryo of the GW+DMFT method, which lacks

non-locality and a proper treatment of double counting, but where the dynamical nature of

both local and non-local screening effects is taken into account in the effective interaction

of the impurity problem via the cRPA estimate of U(ω).

In the DFT+DMFT+U(ω) scheme, one could ask what is the correct double counting

term in the presence of a retarded U . By assuming that the spectroscopic high-energy

features described by the coupling with plasmons cancel out in the zero-temperature mean-

field solution to recover the potentially exact DFT ground state energy, it turns out [110, 111]

that the appropriate double counting is the same as the one introduced in Sec. II for static

U , which in this case takes the value of the screened static limit of U(ω) (U = U(ω → 0)).

3. SEX+DMFT

In the GW approach, the COHSEX approximation[1] is a way to simplify greatly the

calculation of the self-energy, by separating it into two static contributions Σ = ΣSEX+ΣCOH,
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where:

ΣSEX(r, r′) = −
occ∑
i

ψi(r)ψ
∗
i (r
′)W (r, r′, 0) (114)

ΣCOH(r, r′) =
1

2
δ(r− r′) (W (r, r′, 0)− v(r− r′)) , (115)

called screened exchange and Coulomb hole, respectively [2–4]. W is the static fully screened

interaction. While the first term significantly improves upon the exchange contribution in

the Hartree-Fock theory, the second one describes the contribution to the self-energy due

to interactions between the quasiparticle and its surrounding hole. As it is apparent in

Eqs. (114)-(115), the first term is non-local, while the second one is local.

The idea behind the SEX+DMFT theory is to replace the static local Coulomb hole self-

energy by a dynamic one provided by the DMFT solution of a downfolded Hubbard model

with retarded U , i.e. Σ = ΣSEX + ΣDMFT. The clear advantage with respect to the COH

self-energy is that the DMFT one is dynamical and non-perturbative. Moreover, the validity

of the SEX+DMFT theory is supported by the observation, verified in the iron pnictides and

transition metal oxides such as SrVO3, that at low-energy scales the non-local contributions

to the self-energy are essentially static, while the local ones are dynamic. The self-energy

separation between static non-local terms on the one side and dynamic local terms on the

other side is implemented in the SEX+DMFT by merging SEX and DMFT. This is done

in the same spirit as in LDA+DMFT, except that the HLDA = H0 + V xc
LDA Hamiltonian is

replaced by H0+ΣSEX. We note that SEX+DMFT is not double-counting error free, because

the DMFT Hamiltonian contains a local Hartree term already included in H0. This can be

easily estimated as a mean-field approximation of the Hubbard terms. Therefore, a double

counting correction is needed as in regular LDA+DMFT, or LDA+DMFT with dynamic U .

Despite this fact, SEX+DMFT improves upon the LDA+DMFT method with dynamic U .

The reason is that the SEX part yields wider bands than LDA, which partially compensates

the band narrowing produced by the frequency dependence of U . As found in the case of

the compound BaCo2As2 (Sec. VII B), which is isostructural to the more famous BaFe2As2

and only moderately correlated, these opposite effects almost cancel each other in the final

result, and rather accurate quasiparticle energies are obtained.

In the practical implementation of Ref. [112], the screened exchange contribution is cal-

culated as a Fock exchange with the screened potential in the limit of long wavelengths, i.e.
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W ≈ WTF = e2

q2+k2TF
, where kTF is the Thomas-Fermi wavevector or inverse screening length.

In the Thomas-Fermi theory, its value depends on the density of states (DOS) at the Fermi

level. Thus, a self-consistent determination of WTF can be devised, as a given WTF yields

a new DOS, that implies a new kTF, that closes the loop by finally fixing a new WTF, and

so on. In the actual calculation of Ref. [112], this self-consistency has been replaced by a

simple manual inspection to check that the guessed kTF is consistent with the final DOS.

The band widening produced by SEX has the same origin as the larger bandwidth found

in the non-local self-energy framework by a number of authors [26, 113–115]. The simplified

static non-local version bears the same physics as the more involved full GW convolution.

SEX+DMFT is the simplest theory capable of including non-local correlation effects besides

the non-perturbative local ones provided by DMFT. Therefore, SEX+DMFT goes in the

direction of extending DMFT in a fully ab initio fashion, to include longer-range interactions

beyond the Hubbard type.

4. DMFT@nonlocal-GW

The DMFT@nonlocal-GW approach [108], as the previous SEX+DMFT method, is based

on the observation (see Sec. VII C 1) that the local and non-local self-energy contributions

are dynamically separable, with the former one frequency dependent and the latter one

static. The DMFT self-consistency condition for the one-body quantities requires the local

Green’s function to satisfy

Gloc(iω) =
∑
k

[iω + µ−H0(k)− Σnonloc
GW (k, iω)− Σimp(iω)]−1, (116)

with H0 = HLDA − V xc
LDA, and Σnonloc

GW is the nonlocal part of the full GW t2g self-energy.

As the nonlocal correlation self-energies are purely static in the low-energy window, i.e.

Σnonloc
GW (k, ω) = Σnonloc

GW (k), one can construct an effective quasi-particle Hamiltonian that

also comprises these correlation effects:

Hqp(k) = H0(k) + ReΣnonloc
GW (k). (117)

Hqp is a simplified one-shot analogue of the QSGW Hamiltonian HQSGW that was proposed

in the context of the QSGW+DMFT formalism [116]. Then the DMFT self-consistency is

much simpler since quantities are either frequency or momentum dependent, but not both,
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which drastically reduces memory requirements. Of course, the simplified DMFT@nonlocal-

GW scheme is not expected to give quantitatively accurate results outside the quasi-particle

energy range. In particular the dispersion of collective excitations will not be captured.

However, their position in the local spectrum which is determined by the structure of the

dynamic interaction U(ω) is still meaningful. The results of the DMFT@nonlocal-GW for

SrVO3 have been presented by Tomczak et al. in Ref. [108]. A previous attempt on the

same compound was presented by Taranto et al. [117] by using a one-shot version of QSGW.

However, in the latter work the authors obtained quite different results from Tomczak’s,

with a much stronger quasi-particle renormalization (Z=0.36) when the ZB factor was used,

probably due to a different way of dealing with the local self-energy subtraction at the

QSGW level.

5. QSGW+DMFT

In the quasi-particle self-consistent GW (QSGW) + DMFT, one defines an effective static

Hamiltonian, which includes non-local and dynamic correlation effects, through the fully self-

consistent QSGW construction [118, 119]. In QSGW+DMFT, an additional self-consistency

on the GW-level is performed which circumvents the full GW+DMFT self-consistency that

is computationally very demanding and has so far has only been achieved on the model level

[94, 102, 103], and the simpler case of a two-dimensional system of adatoms on surfaces [61].

In the QSGW+DMFT framework, once a self-consistent QSGW calculation is performed

and the quasiparticles energies Ekn are found, the local part of the self-energy is subtracted

to avoid double counting, and the non-local self-energy is evaluated at the corresponding

Ekn energies. In this way, a static correction to the initial Hamiltonian is obtained, and

incorporated into a modified Hamiltonian Hnl. Then, a DMFT calculation with dynamical

U can be performed on top of Hnl. In contrast to DMFT@nonlocal-GW, dynamical non-

local corrections can be incorporated into the QSGW+DMFT through the iterative QSGW

construction. Suggested in Ref. [116] and later in [108], a simplified variant of this approach

has recently been applied to the Mott insulator La2CuO4 [120].
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6. Concluding remarks on simplified GW+DMFT approaches

All methods in Secs. IV B 3, IV B 4, and IV B 5, make the calculation of the non-local GW

part faster and more efficient. However, the self-consistency is performed at the G level only.

Therefore, these schemes are not fully self-consistent GW+DMFT approaches. However, in

the SEX+DMFT approach, it is possible to perform an additional self-consistency on the

screening Fermi wave-vector, through the evaluation of the density of states at the Fermi

level. This replaces the self-consistency at the polarization level in a purely static screening

approach.

