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Resolving the interplay between magnetic interactions and structural properties in strongly corre-
lated materials through a quantitatively accurate approach has been a major challenge in condensed
matter physics. Here we apply highly accurate first principles quantum Monte Carlo (QMC) tech-
niques to obtain structural and magnetic properties of the iron selenide (FeSe) superconductor under
pressure. Where comparable, the computed properties are very close to the experimental values. Of
potential ordered magnetic configurations, collinear spin configurations are the most energetically fa-
vorable over the explored pressure range. They become nearly degenerate in energy with bicollinear
spin orderings at around 7 GPa, when the experimental critical temperature Tc is the highest. On
the other hand, ferromagnetic, checkerboard, and staggered dimer configurations become relatively
higher in energy as the pressure increases. The behavior under pressure is explained by an analysis
of the local charge compressibility and the orbital occupation as described by the QMC many-body
wave function, which reveals how spin, charge and orbital degrees of freedom are strongly coupled in
this compound. This remarkable pressure evolution suggests that stripe-like magnetic fluctuations
may be responsible for the enhanced Tc in FeSe and that higher Tc is associated with nearness to
a crossover between collinear and bicollinear ordering.

INTRODUCTION

The quest for a microscopic theory of unconventional
or high-temperature superconductivity is a major chal-
lenge in condensed matter physics. The discovery of
iron-based superconductors in 2006 [1] was an important
contribution to the field since it added a second class of
high-temperature unconventional superconductors to the
experimental roster, along with the cuprate superconduc-
tors. Despite their different electronic structure, their
phase diagrams have striking similarities[2, 3], particu-
larly the proximity of the superconducting phase with
an antiferromagnetic state. This behavior, along with
other considerations[4–8], makes it likely that spins and
magnetism are important in determining the supercon-
ducting state.

FeSe is a particularly interesting example of the iron-
based superconductors for several reasons. Its criti-
cal temperature is strongly dependent on pressure[8–10],
reaching 37 K at 7 GPa. At ambient conditions, FeSe
has a simple P4/nmm crystal structure with two inequiv-
alent Fe and Se positions per unit cell, and it undergoes
a distortion from tetragonal to orthorhombic symmetry
by cooling it down below 91 K, while it becomes super-
conducting below 8 K at ambient pressure. An intrigu-
ing peculiarity of FeSe is that, at variance with most
of the iron-based superconductors, it does not show any
long-range magnetic order at ambient pressure[11]. In
spite of this, very strong antiferromagnetic spin fluctu-
ations have been revealed by neutron scattering experi-
ments (see for example Ref. 12) in the proximity of the

superconducting phase. Their role in driving the nematic
transition and their connection to superconductivity have
been the subject of intense debate. All these aspects
make it attractive for computational techniques to cor-
relate microscopic electronic structure with the super-
conductivity and it is therefore one of the most studied
iron-based superconductors. However, the precise calcu-
lation of the properties of this material remains challeng-
ing from first principles methods such as density func-
tional theory (DFT) due to strong electron correlation.

For example, the PBE band structure is in poor agree-
ment with experiments which report a considerably nar-
rower bandwidth[13, 14]. Furthermore the FeSe lattice
constants display an average error of ∼ 0.1 Å indepen-
dently from the exchange correlation functional employed
(see for instance Ref [15] and Tab I). Despite useful work
using dynamical mean field theory[16–28] and GW[29–
31] methods, there is a need for high quality calculations
that can better describe the electronic and crystal struc-
ture of these materials.

In this article, we describe the results of first princi-
ples quantum Monte Carlo simulations of the magnetic
behavior of FeSe under pressure. The main method used
in this article, fixed node diffusion Monte Carlo (FN-
DMC), has been shown recently to offer very accurate
results on a number of challenging materials, including
VO2[32], cuprates [33, 34] and other transition metal ox-
ides as well as rare earths as cerium [35]. Furthermore,
a recent work [36], based on quantum Monte Carlo tech-
niques, successfully tackled the problem of pairing sym-
metry in FeSe itself.

We find that, compared to commonly used density
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functional theory calculations, the FN-DMC calculations
obtain more accurate lattice constants, bulk moduli, and
band dispersion. By increasing the pressure, the differ-
ence in energy of ordered magnetic states with stripe-like
order goes to zero with pressure, while checkerboard-like
magnetic states increase in energy. The convergence of
the stripe-like magnetic states is correlated with the in-
crease in Tc in this material under pressure, which offers
a tantalizing connection to spin fluctuations as a poten-
tial origin. Such behavior may be a calculable design
principle for new unconventional superconducting mate-
rials.