We remark that the Thomas-Fermi model used for the SEX part in Ref. [112] has several

well-known limitations. Its exponential decay form is valid only for metals; in insulators

there is a longer-range decay instead [121]. Moreover, the Thomas-Fermi model (as well as

RPA) overestimates screening in metals. In fact, due to the singularity at 2kF , there are

Friedel oscillations with a 2kF period, decaying as 1/r3, while in the Thomas-Fermi model

the decay is always exponential. On the other hand, SEX+DMFT solves one of the major

problems of the fully static COHSEX approximation, namely the lack of quasiparticle renor-

malization coming from the Z factor. Indeed, in SEX+DMFT, the DMFT part provides a

non-perturbative frequency-dependent local self-energy, which usually yields a good estimate

of Z. Therefore, as future perspective, it is worth trying to implement better approxima-

tions for the SEX part, to go beyond the Thomas-Fermi model, within the SEX+DMFT

framework.

V. ANALYTICAL CONTINUATION

At present, the Monte Carlo technique discussed in Sec. III B 3 is the method of choice for

the solution of impurity problems with dynamically screened interactions. For this reason,

the extended DMFT or GW+DMFT calculations are most conveniently implemented on

the Matsubara axis. For the interpretation of the results, it is however often important

to have access to spectral functions. The analytical continuation from the Matsubara-

frequency to the real-frequency axis is a delicate problem and particularly challenging in

the case where high-energy features exist and need to be resolved. Both the Padé [122]

and maximum entropy methods [123], which usually work well for low-frequency features
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in systems at low enough temperature, are not well-suited for capturing the high-frequency

part of the spectrum. A pre- and post-processing of the data is needed in order to use these

methods as part of a somewhat elaborate analytical continuation scheme. In Sec. V A, we

explain the scheme for calculating the fermionic spectral function corresponding to some

LDA+DMFT+U(ω) calculation. We will also briefly address the calculation of the bosonic

spectral functions from EDMFT or GW+DMFT calculations, focusing in this case on models

with static bare interactions (Sec. V B).

A. Fermionic spectral function

The idea proposed in Ref. [85] is to split the Green function G(τ) into a product of a

bosonic function B(τ) and an auxiliary fermionic Green function Gaux(τ):

G(τ) = B(τ)Gaux(τ). (118)

From the spectral functions ρB and ρaux of the two factors one can then obtain the spectral

function ρ(ω) of the original Green function using the convolution

ρ(ω) =

∫ ∞
−∞

dερB(ε)
1 + e−βω

(1 + eβ(ε−ω))(1− e−βω)
ρaux(ω − ε). (119)

The bosonic function B(τ) can be chosen arbitrarily, as long as the factorization (118) does

not lead to unphysical properties of Gaux. A natural choice, which often works in practice,

is

B(τ) = e−K(τ), (120)

where K(τ) is the twice-integrated screening function defined in Eq. (58). The rationale for

this choice is that such a factorization holds in the atomic limit (see Sec. III B).

Substituting τ = it in Eq. (58), and expressing the factor cosh(ω(β/2−it))
sinh(ωβ/2)

as e−itω + 2 cos(ωt)
eβω−1

,

one finds

K(t) =

∫ ∞
0

dω
ImU(ω)

πω2

(
e−itω +

2 cos(ωt)

eβω − 1
− eβω + 1

eβω−1

)
≈
∫ ∞

0

dω
ImU(ω)

πω2
(e−itω−1). (121)

In the last step we used the fact that at low temperatures, eβω � 1, except near ω = 0,

where ImU(ω) vanishes. At low enough temperature, we can therefore express the bosonic

factor on the real-time axis as

B(t) = e−K(t) = exp
[ ∫ ∞

0

dω
ImU(ω)

πω2

]
︸ ︷︷ ︸

ZB

exp
[
−
∫ ∞

0

dω
ImU(ω)

πω2
e−iωt

]
(122)
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The first term corresponds to the Bose factor defined in Eq. (71), while the second term

oscillates around 1 as t→∞. We thus split off ZB and write

B(t) = ZB +Breg(t), (123)

with the regular term Breg(t) = ZB(exp[−
∫∞

0
dω ImU(ω)

πω2 e−iωt]− 1). The corresponding spec-

tral density ρBreg(ω) can be obtained numerically from an appropriate Fourier transform. We

have the spectral representation

Breg(t) =

∫ ∞
−∞

dω′ρBreg(ω′)
e−iω

′t

1− e−βω′
, (124)

and therefore∫ ∞
−∞

dteiωtBreg(t) =

∫ ∞
−∞

dω′
∫ ∞
−∞

dtei(ω−ω
′)t︸ ︷︷ ︸

=2πδ(ω−ω′)

ρBreg(ω′)

1− e−βω′
= 2π

ρBreg(ω)

1− e−βω
. (125)

Using Breg(−t) = [Breg(t)]∗, we can write the left hand side as 2Re
∫∞

0
dteiωtBreg(t), which

finally yields the expression

ρBreg(ω) =
1− e−βω

π
Re

∫ ∞
0

dteiωtBreg(t). (126)

It immediately follows from this derivation that the constant ZB in Eq. (123) gives a non-

regular contribution

ρBnon-reg(ω) = ZB(1− e−βω)δ(ω) (127)

to the spectral density. Substitution of (127) into Eq. (119) gives

ρnon-reg(ω) = ZBρaux(ω), (128)

which is the expected renormalization of the quasi-particle peak by the Bose factor (see

Sec. III D and Eq. (71)).

In summary, the spectral function ρ can be computed from the maximum entropy result

for ρaux(ω) and either the cRPA result or some numerical estimate for ImU(ω) using the

following formulas:

ρ(ω) = ZBρaux(ω) +

∫ ∞
−∞

dερBreg(ε)
1 + e−βω

(1 + eβ(ε−ω))(1− e−βω)
ρaux(ω − ε), (129)

ρBreg(ω) =
1− e−βω

π
Re

∫ ∞
0

dteiωtBreg(t), (130)

Breg(t) = ZB

(
exp

[
−
∫ ∞

0

dω
ImU(ω)

πω2
e−iωt

]
− 1
)
. (131)
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B. Bosonic spectral function

Here we discuss a useful strategy for calculating the spectral function ImU(ω) correspond-

ing to some retarded interaction Uret(τ), as it is obtained for example in the self-consistency

loop of an EDMFT or GW+DMFT simulation [103]. In a maximum entropy approach, it

is important to work with a properly normalized spectral function. In the bosonic case, we

can use the relation

Uscr − U = 2

∫ ∞
0

dω
1

π

ImU(ω)

ω
(132)

to define such a normalized distribution function:

B(ω) =
2

π(Uscr − U)

ImU(ω)

ω
,

∫ ∞
0

dωB(ω) = 1. (133)

Equation (63), which connects the retarded interaction to the spectral density can then be

written in the form

Uret(τ) =

∫ ∞
0

dωK(ω, τ)B(ω), (134)

with the bosonic kernel

K(ω, τ) =
ω(Uscr − U)

2

cosh(ω(β − τ/2))

sinh(ωβ/2)
. (135)

(If the ω integration is taken from −∞ to∞, the kernel becomes K̃(ω, τ) = e−τω

1−e−βω
ω(Uscr−U)

2
.)

The factor (Uscr − U) is known from the solution on the Matsubara axis.

We can now use the maximum entropy method [123] to solve Eq. (134) for B(ω), and

finally Eq. (133) to find ImU(ω). The real part can as usual be obtained from the antisym-

metry of ImU(ω) and the Kramers-Kronig relation

ReUret(ω) =
1

π
P

∫ ∞
−∞

dω′
ImU(ω′)

ω′ − ω
=

1

π
P

∫ ∞
−∞

dω′

(
ImU(ω′)− ImU(ω)

ω′ − ω

)
. (136)

In the last step, we have re-expressed the integral in a form which is suitable for numerical

treatment.
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VI. APPLICATIONS TO MODEL SYSTEMS

A. Extended DMFT

1. U -V Hubbard model

The EDMFT solution for the half-filled U -V Hubbard model (75) on the cubic lattice

predicts a paramagnetic phase diagram with three phases: a metallic phase for small U and

small V , a Mott insulating phase for large U and small V , and a charge ordered insulating

phase for sufficiently large V [100]. Recently, the low-temperature phase diagrams on the 2D

square and 3D cubic lattices have been mapped out using the efficient and unbiased impurity

solver described in Sec. III B 3 [94, 103]. In Fig. 9 we show the results for generalizations of

model (75) with nonlocal interactions up to the third-nearest neighbors. Here, the parameter

V encodes the strength of the nonlocal interactions, i.e. the non-local interactions are scaled

as Vij = a/|ri− rj|, with a the lattice spacing and ri,j the positions of the nearest-neighbor,

next-nearest neighbor or third nearest neighbor sites. The unit of energy is the hopping.

In the square-lattice case with only nearest-neighbor interactions, the Vc(U) phase bound-

ary jumps near the intersection with the Mott transition line. In the models with longer-

ranged interactions, the metallic phase extends to larger values of U , forming a “nose”

which separates the Mott insulator and charge ordered phases at low temperature. The

jump in Vc(U) disappears, so that the phase diagram looks qualitatively similar to that

of the Hubbard-Holstein model with large phonon frequency (Fig. 6). However, in the

Hubbard-Holstein case, the boundary to the charge ordered phase does not exhibit a slope

change near the critical U for the Mott transition, which indicates that the slope change in

the EDMFT phase diagram originates from changes in the dominant screening modes near

Uc [103].

Overall, the phase diagrams for the 2D and 3D lattice are similar, with the main difference

being the larger extent of the metallic nose in the 3D case, and a different dependence of the

metal-charge order phase boundary on the interaction range. The latter can be explained

by considering the lattice geometry and our definition of next-nearest and third-nearest

neighbors [103]: in the 2D case, the third-nearest neighbor interactions act between sites on

the same sublattice, and hence frustrate the charge order, while in the 3D case, they act

between sites on different sublattices.
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FIG. 9: Paramagnetic phase diagram of the half-filled U -V Hubbard model on the 2D square

lattice (a) and 3D cubic lattice (b). Results for non-local interactions up to nearest neighbors (NN),

next-nearest neighbors (NN+NNN) and third nearest neighbors (NN+NNN+3NN) are shown. FL

denotes the metallic phase, CO the charge ordered insulating phase, and MI the Mott insulating

phase. The insets show the phase diagrams of the models with NN interactions with axes rescaled

by the bandwidth. (From Ref. [103].)

In order to identify the dominant screening modes, and understand their origin, it is

instructive to compute the bosonic and fermionic spectral functions, as illustrated in Fig. 10

for a metallic and Mott insulating system. Let us focus first on the half-filled case (blue lines

and symbols). As seen in panels (c) and (f), ImW (ω), which is proportional to the square

of the coupling strength of the screening modes with frequency ω, exhibits two peaks near

U and U/2 in the metallic system, and a single peak near U in the insulating case. The

comparison to the fermionic spectral functions plotted in panels (a) and (d) suggests that

the peak at U is related to transitions between the Hubbard bands, while the peak at U/2

in the metallic system originates from transitions between the quasi-particle band and one

of the Hubbard bands.

If the chemical potential is shifted away from the particle-hole symmetric value (green

curves), the spectral functions change. In the metallic system, the peak near U/2 grows and

shifts to lower energies, consistent with the increased weight of the quasi-particle peak and

the reduced separation between this peak and the upper Hubbard band in the fermionic

spectral function. The high energy peak also grows, which suggests that the asymmetric

shape and population of the Hubbard bands enhances the screening effect. Despite the
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FIG. 10: Fermionic and bosonic spectral functions for the paramagnetic Hubbard model with NN

interactions on the square lattice. The blue curves show the results for a half-filled system and the

green curves for a particle-hole asymmetric system with a chemical potential shift of δµ = 0.4 and

0.6 relative to the half-filled value µ = U/2. Panels (a)-(c) show results for a metallic system with

U = 2.4 and V = 0.2, while panels (d)-(f) show results for a Mott insulating system with U = 3.6

and V = 1.0. The left panels plot the fermionic spectral function A(ω), the middle panels the real

part of the screened interaction ReW (iν) on the Matsubara axis, and the right panels the bosonic

spectral functions ImW (ω). (From Ref. [103].)

uncertainties in the analytical continuation, it appears that one can even identify a third

low-energy mode associated with transitions within the quasi-particle peak. In the insulating

case, the reduction in the gap size and the broadening of the lower Hubbard band are reflected

in a shift of the peak in ImW (ω) to lower energies, and a broader distribution of screening

modes.

In the middle panels, we plot the real part of the screened interactions on the Matsubara

axis. In the high-frequency limit ReW (iνn) approaches the bare on-site interaction U , while

below an energy scale determined by the dominant screening modes, the screened interaction

is reduced. Here, we should recall the fact that this reduction is dominated by the low-energy

modes (see Eq. (28)). Hence, ReW (0) is not much smaller than U in the insulator, while
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the low-energy screening modes in the metallic case lead to a substantially reduced static

interaction.

2. Dynamical screening in photo-doped Mott insulators

The real-time dynamics of screening has been recently investigated using a nonequilibrium

generalization of EDMFT [124]. As discussed in Ref. [125], the DMFT formalism can be

applied to nonequilibrium problems by solving the DMFT equations on a 3-branch Kadanoff-

Baym contour which runs from 0 to some maximum time tmax along the real time axis, back

to time 0 along the real time axis, and then to −iβ along the imaginary time axis. The

solution on the imaginary-time branch corresponds to the usual DMFT solution for the

initial equilibrium state (with β the inverse temperature), while the solution on the real-

time branches allows to describes the evolution of the system after some perturbation or

in the presence of external fields. In a similar manner, the bosonic self-consistency loop

of EDMFT can be solved on the Kadanoff-Baym contour and the resulting nonequilibrium

EDMFT formalism then captures the changes in the screening properties resulting from the

nonthermal state of the system. In Ref. [124], the U -V Hubbard model (75) on the square

lattice was driven out of an initially Mott insulating state by a single-cycle electric-field pulse

with frequency Ωpulse ≈ U directed along the lattice diagonal. As shown in the right hand

panel of Fig. 11, ImW (ω), which represents the distribution of screening modes, initially

exhibits a single broad peak centered at energy U , similar to Fig. 10(f). This is because in

a Mott insulator, the screening processes involve particle excitations across the gap.

However, as soon as the field pulse creates doublon-hole pairs, a second screening mode

appears at lower energy, and the imaginary part of W (ω, t) =
∫ t+tcut
t

dt′eiω(t′−t)W ret(t′, t)

(with Fourier cutoff tcut = 10) qualitatively resembles the equilibrium result for a metallic

system (Fig. 10(c)). An essential difference to the equilibrium metallic system however is the

absence of a coherent quasi-particle band [126], which implies that the low-energy screening

modes in the photo-doped system are not associated with transitions between quasi-particle

and Hubbard bands, but rather with screening transitions within the photo-doped Hubbard

bands. This also explains the broader energy distribution. As shown in Fig. 11, the low-

energy mode grows while the pulse (which lasts up to t ≈ 1.5) produces additional carriers,

and then essentially saturates. The subsequent slower evolution of the bosonic spectral
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FIG. 11: Time-evolution of the screened interaction W in a Mott insulator which is excited by

a mono-cycle electric field pulse with Ωpulse = U . The electric field pulse has the form E(t) =

E0 sin(Ωpulse(t− t0)) exp(−4.6(t− t0)2/t20) with t0 = 2π/Ωpulse and E0 = 9. U = 10, V = 2, initial

β = 5. (From Ref. [124].)

function (not shown) is governed by changes in the energy distribution of the photo-doped

carriers, and on much longer timescales by doublon-hole recombination processes.