METHODS

Fixed-node diffusion Monte Carlo

Fixed-node diffusion Monte Carlo [37] is a stochastic
approach to solving the exact first-principles imaginary-
time Schrödinger equation. FN-DMC is a variational
(upper bound to the ground state) method with no ad-
justable parameters. FN-DMC is a projector-based ap-
proach, which projects out the ground-state wave func-

tion via repeated application of the operator e−(Ĥ−E0)τ

on some trial wavefunction |ΨT 〉:

|ΨDMC〉 = lim
τ→∞

e−(Ĥ−E0)τ |ΨT 〉

= lim
τ→∞

∑
i

e−(Ei−E0)τ |Ψi〉〈Ψi|ΨT 〉

= |Ψ0〉〈Ψ0|ΨT 〉

With no further approximation, this method is exact;
however, it suffers from the well-known fermion sign
problem. This is circumvented in FN-DMC with the
fixed-node approximation [38, 39], which constrains the
projected wave function to have the same nodes as the
starting trial wave function. If the nodal structure of
the trial wave function coincides with the ground-state
one, the method remains exact. In practice, for accurate
trial wavefunctions, this approximation introduces small
errors that we will estimate.

We used a single Slater-Jastrow trial wave function
ansatz as follows:

Ψ(Rel) = Det
[
φ↑i (r

↑
j )
]

Det
[
φ↓i (r

↓
j )
]

exp

∑
α,i,j

u(riα, rjα, rij)


(1)

where Rel = {r1, r2, r3, . . .},i, j refer to electrons, α refers
to nuclei, and ↑ / ↓ indicate spin up/down respectively.
Since the FN-DMC result is determined by the nodes

of the determinants in Eq. 1, the orbitals {φ↑/↓i } deter-
mine the degree of the fixed node approximation. To test
the effect of these orbitals, we use two approaches. The
first optimizes a parameter in density functional theory

used to generate the orbitals, and is the less computa-
tionally demanding of the two. The parameter to be
optimized in the Slater determinant is the amount of ex-
act exchange w, for which we find the optimal value near
w = 0.25. This corresponds to the PBE0 functional, and
this optimum is often the case for similar calculations on
transition metal systems [40]. For consistency, we used
w = 0.25 for all our calculations, and we denote this
method by DMC(PBE0). The details of the optimiza-
tion of functional and of the parameter, w, is reported in
the appendix. The second QMC approach used in this
work performs a complete variational optimization of the
determinant orbitals within a relatively small basis set,
and is more computationally demanding but in principle
more accurate. These calculations are denoted through-
out the paper with the label QMC(opt), where QMC
will refer to VMC or DMC depending on the calculation.
Further information on the orbital optimization proce-
dure is provided in the Supplementary Material. In our
tests for FeSe, while the DMC(opt) technique did obtain
lower energies as expected, the energy differences were
consistent between the two techniques, so most data is
obtained from DMC(PBE0).

All DMC(PBE0) calculations were done within the
open-source package QWalk [41], with orbitals gener-
ated by DFT calculations performed with the DFT code
CRYSTAL [42]. For the DMC(opt) method, we used the
package TurboRVB [43].

Our only approximation to the Hamiltonian is a Dirac-
Fock pseudopotential designed specifically for quantum
Monte Carlo calculations [44, 45]. The energy difference
between the collinear and checkerboard magnetic state
is consistent between an all-electron and pseudopotential
PBE0 calculation within 0.01 eV. The convergence of the
most important parameters in both our QMC methods
is shown in the “Convergence and validation” section of
the appendix. For the FeSe crystal structure, the anion
height above the iron planes is the only internal param-
eter of the compound in the tetragonal P4/nmm phase.
This parameter represents a crucial ingredient to deter-
mine the magnetic behavior of FeSe, but its evaluation by
first-principles methods is a challenging task, as detailed
in the section titled “Crystal structure.” The optimiza-
tion of the Se height is carried out with two different
procedures. For the DMC(PBE0) method, the relaxed
value is obtained by fitting a total energy curve with a cu-
bic function. In the VMC(opt), the optimized Se height
value is obtained by a direct minimization of the ionic
forces within the variational Monte Carlo framework [46].
By including the cell parameters in the minimization pro-
cedure, we are able to fully relax the crystal structure of
FeSe at different magnetic orderings. We consider a min-
imization converged when both the forces and their error
bars are lower than 10−3 Ha/a.u. per atom.