Looking at the real part of the screened interaction, which is plotted in the left hand panel,

we see that the high-energy mode produces only a small screening effect, as expected in a

Mott insulator, while the low-energy screening modes linked to screening transitions within

the photo-doped Hubbard bands lead to a significant reduction of ReW (ω = 0, t). The

evolution of the bosonic Weiss field U(ω, t) looks qualitatively similar to that of W (ω, t),

but with smaller screening effects. The reduction of U by the enhanced screening in the

photo-doped Mott insulator results in a shrinking of the gap size and potentially even in a

screening-induced transition to a transient metallic state.

B. GW+DMFT

1. U -V Hubbard model

The first self-consistent GW+DMFT calculations have been presented for the U -V Hub-

bard model (75) in Refs. [102] and [94]. The nonlocal component of the self-energy Σ was
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found to be much smaller than the local contribution, even close to the Mott transition. This

result is inconsistent with cluster DMFT data, which (for the half-filled Hubbard model)

predict a strong momentum differentiation between the nodal and antinodal region, and even

a momentum-selective metal-insulator transition [18]. However, as mentioned in Sec. IV A 2,

the main purpose of the GW+DMFT scheme is not to provide an accurate description of the

momentum dependent self-energy, but to enable a self-consistent description of screening.

Hence, it is more interesting to look at the polarization function P (k, ω). It was shown

in Ref. [94] that the nonlocal components of the polarization can be of the same order of

magnitude as the local polarization if the system is close to the charge ordering instability.

A relevant question is to what extent the self-consistent feedback of the momentum-

dependent polarization and self-energy affects the converged result. To illustrate this, we

compare in Fig. 12 different approximations for the polarization [94]: the local polarization

obtained from EDMFT (panel (a)), the bubble GG computed with EDMFT lattice Green’s

functions (panel (b)), the sum of the local EDMFT polarization and the nonlocal part of

the bubble (panel (c)), and the self-consistent GW+DMFT polarization (panel (d)). Let

us first consider panels (a) and (c). While the bubble diagram GG yields a k-dependent

polarization, it lacks vertex corrections beyond those built into the EDMFT propagators.

The local EDMFT polarization, which is calculated from the density-density correlation

function (86), contains the local vertex. An advantage of the GW+DMFT method is that

it incorporates both this local vertex and the momentum-dependence of the bubble in a

self-consistent manner. The effect of the self-consistent treatment becomes apparent by

comparing panels (b) and (d). While we can combine the local EDMFT polarization and the

nonlocal component of the EDMFT polarization bubble in the spirit of GW+DMFT, such

a calculation lacks a self-consistent feedback, and as a result, the momentum-dependence of

the polarization looks quite similar to the bubble result, away from the (0, 0) point. In the

GW+DMFT polarization, some of the momentum-dependent structures differ significantly

from the “one-shot” result in panel (b), especially near the (π, 0) point.

The self-consistent feedback of the k-dependent self-energy and polarization also has an

effect on local observables, such as the local spectral function. In Refs. [102], [94] and [103]

it was found that in the half-filled U -V Hubbard model, the self-consistent GW+DMFT

calculation yields stronger correlation effects than DMFT, as exemplified by a larger mass

enhancement or more pronounced Hubbard bands. “One shot” calculations, in which a
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FIG. 12: Comparison of various approximations for the momentum dependent polarization function

(U = 1.5, V = 0.4). (From Ref. [94].)

nonlocal GW contribution is added to the converged EDMFT self-energy, produced the

opposite effect. This result however appears not to be a generic one. For example, it was

found in a recent study of the Hubbard model away from half-filling that the inclusion of

the non-local GW diagrams reduces the correlation effects [22]. The latter study, which was

restricted to the weak-coupling regime, concluded that GW+DMFT provides slightly more

accurate results for the local self-energy than DMFT, while the non-local components are

not improved with respect to pure GW.

In the strong-coupling regime, where the failure of self-consistent GW to produce Hub-

bard bands is well known, the combination with DMFT enables physically meaningful self-

consistent calculations [102]. Therefore, the main advantage of the GW+DMFT scheme

is that it enables a self-consistent treatment of screening effects at arbitrary interaction

strength.
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TABLE II: Bare [effective] on-site interactions Ubare [U ] and nearest-neighbor interactions V bare

[V ]. Also shown is the static value of the effective on-site interaction U(ω = 0) obtained from

GW+DMFT. All values are in eV. (From Ref. [61].)

C Si Sn Pb

U 1.4 1.1 1.0 0.9

V 0.5 0.5 0.5 0.5

Ubare 6.0 4.7 4.4 4.3

V bare 2.8 2.8 2.7 2.8

U(ω = 0) 1.3 0.94 0.84 0.67 (insulator)

0.54 (metal)

2. Adatom systems on semiconductor surfaces

An interesting playground to explore correlation effects in two-dimensional lattice sys-

tems are periodic systems of adatoms on a semiconductor surface [127]. A recent ab initio

study of Si(111):X (X=Sn, C, Si, or Pb) based on cRPA downfolding and a self-consistent

GW+DMFT solution of the low-energy effective theory has revealed the importance of non-

local Coulomb interactions and dynamical screening effects in these systems and consistently

explained material trends for this series of adatoms [61]. In this work, the one-particle part of

the Hamiltonian was calculated in the LDA approximation, yielding a half-filled single band

of predominantly pz character near the Fermi level, with a bandwidth of approximately 0.5

eV for all systems considered. The interaction parameters (partially screened Coulomb ma-

trix elements) were calculated using cRPA and a low-energy window containing the surface

band. The resulting static interaction parameters for the on-site (U) and nearest-neighbor

(V ) interactions are listed in Tab. II. Also shown for comparison are the bare interaction

values, which ignore the screening effects from higher-energy bands.

While the on-site interaction is large, about 2-3 times the bandwidth, the non-local

interactions are also substantial, and the resulting nonlocal screening effects are essential

for understanding the properties of the different adatom systems. It is furthermore evident
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FIG. 13: Left panel: frequency-dependent on-site interactions for the adatom systems Si(111):X

(X=Sn, C, Si, Pb) obtained within GW+DMFT. Right panel: Schematic phase diagram in the

space of non-local and local interactions with Mott insulating, metallic and charge ordered (CO)

regions. The surface unit cells of the insulating phases are sketched as in-sets. (From Ref. [61].)

that the nearest-neighbor interaction is almost independent of the adatom type. The reason

is the relatively large distance of 6 Å between the adatoms, which implies that the intersite

Coulomb energy is essentially that of two point charges. It was furthermore found that V is

very close to the value of V bare divided by the static dielectric constant of the silicon surface,

which suggests that one can compute the longer-range interactions by rescaling V with a/r,

where a is the nearest neighbor distance. In this sense, V parametrizes the strength of all

the non-local interactions. The 1/r tail can be treated by an Ewald summation.

The low-energy model with these static on-site and off-site interactions (a particu-

lar realization of the single-orbital U -V Hubbard model) was solved using self-consistent

GW+DMFT [61]. The dynamical interaction U(ω) obtained within this scheme is plotted

in the left panel of Fig. 13 and reflects the nonlocal screening effect on the local interaction.

While at high frequencies, screening is not effective and U(ω → ∞) = U , the static value

of U can be substantially reduced, especially in a metallic system (Si(111):Pb). As a result,

also the gap values are smaller than they would be in the absence of nonlocal screening.

The simulation results, which reproduce the experimentally observed materials trends,

are summarized in the schematic phase diagram of Fig. 13 (right panel). While all the

considered systems have the same strength of the nonlocal interactions, their on-site inter-
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actions differ. As a result of this, the screening effect in Si(111):C and Si(111):Si is small (see

left panel), which places these systems in the Mott insulating region of the phase diagram,

while Si(111):Sn and Si(111):Pb are close to a metallic solution (the latter one is in fact

in a coexistence regime). It was also found that Si(111):Pb is close to a charge ordering

instability.