We found that effects due to the finite size of the sim-
ulation cell, or finite size errors (FSEs), constitute the
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(a) (b) (c) (d)

FIG. 1: Spin densities of magnetic orderings at ambient pressure, (a) collinear, (b) collinear, 1 flip, (c) bicollinear, and (d)
checkerboard. Four unit cells of a single iron layer are shown, divided by black lines. “Collinear, 1 flip” refers to flipping the
spin of one iron per unit cell in the collinear configuration. Since four unit cells are shown above, there are four “flipped” iron
moments shown in this plot. The larger red Se atoms lie above and below the plane and show significantly smaller spin density.
Irons are smaller and blue, and lie within larger concentration of spin. The two colors of the isosurfaces denote density of up
and down.

major source of systematic error for both DMC(PBE0)
and DMC(opt). We apply several techniques in order
to reduce FSEs. All DMC(PBE0) calculations are twist
averaged [47] over 8 twist conditions on the 8 f.u. FeSe
supercell; DMC(opt) results are instead obtained with a
larger 16 f.u. supercell averaging over periodic and an-
tiperiodic boundary conditions; further corrections are
then applied to cure one-body and two-body FSEs. In
both cases, we managed to reduce the impact of FSEs
below the desired accuracy on energy calculations. A de-
tailed explanation of the procedures used to control FSEs
is given in the appendix.

RESULTS

Trial wave functions and ground state

For the wave function in Eq. 1, there are many local
minima both in preparing the Kohn-Sham orbitals using
density functional theory and in optimizing the orbitals
directly. These minima correspond to different magnetic
orderings of the Fe spins. The most relevant ones are
presented in Fig. 1. We also included a type of param-
agnetic state in which the up and down spin orbitals are
constrained to be equal, but we found that state to be
more than 0.5 eV/Fe higher in energy than any magneti-
cally ordered wavefunction. The ground state thus seems
to require large local moments on the Fe atoms.

While it is known experimentally that FeSe does not
have long-range ordering [11], the calculations here en-
force periodic boundary conditions on a relatively small
cell and thus cannot describe long-range fluctuations of
the magnetic order that might be the cause of loss of
long-range order. For the experimental crystal struc-
ture, the collinear magnetic ordering is the lowest in en-
ergy in our calculations and is observed to be the dom-
inant short-range order experimentally [50]. The ener-
getic cost of introducing a “defect” into the magnetic

order is quite small; we will discuss that aspect later.
Both the DMC(opt) and DMC(PBE0) approaches result
in a rather large magnetic moment on the Fe atom. For
the collinear magnetic ordering we obtain a value of ∼
3.4 µB for DMC(PBE0), and a slightly lower ∼ 3.1 µB
for the fully optimized calculations. In both cases the
magnetic moment is close to the atomic limit.

Between the two DMC approaches, the energy differ-
ence between different magnetic orderings is in agreement
within stochastic errors, so there is good reason to be-
lieve that the cheaper DMC(PBE0) technique is accurate.
In comparison to PBE calculations, which are the most
common in the literature, the relative energies accord-
ing DMC are quite different, including the lowest energy
magnetic phase, which is the “staggered dimer” configu-
ration in DFT [51–53], but turns out to be the collinear
configuration in DMC. It appears that hybrid DFT cal-
culations in the PBE0 approximation obtain reasonably
good magnetic energy differences in comparison to DMC;
since this functional also produced the orbitals that gave
the lowest FN-DMC energy, it may be capturing some
of the correct physics for the magnetic properties of this
material. However, the PBE0 functional predicts an in-
sulating gap[54] for FeSe for all magnetic orderings, in
contrast to DMC and experiment.

Crystal structure

Obtaining the correct crystal structure for FeSe is a
major challenge, since the layers interact through non-
bonded interactions. The c lattice parameter in particu-
lar is affected by Van der Waals interactions and electron
correlation plays a key role in determining the in-plane
physics. The behavior of FeSe’s superconducting prop-
erties under pressure gives another clue on the impor-
tance of structural variations in its description. A first-
principles prediction of the lattice parameters is thus an
important test of the description of this physics. Since
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FIG. 2: Selection of experimental measurements from Margadonna et al. [10], Kumar et al. [48], and Millican et al. [49] of the
selenium height, zSe, as a function of pressure, along with corresponding QMC (left) and DFT (right) predictions. QMC(opt)
refers to calculations done with a fully optimized Slater determinant, which was VMC for the paramagnetic state (open circles),
and DMC for the collinear state (green diamonds). The fully-optimized QMC calculation is done at Γ-point only, but at a
16-f.u. supercell. The DMC(PBE0) points are at 8 f.u., but are twist averaged over 8 twist values, therefore should have
compareable finite-size errors. More discussion of this comparison is available in the appendix. Accordingly, the ambient
pressure DMC(PBE0) calculation agrees nearly within error bars with the fully optimized DMC(opt) calculation.