VII. APPLICATIONS TO REALISTIC MATERIALS

A. LDA+DMFT+U(ω)

The frequency-dependent interaction parameters derived from cRPA have been employed

in several recent ab initio simulations based on the LDA+DMFT framework [44, 110, 128,

129]. These simulations have produced high-energy satellites and enhanced correlations in

often good agreement with experiments. In this section, we illustrate the important effects

of the dynamical U(ω) by focusing on three materials: SrVO3 (Sec. VII A 1), hole-doped

BaFe2As2 (Sec. VII A 2) and undoped La2CuO4 (Sec. VII A 3).

1. Mass enhancement and satellites in SrVO3

The correlated metal SrVO3, with an undistorted perovskite structure, has been studied

extensively within LDA+DMFT, LDA+DMFT+U(ω) and variants of GW+DMFT. It is

a suitable test material for new computational schemes, because of its relatively simple

bandstructure, with a well-defined low-energy window containing the three t2g bands. The

LDA bandwidth is 2.6 eV. Experiments indicate a substantial narrowing of these bands, by

about a factor of two, and the appearance of satellites below and above the renormalized

quasi-particle band [130]. Conventionally, these satellites have been interpreted as Hubbard

bands, but recent theoretical results force us to reconsider this interpretation.

LDA+DMFT calculations with a static U = 5 eV and a Hund coupling parameter

J = 0.68 eV were shown in Ref. [131] to produce the correct band renormalization. The

resulting k-integrated spectrum features a pronounced lower and upper Hubbard band at

−1.8 and 3 eV, respectively. A more recent study [132] employed U = 5.5 eV, which re-

sults in an even larger splitting between the Hubbard bands. LDA+DMFT calculations

with a dynamically screened U(ω) have been performed within the DALA approximation
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FIG. 14: Left panel: local spectral function of SrVO3 from the dynamic-U simulation (red) and

the effective static model of Sec. III D (blue). Right panel: Low-energy and satellite contributions

to the local spectral function (Eq. (129)).

(Sec. III B 1) in Ref. [85] and using the full cRPA interaction and the CTQMC scheme of

Sec. III B 3 in Refs. [128, 133]. The frequency dependent U used in Ref. [133] is plotted in the

left panel of Fig. 2. It has a static value of 3.4 eV and a dominant pole structure near ω = 14

eV. The width of the renormalized quasiparticle band predicted by the LDA+DMFT+U(ω)

calculation is 0.9 eV, which is too narrow compared to experiment. As we will argue in

Sec. VII C 1, the missing ingredient in this calculation is the widening of the band due to

the momentum dependence of the self-energy. In this section, we would like to comment

on the proper static-U description (Sec. III D), and the implications for the position of the

Hubbard bands.

If the band-widening effect of the k-dependent self-energy is neglected, the static descrip-

tion should involve the cRPA U(ω = 0) and a bandwidth reduced by the Bose factor (71),

which for SrVO3 is ZB = 0.689. Since the material has three equivalent t2g bands, shrinking

the bandwidth by ZB is equivalent to increasing the static interaction to 3.4/ZB = 4.93 eV

and rescaling the frequency axis by ZB.

The left panel of Fig. 14 compares the local spectral function from the dynamic-U sim-

ulation (red line) to a static-U simulation with enhanced on-site interaction before (dashed

black line) and after (blue line) the rescaling of the frequency axis. The dashed line is essen-

tially the result of the previous LDA+DMFT simulations [131]. After the rescaling of the

frequency axis by the factor ZB, one recovers the mass renormalization of the quasi-particle
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band and the Hubbard band positions of the U(ω) calculation. The upper Hubbard band is

placed at 2 eV, instead of 3 eV, and the lower Hubbard band is shifted from about −2 eV

to −1.6 eV. The latter position is consistent with photo-emission experiments [130]. The

spectral weight which is lost by the rescaling of the frequency axis is shifted to high-energy

satellites near ±15 eV, and also at ±5 eV (see right panel), which cannot be extracted from

a static-U simulation. Looking at the cRPA result for U(ω) (Fig. 2), we see that the ener-

gies of these satellites are determined by the dominant screening modes (peaks in ImU(ω)).

In fact, the analytical continuation procedure discussed in Sec. V by construction leads to

satellite features at the corresponding energy off-sets.

This example illustrates the general fact that LDA+DMFT+U(ω) simulations can pro-

duce the same mass renormalizations as static-U LDA+DMFT simulations, but with a lower

U(ω = 0) (here, 3.4 eV instead of 5 eV). As a consequence, the splitting between the Hub-

bard bands is reduced, or the Hubbard bands may not even be well defined anymore, as in

the example discussed in the following subsection.

2. Spin-freezing crossover in hole-doped BaFe2As2

BaFe2As2 is a prototypical compound of the so-called 122 family of iron based supercon-

ductors. It becomes superconducting under pressure, or by hole- and electron-doping. The

hole-doped compound exhibits nontrivial correlation effects, even in the normal phase (above

the maximum Tc of 38 K [134]), as exemplified by the widely varying experimental estimates

of the mass enhancement [135, 136]. The remarkable sensitivity of the electronic structure

to changes in temperature, pressure or doping was shown [110] to be related to the proximity

of the optimally hole-doped compound to a spin-freezing crossover. Spin-freezing [137] has

recently been recognized as a generic and important phenomenon affecting the properties of

multi-orbital systems with Hund coupling in a certain regime of filling, interaction strength

and temperature [138]. Inside the spin-frozen regime, long-lived magnetic moments appear,

which leads to strong scattering and bad metallic behavior. The boundary of the spin freez-

ing regime is characterized by fluctuating local moments and non-Fermi liquid properties, in

particular a self-energy which varies as a square-root of frequency (rather than linearly with

frequency) on the Matsubara axis [137]. Such a square-root self-energy leads to strong band

renormalizations at low energy, even in system which do not exhibit Hubbard bands. Due to
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FIG. 15: Panel (a): cRPA result for the partially screened U of the 5-band model of BaFe2As2.

Panel (b): d-electron spectral function from LDA (blue), LDA+DMFT with static U = Uscr (red),

and LDA+DMFT+U(ω) calculations (black). The inset shows the high-energy features in the

dynamic-U spectral function. Panel (c): Sketch of the phase diagram of BaFe2As2 in the space of

temperature and doping. The spin-frozen region is indicated by yellow, whereas blue corresponds

to Fermi liquid behavior. The border of the spin-frozen regime is characterized by a self-energy

which varies like ImΣ(iωn) ∼ ωαn , with 0.5 < α < 1. (Adapted from Ref. [110].)

the dramatic changes in the electronic structure in the spin-freezing crossover regime, an ab

initio simulation of hole-doped BaFe2As2 requires an accurate estimation of the interaction

parameters.

The left panel of Fig. 15 shows the real and imaginary parts of the partially screened

interaction U(ω) for the Fe-d states estimated from cRPA [110]. The real part varies from

the static value U(ω = 0) = 3.6 eV to a bare value Ubare ≈ 20 eV. The plasmon excitation

near ω ≈ 26 eV overlaps with single-particle excitations, which results in a broad peak in

ImU(ω). In order to properly judge the importance of the different features we also plot

ImU(ω)/ω2. As discussed in Sec. III C it is the twice-integrated retarded interaction, or

ImU(ω)/ω2, which enters into the calculation of the diagram weights in a hybridization

expansion solver (see Eq. (58)). Apart from a dominant peak at 3.8 eV, which results from

the lack of “high-energy” screening processes below this frequency, there are additional peaks

at 6.1, 12 and 16 eV. As in the case of SrVO3 discussed in the previous subsection, such

sharp structures can be expected to lead to side-bands in the d-electron spectral function at

the corresponding energies. Indeed, as shown in the middle panel (inset), we can identify
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FIG. 16: Momentum-resolved spectral function for KxBa(1−x)Fe2As2 at optimal doping x = 0.4

and temperature T = 600 K. The left panel shows the LDA+DMFT result for the static interaction

U = Uscr, while the middle panel has been obtained using the frequency-dependent U(ω). The

right panel shows the spectral function obtained in a simulation with U = Uscr and a bandwidth

which is reduced by ZB = 0.59. (From Ref. [95].)

these peaks in the spectral function computed with the procedure described in Sec. V. It is

interesting to note that a satellite at approximately −6.5 eV has been seen in photoemission

experiments [139, 140].