TABLE I: FeSe optimal structural parameters with different computational methods. DFT calculations have been performed
with the software package QuantumESPRESSO [55] using a 10x10x10 k-points mesh, an energy cutoff of 75 Ry and norm
conserving pseudopotentials for both Fe and Se. The variational Monte Carlo VMC(opt) results are obtained at Gamma point
only with the 16 f.u. FeSe supercell containing 32 atoms.

Source Magnetic Ord. a c FeFe zSe

DFT-PBE paramagnetic 3.6802 6.1663 2.6023 1.3862

DFT-PBE collinear 3.8007 6.2363 2.6966 1.4568

VMC paramagnetic 3.71(1) 5.49(1) 2.62(1) 1.437(5)

VMC collinear 3.72(1) 5.68(1) 2.63(1) 1.56(1)

experimental [56] - T 7 K 3.7646(1) 5.47920(9) 1.4622

experimental [48] - T 8 K 3.7685(1) 5.5194(9) 2.6647(3) 1.5879

experimental [10] - T 300 K 3.7724(1) 5.5217(1) 1.4759

the DMC calculations are computationally costly, we lim-
ited our study to the tetragonal phase of FeSe. Because
the low temperature orthorhombic distortion is small[10],
one might expect that its effect on the overall electronic
structure is also small. We leave such considerations to
another paper.

The equilibrium lattice parameters of FeSe are pre-

sented in Table I. As mentioned in the previous sections,
these results are obtained with a direct optimization of
FeSe cell parameters with the VMC(opt) method. The
in-plane FeSe properties should be well captured by QMC
since the a lattice parameter is in close agreement with
experimental results (within ∼ 4 σ) independently of the
chosen magnetic configuration. Both collinear and para-
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FIG. 3: Pressure as a function of volume, computed through
an equation-of-state fit to DMC(PBE0) data and from exper-
iments by Margadonna et al. [10], Kumar et al. [48], and
Millican et al. [49]. All points along the solid line come from
the equation-of-state, and markers are added purely to distin-
guish the magnetic state. For the volumes considered here,
regardless of spin ordering, P (V ) falls within the experimental
spread. Inset displays corresponding bulk modulus in units
of GPa for PBE0, DMC(PBE0), and the experiments consid-
ered. The bulk modulus is strongly coupled to the magnetic
state, and for the collinear state, DMC(PBE0) demonstrates
excellent agreement with all the experiments considered. Bulk
moduli computed from PBE are between 7 and 9 GPa, and
are much more insensitive to the magnetic ordering (see Sup-
plemental Materials for tabulated values). Lattice constants
used were those of Kumar[48].

magnetic wavefunctions shows also a general improve-
ment with respect to DFT concerning the c lattice param-
eter. This provides evidence of the accuracy in treating
Van der Waals interactions with the QMC wavefunction,
mainly achieved with the Jastrow factor[57, 58]. The
evaluation of the inter-plane c distance might be affected
by the dispersion along the z-axis, which we did not take
into account in our supercell which always contains only
one Fe plane. We check this dependency by performing a
test structural relaxation on a FeSe supercell with 16 Fe
atoms in two planes and 8 Fe atoms with only one plane
considered in the supercell. We find that the difference
between the c parameter obtained in the two configura-
tions is negligible.

The final internal parameter zSe represents the height

of the selenium anion above the plane, and it has been ex-
perimentally demonstrated [59] to be of key importance
in determining superconducting properties of iron-based
superconductors in general. We collect all our calcula-
tions of zSe, as well as some experimental results, in Fig.
2. We find that both the magnetic state and the accu-
racy of the calculation have an important effect on the
prediction of this parameter. At approximately the same
level of finite size error, our two DMC calculations agree
very closely, determining that fixed node and basis set er-
ror is likely to be unimportant. However, we found that
zSe is surprisingly sensitive to finite size effects, both in
the in-plane and out of plane directions. Given the su-
percells that we studied, we found a variation in zSe of
approximately 0.05 Å, depending on the twisted bound-
ary conditions and supercell. With experimental lattice
parameters, our best estimate for zSe is thus 1.54(5)Å,
which is quite close to the experimental range. As we
shall see later, the properties of FeSe depend sensitively
on zSe, so to account for this uncertainty, we will con-
sider properties as a function of selenium height as well
as pressure.