The middle panel also shows a comparison of the LDA+DMFT+U(ω) spectral function

for optimally doped BaFe2As2 to the result obtained with LDA+DMFT using the static

interaction parameter Uscr = U(ω = 0) and to the LDA density of states. (A static Hund

coupling parameter J = 0.675 was used in the DMFT calculations.) The much stronger

renormalization of the quasi-particle peak in the dynamic-U calculation is due to the non-

Fermi liquid self-energy in the spin-freezing crossover regime: Near optimal doping and for

the simulation temperature of 145 K, the effective increase of the Coulomb interaction due

to the barely screened fast charge fluctuations pushes the system closer to the spin-freezing

region, resulting in large mass enhancements. In the underdoped regime, the behavior is

more Fermi liquid like and the effect of the dynamic U on the electronic structure is less

pronounced, while in the overdoped region, the spin-freezing leads to very short quasi-particle

life-times. The location of the spin-freezing region in the space of doping and temperature

is sketched in the right-hand panel of Fig. 15 (yellow region).

The calculated renormalized band structure of optimally doped BaFe2As2 is shown in

Fig. 16 with the left panel plotting the result from the static-U approximation and the
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middle panel the much more strongly renormalized and smeared out bands obtained in

the dynamic-U simulation. As discussed in Sec. III D the proper static model involves an

effectively reduced bandwidth. In the case of BaFe2As2 the renormalization factor ZB = 0.59

is rather low [95]. The right hand panel of Fig. 16 shows the renormalized low-energy bands

from a static-U calculation with such a renormalized bandwidth. Due to the enhanced

correlation effects, we now get the proper mass enhancement and also the broadening of the

bands due to the scattering with local moments. While the low-energy physics is correctly

reproduced by the model with reduced bandwidth, this static description will of course not

produce any high-energy satellites.

3. Mott gap and −13 eV satellite in La2CuO4

Low energy models of cuprates usually involve the Cu dx2−y2 and O px and py orbitals.

The one-band description considers the anti-bonding combination of these orbitals, while the

three-band model also takes into account the bonding combination of Cu dx2−y2 and O px,y,

as well as the non-bonding p orbital. LDA+DMFT+U(ω) calculations based on the cRPA

estimate of U have recently been analyzed for both models in Ref. [129]. The conclusion of

this study was that in both models, a static approximation U = Uscr fails to open a Mott gap,

while in the three-band model the dynamic-U calculations yields a gap of approximately 1.9

eV, in good agreement with experiment [141], provided that p-d interactions are accounted

for within the DMFT self-consistency loop, at least at the Hartree level. The important role

of interatomic Hartree potentials in the correct positioning of the p-bands and the opening

of the gap is consistent with previous results [142] for a related three-band model.

The partially screened U(ω) for the three-band model of La2CuO4 is plotted in the left

panel of Fig. 17. The broad peak in ImU(ω) centered at ω = 30 eV is a plasmon excitation

coupled to single-particle excitations. At lower energies, ImUdd exhibits a sharp peak at

ω = 9, which is absent in ImUpp and ImUpd. This indicates that the collective excitation

associated with the 9 eV peak is localized on the Cu site. The prominent 9 eV peak is

primarily responsible for the low band renormalization factor Zdd
B = 0.52, which suggests

important screening effects in La2CuO4.

The k-integrated spectral function and its p-electron and d-electron contributions are

plotted in the right hand panel of Fig. 17. At the simulated temperature of 1200 K, an-
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FIG. 17: Partially screened interactions from cRPA for the 3-band model of La2CuO4 (left panel)

and spectral function at T = 1200 K from a LDA+DMFT+U(ω) simulation, which takes into

account the interatomic Hartree potential (right panel). In the spectral function, we indicate the

following features: satellites (S), lower Hubbard band (LH), upper Hubbard band (UH), and the

Zhang-Rice singlet band (ZR). (Adapted from Ref. [129].)

tiferromagnetic correlations do not play an important role, so that the gap in the spectral

function is a Mott gap. The upper Hubbard band has a width of about 2 eV, while the

lower Hubbard band obtained in this simulation covers the same energy range as the p-bands

and is hence not easily identified. The states near the lower gap edge, which have mixed

p-d character, may be interpreted as Zhang-Rice singlet states [143]. The most interesting

feature in this spectral function, as far as dynamical screening is concerned, are the two

satellites at −13 eV and +10 eV. They originate from the sharp 9 eV peak in ImU(ω), and

should not be confused with the Hubbard bands. A satellite feature at −13 eV has indeed

been observed in photoemission measurements [144].

B. SEX+DMFT results for BaCo2As2

In the quest for new iron-based high-Tc superconductors, a significant effort has been

devoted to alloying iron with other ferromagnetic 3d elements, such as Co and Ni.

Ba(Fe,Co)2As2 and Ba(Fe,Ni)2As2 are superconducting, but with a lower Tc than the “par-

ent” BaFe2As2 compound. While pristine BaNi2As2 is still a superconductor, BaCo2As2 is

a paramagnetic metal close to a ferromagnetic instability, as suggested by a high Wilson

73



FIG. 18: LDA band structure of BaCo2As2 (panel (a)), and k-resolved spectral functions

from LDA+DMFT (panel (b)), LDA+DMFT+U(ω) (dubbed LDA+DDMFT in panel (c)), and

SEX+DMFT+U(ω) (dubbed SEx+DDMFT in panel (d)), overlaid on the experimental photoe-

mission spectra. (Data taken from Ref. [112].)

ratio. The latter material is particularly interesting from the theoretical viewpoint, because

it challenges ab initio methods to predict the correct magnetism and ARPES data. Density

functional theory in the standard local spin density approximation (LSDA) gives a ferromag-

netic ground state, which is not consistent with experiment. Moreover, the LDA bandwidth

in the paramagnetic solution is a factor 1.5 too large compared to ARPES. The LDA density

of states is peaked near the Fermi level, with a quite large value of 2.12 states/Co/spin/eV,

which fulfills the Stoner criterion for ferromagnetism [145].

In Ref. [112], the SEX+DMFT scheme, presented in Sec. IV B 3, has been applied to

BaCo2As2, in order to see whether a more refined treatment of electron correlations results

in a better agreement with the experimental situation. On theoretical grounds, we expect

BaCo2As2 to be less correlated than the superconducting BaFe2As2, because the nominal

occupation of the d-orbital lattice site goes from the ideal spin-freezing value of 6 electrons

in BaFe2As2 [110] to 7 in BaCo2As2. By moving farther away from half-filling, the onset

of strong electron correlations is pushed up to larger values of U . Therefore, the electronic
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structure of BaCo2As2 is supposed to be characterized by coherent quasiparticles, in contrast

to BaFe2As2, where coherence is lost very quickly as the temperature increases, particularly

in the hole-doped compounds (see Sec. VII A 2).

ARPES data confirm this scenario [146], by reporting quite sharp low-energy spectra for

BaCo2As2, typical of a weakly-to-moderately correlated material, as shown in Fig. 18. A

peculiar feature of its band structure is represented by the dx2−y2 band, which is very flat

along the Γ-M direction just below the empty part of the spectrum. This band contributes

to a quite tall peak in the LDA density of states, exactly located at the Fermi level, and to

the ferromagnetic nature of the LSDA solution.

The situation encountered here is common in iron-based superconductors, where the

tendency to magnetism is largely overestimated by density functional theory. In this sense,

it is useful to perform a detailed study of BaCo2As2 as a benchmark system. The authors of

Ref. [112] tested LDA+DMFT calculations of different flavors, namely LDA+DMFT with

the cRPA static U , LDA+DMFT+U(ω), and SEX+DMFT+U(ω). The resulting spectral

functions are shown in Fig. 18. It was found that the regular DFT+DMFT performs quite

well, whereas the dynamic U worsens the DFT+DMFT results particularly around the

M k-point and below −0.5 eV, due to a too large band renormalization. On the other

hand, these features are corrected by the SEX+DMFT+U(ω), as the ZB band narrowing is

compensated by non-local correlation effects included in the SEX part, which yields instead

a band widening, as it is apparent in Fig. 19.

Therefore, both ingredients, the dynamically screened U and the non-local screened ex-

change, are essential for a consistent description of this moderately correlated material.

Electron correlations included in the non-perturbative solution of the impurity problem

with retarded U are key to the broadening of the spectral function peak at the Fermi level

(Fig. 19), which results in a density of states below the Stoner threshold. One thus recovers

the correct paramagnetic phase in agreement with experimental conditions. SEX+DMFT

is a promising scheme that should be applied to other strongly correlated compounds for

further benchmarks and predictions.
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FIG. 19: Cobalt-d spectral function of of BaCo2As2 from SEX+DMFT+U(ω) (red), compared

to the Co-d density of states within LDA (black), and SEX (solid blue line). (Data taken from

Ref. [112].)

C. GW+DMFT results for SrVO3

1. Band widening from k-dependent Σ

The simplest way of combining GW and DMFT is to add the local self-energy of a

converged LDA+DMFT+U(ω) calculation to the nonlocal self-energy from a separate GW

calculation [133]. To avoid a double-counting of interaction effects, the local component of

the GW self-energy must be subtracted. Figure 20 compares the resulting quasi-particle

bandstructure of SrVO3, obtained as the solution of the quasi-particle equation Eα,k−εα,k−

ReΣα,α(k,Eα,k) = 0, to LDA, GW and LDA+DMFT+U(ω) data. The bandwidth of 1.2 eV

predicted by the one-shot GW+DMFT scheme is in good agreement with photoemission data

[130]. In particular, the one-shot GW+DMFT corrects the overestimation of the correlation

effect in LDA+DMFT+U(ω) (Sec. VII A 1), while producing a substantial renormalization of

the GW bandstructure, especially in the unoccupied part of the spectrum. This is illustrated

in the lower panel, where a rescaled GW quasiparticle bandstructure is compared to the

one-shot GW+DMFT result. Note that the stronger renormalization of the bands in the

unoccupied part is the result of the local self-energy, while the overall GW+DMFT band

structure is wider than the DMFT one, because of the nonlocal self-energy components

coming from the GW part.
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FIG. 20: Bare and renormalized quasi-particle bandstructures of SrVO3 obtained from different

approximate methods. DMFT here means the LDA+DMFT+U(ω) scheme, GW+DMFT the one-

shot result. (From Ref. [133].)

It has been argued in Ref. [113] that the partial cancellation between the band-narrowing

effect of a dynamically screened interaction (Sec. III D) and the band-widening effect of

the nonlocal self-energy contributions is a generic phenomenon, which highlights the ad-

vantage of formalisms such as GW+DMFT, which incorporate both effects. In fact, it is

useful and instructive to analyze the band widening effect due to the nonlocal exchange

at the GW level. A one-shot GW calculation of SrVO3 starting from the LDA band

structure and wavefunctions produces the t2g spectral function shown in the left panel of

Fig. 21. The GW bandwidth is renormalized with respect to LDA, such that the effec-

tive mass is increased by a factor mGW/mLDA = 1.3. However, the quasiparticle weight

ZkF = 1/ (1− ∂ωReΣGW(kF , ω))ω=0 is ∼ 0.53, where the self-energy is defined with respect

to the LDA exchange-correlation potential: ΣGW = Σxc
GW − V xc

LDA. This would give a mass

enhancement of ∼ 2 in the absence of non-local self-energy effects. However, the expression

for the group velocity within GW, from where the total mass enhancement is extracted,

reads:
dEki

dkα
=
〈Ψki|∂kα (HLDA(k) + ReΣGW(k, ω)) |Ψki〉

(1− 〈Ψki|∂ωReΣGW(k, ω)|Ψki〉)

∣∣∣∣
k=kF ,ω=0

, (137)

where the additional renormalization via the nonlocality of the self-energy, ∂kαReΣ(k, ω),
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FIG. 21: Momentum resolved spectral function of SrVO3 obtained from the GW approximation

(left panel) and by taking into account only the nonlocal part of the GW self-energy (right panel).

Superimposed is the LDA band structure. (From Ref. [108].)

must be taken into account.

In order to illustrate and quantify the effect of the nonlocal components, one can remove

the local part from Σxc
GW by defining Σnonloc

GW (k, ω) = Σxc
GW(k, ω)−

∑
k Σxc

GW(k, ω). The spec-

tral function of the corresponding Green’s function G̃(k, ω) = 1/[ω+ µ̃−HLDA(k) + V xc
LDA−

Σnonloc
GW (k, ω)] is plotted in the right panel of Fig. 21. It is apparent that non-local contri-

butions, which mainly come from the exchange part, lead to a significant band widening,

yielding a bandwidth ≈ 1.5 times larger than LDA. We also note a small asymmetry in the

band-widening, that is, the effect is more prominent in the empty part of the spectrum, as

pointed out in Refs. [108] and [112].

Another noteworthy feature of the GW self-energy of SrVO3 is the separation of the

local and non-local self-energy effects into dynamic and static ones, respectively. A way

to quantify the non-locality of dynamical renormalizations is to compute the generalized

k-dependent quasiparticle weight

Zk(ω) =

[
1− ∂ReΣ(k, ω)

∂ω

]−1

, (138)

and its k-fluctuations, defined by

∆kZ =

√∑
k

Tr|Zk(ω)− Z loc(ω)|2, (139)

where the local quantity is, as usual, Z loc(ω) =
∑

k Zk(ω). ∆kZ and Z loc(0) are plotted

in the bottom panel of Fig. 22. It turns out that the k-dispersion of Zk around Z loc is
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very weak in the frequency window from -2 to 2 eV, signaling that dynamical effects are

local at low-energy. Conversely, non-local effects are static in the same energy window.

This is confirmed by the inspection of the real and imaginary parts of the GW self-energy,

plotted for some selected high symmetry k-points in the top and middle panels of Fig. 22,

respectively. One easily sees that at low energy the frequency dependence is k-insensitive

in both the real and imaginary parts, while the k-dependence is ω-independent in the real

part, leading to a k-dependent rigid shift of the self-energy curves. This effect has not only

been observed in SrVO3 [108, 147], but also in the iron pnictides and chalcogenides [116].

We come back to the asymmetry between the occupied and empty parts of the spectrum,

which results from the non-local part of the self-energy. This asymmetry is not only present

in the band widening, as seen in Fig. 21, but most prominently in the quasiparticle lifetimes.

Indeed, the imaginary part of the GW self-energy is largest on the unoccupied orbitals for

ω > 0, as shown in the middle panel of Fig. 22, which implies a stronger effect of electron-

FIG. 22: The GW self-energy of SrVO3 at several high symmetry points resolved into the three

t2g (Wannier) orbital contributions as a function of frequency. Also shown is the local projection

(real parts: top panel, imaginary parts: middle panel). The lower panel displays the momentum

dependence of the frequency dependent generalization of the quasi-particle weight. The origin

of energy corresponds to the Fermi level and the shaded area roughly indicates the Fermi liquid

regime within GW. (From Ref. [108].)
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electron scattering in the empty part of the spectrum. However, this large imaginary part lies

outside the energy window where the dynamic and static effects are separable in frequency.

Hence, the asymmetry of the quasiparticle lifetime, a dynamic quantity in nature, is k-

dependent.

2. Self-consistent calculation of Σ

The partially self-consistent implementation of Refs. [108, 109] goes a step beyond the one-

shot calculation discussed in the previous subsection by performing a self-consistency loop

for Σ and G. However, compared to the full GW+DMFT scheme discussed in Sec. IV A 2,

a number of approximations have been made. The bosonic Weiss field U was kept frozen to

the Umn(0, ω) cRPA value, as described in Sec. IV B 2. In other words, the self-consistency

loop for P and W was not performed. However, the RPA polarization function computed

from the LDA band structure of SrVO3, and its corresponding dielectric function, compare

favorably to electron energy loss spectroscopy measurements of SrTiO3, an isostructural

compound with a d0 occupation, where data of this kind are available up to 40 eV.

The results for the GW and the GW+DMFT spectra are shown in Fig. 23. The dy-

namically screened impurity problem of GW+DMFT has been solved by DALA. Compared

to LDA, the GW spectral function, plotted in the leftmost panel of Fig. 23, gives a better

position of the O-2p and Sr-4d states, which are closer to the experimental photoemis-

sion spectroscopy (PES) and Bremsstrahl-Isochromat spectroscopy (BIS) curves taken from

Refs. [148] and [149]. However, GW yields a too strong quasiparticle peak at the Fermi level,

of full t2g character, and a too weak mass enhancement. GW+DMFT, reported in the middle

panel of Fig. 23, corrects for these deficiencies, by strongly renormalizing the height of this

peak, and producing a mass enhancement of ∼ 2. The renormalization is accompanied by

a spectral weight transfer from the quasiparticle peak to the lower Hubbard band, correctly

located at −1.6 eV (see rightmost panel in Fig. 23), and to plasmon satellites, which can

be identified in the figure at −4 eV, 5 eV, and 15 eV. Therefore, dynamic screening and

correlation effects play a major role in determining the renormalized low-energy properties

of the material.

Surprisingly, the upper Hubbard band is not visible in the GW+DMFT spectral function

computed in Refs. [108, 109]. It may be hidden by non-local self-energy effects, particu-
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FIG. 23: GW (left panel) and GW+DMFT (middle panel) spectral functions of SrVO3 in com-

parison to photoemission and inverse photoemission spectra. Right panel: Zoom of the middle

panel around the lower Hubbard band region. (From Ref. [108].)

larly large in the empty part of the spectrum. However, other calculations, such as the

one-shot GW+DMFT scheme of Ref. [133], or the simplified SEX+DMFT [147], both us-

ing a CTQMC solver, show a quite sharp upper Hubbard band well separated from the

quasiparticle peak. The missing Hubbard band could thus also be a consequence of an

underestimation of the bandwidth reduction by DALA with respect to QMC (reported in

Ref. [128]), or by non-local dynamical self-energy effects just above the Fermi liquid regime,

which are neglected in Ref. [147] and treated non-selfconsistently in Ref. [133].

In any case, within the partially self-consistent GW+DMFT scheme of Refs. [108, 109]

the upper Hubbard band should be located around 2 eV, as its separation from the lower one

must be the static value of U (here 3.3 eV). This implies that the BIS signal detected at 2.7

eV is not the upper Hubbard band of the t2g manifold, as previously identified. Overlapping

the GW+DMFT spectrum with the BIS data shows that the peak just above the Fermi level

has an eg origin, instead, as seen in Fig. 23.

VIII. CONCLUSIONS AND OUTLOOK

We have discussed the effect of dynamical screening in strongly correlated lattice systems

and materials, and detailed some recently developed or implemented techniques based on

extensions of the DMFT framework. At this point, the most advanced scheme which allows

a self-consistent treatment of screening and correlation effects in materials is the combi-

nation of the GW ab initio method and DMFT [10]. A fully self-consistent GW+DMFT
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calculation yields retarded interaction parameters for the DMFT impurity problem, which

incorporate the effect of local and nonlocal screening processes in the correlated system. This

method also captures the momentum dependence of the self-energy (at the GW level), and

hence the competition between the band-narrowing effect of the frequency-dependent inter-

action and the band-widening effect of the non-local self-energy components. Self-consistent

GW+DMFT calculations of multi-band systems and realistic materials have only been im-

plemented very recently. While these results demonstrate prominent non-local screening

effects, more work on a broad range of materials is needed to judge the reliability and pre-

dictive power of the scheme. Also, it should be emphasized that in current implementations,

the self-consistent calculation is performed within a low-energy window containing just a

few bands, after a cRPA downfolding or one-shot GW calculation. In the near future, this

scheme should be extended to a multi-scale approach with three energy windows, a large

energy window for the initial cRPA calculation, an intermediate-energy window for self-

consistent GW calculations, and a low-energy window for the GW+DMFT calculations. In

such a scheme, the GW+DMFT estimate of the self-energy of the low-energy space has to be

merged with the GW self-energy for the remaining orbitals in the intermediate-energy win-

dow, and the calculations within the intermediate and low-energy space should be iterated

until a self-consistent solution for G, W , and the auxiliary impurity problem is obtained.

Apart from the implementation of these hopefully accurate, but numerically demanding

schemes, the further exploration of simplified versions of the GW+DMFT framework will

produce useful insights into the effects of screening and nonlocal correlations. We have

discussed the partially self-consistent formulation of Tomczak et al., which performs a self-

consistency loop on Σ and G, while approximating the effective interaction by the cRPA

estimate [108]. If the self-energy is furthermore approximated as local, one ends up with the

LDA+DMFT+U(ω) method, which has been used in recent years by several groups to study

plasmon satellites in strongly correlated materials [110, 128, 129, 133]. Another recently

proposed variant, which has been applied to correlated materials with promising results,

is SEX+DMFT+U(ω), which takes into account the band-widening effect of the nonlocal

screened exchange [112]. Further applications and comparisons of these different simplified

schemes will provide valuable insights into the roles played by the different ingredients of

the GW+DMFT formalism, and the importance of self-consistency.

It is also essential to clarify the accuracy and limitations of the cRPA method, or related
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RPA schemes, which underpin the material simulations discussed in this review. The RPA

polarization lacks vertex corrections, and in principle, a downfolding onto a low-energy sub-

space should generate higher-order interaction terms which are not contained in an effective

Hubbard model description. Some of these issues have recently been addressed in simple

model set-ups containing a small number of screening bands [47, 48], but more work is needed

to properly judge the realistic situation with a large number of high-energy screening bands.

It should be kept in mind that GW+DMFT and related methods, which combine the

local self-energy from an effective impurity model with the nonlocal self-energy of some

weak-coupling perturbation theory, cannot be expected to capture the strong nonlocal cor-

relation effects in low dimensional systems. This has been explicitly demonstrated for

the two-dimensional Hubbard model in the weak-coupling regime [22], while at interme-

diate coupling, there are obvious inconsistencies between the weakly momentum-dependent

GW+DMFT results, and the strong momentum-variation predicted by cluster DMFT sim-

ulations [18, 150]. Hence, we should view GW+DMFT primarily as a method which is

suitable for capturing dynamical screening effects in three dimensional compounds. For

two-dimensional systems, the combination of (extended) cluster DMFT and many-body

perturbation theory may be a promising strategy. However, efficient impurity solvers capa-

ble of handling dynamically screened interactions in cluster impurity problems have yet to

be developed.

In fact, progress in this field is intricately linked to futher improvements of the available

impurity solvers and analytical continuation techniques. The methods reviewed in this paper

enable an efficient simulation of single-site, multi-orbital impurity problems with dynamically

screened monopole interactions. Retarded spin-flip terms cannot be handled efficiently with

methods based on a Lang-Firsov decoupling of the electron-boson interaction and must be

dealt with in a double-expansion approach [97, 151], which may suffer from a sign problem.

The analytical continuation procedure explained in Sec. V is also based on a Lang-Firsov

picture, and works reliably only in systems with a clear energy separation between low-energy

and satellite features. More flexible and powerful methods will be essential in particular for

the eventual application of more advanced schemes, such as TRILEX [152], dual bosons

[105], or extended cluster methods to realistic materials.

Another new and interesting research direction is the extension of the methods described

here to nonequilibrium systems [124, 125]. A proper description of dynamical screening
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effects should be very important in materials perturbed by intense laser fields, especially if

the laser pulse produces inter-band transitions. GW+DMFT is a promising starting point

for the development of a formalism, which enables ab initio predictions of nonequilibrium

phenomena in strongly correlated materials.
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