By fitting an equation of state previously used by An-
ton et al. [60] to our DMC(PBE0) energies as a function
of volume, we extract the bulk modulus and the pressure
dependence on volume P (V ), shown in Fig 3. The collec-
tion of ambient-pressure bulk-moduli results is reported
in the inset of Fig. 3, in units of GPa. For all these cal-
culations, experimental lattice constants [48] have been
used. P (V ) and the bulk modulus show a strong depen-
dence on the magnetic order.

While P (V ) has scatter between experiments, they are
more consistent in the bulk modulus, so we base our com-
parisons of the theoretical calculations on the latter quan-
tity. The DMC(PBE0) calculation demonstrates excel-
lent agreement with all three experiments if the collinear
magnetic ordering is imposed, but it is less close to ex-
periment for the other magnetic orderings. Our PBE0
calculations are also in somewhat good agreement with
DMC(PBE0), except a notable disagreement for the fer-
romagnetic ordering. On the other hand, PBE bulk mod-
uli are significantly lower than both experiment and the
other calculations, generally predicting bulk moduli be-
tween 7 and 10 GPa, depending only slightly on the mag-
netic ordering. Since the collinear ordering is also the
lowest energy for DMC(PBE0), for the remainder of this
article, we use the collinear equation of state to estimate
the pressures that correspond to the volumes used in the
calculations.

Interaction of structure and magnetism

Fig 4 shows the interaction between pressure, mag-
netic ordering, and selenium height. As has been found
before [61], the magnetic energies depend strongly on
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67.6 Å3
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FIG. 4: DMC(PBE0) energies as a function of volume and selenium height zSe for three of the magnetic orderings. The solid
vertical line represents the minimum of the collinear magnetic ordering, while the dashed vertical line represent the predicted
crossing of the bicollinear and collinear energies. These two points converge as the pressure is increased, as shown on the far
right.

the selenium height, and this dependence changes with
pressure. For a given pressure, there are two points on
the selenium height curves that are of substantial inter-
est. The first is the minimum energy (solid vertical line),
which as can be seen in Fig 2, does not change very much
with pressure(or volume) in our calculations. The sec-
ond is the crossing point (dashed vertical line) between
the collinear and bicollinear magnetic orderings, which
are competing low-energy states. This crossing point de-
pends on the pressure, and approaches the minimum en-
ergy point at higher pressures (lower volumes), as shown
on the rightmost plot in the figure.

Another interesting feature visible in Fig 4 is that the
checkerboard magnetic ordering intersects the bicollinear
and collinear magnetic orders at zero pressure (78.4 Å3)
and large zSe, but there is a shift of the checkerboard
curve to higher energies once pressure is applied. The
underlying physics of this effect will be discussed in the
Section titled “Interaction of charge and orbitals with
magnetism.”

Fig 5 shows a cut through the data in Fig 4 along
the minimum energy zSe (subfigure a), and the experi-
mentally determined zSe (subfigure b). Along this cut
we evaluated many magnetic orderings to establish a set
of trends, and checked finite size errors by considering

an 8 f.u. cell and 16 f.u. cell with twist averaging. Fur-
ther information on finite size corrections are available in
the appendix. Under pressure, the checkerboard, ferro-
magnetic, and staggered dimer magnetic orderings rise in
energy compared to the lowest energy collinear ordering.
On the other hand, the stripe-like orderings, including
the bicollinear and collinear orderings with defects con-
verge with applied pressure.

From Fig 5 (bottom panels) the failure of PBE in cap-
ture this trend in FeSe energetics under pressure is ap-
parent. Even with lattice constants fixed to experimental
ones, the PBE energies of magnetically ordered states are
quite different from the FN-DMC energies. In agreement
with recent work, PBE does predict the staggered dimer
as ground state. Despite the failure of PBE0 in describing
the conducting behavior of FeSe, the magnetic energies
are reasonably close to the DMC results.

Given the data available to us, we can determine some
properties that are robust to the finite size errors and un-
certainty in zSe in our calculations. The first is that the
relative energetics of magnetic orders changes strongly
as a function zSe and pressure. In FN-DMC and PBE0,
which would a priori be expected to be more accurate,
the collinear and bicollinear orders become closer in en-
ergy as with increasing pressure for reasonable values of
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zSe. According to FN-DMC, this effect is robust against
zSe variations, depending mainly on the change in the
relative magnetic energies as a function of pressure.

The energetic cost of reversing a single spin in the
collinear ordered state, labeled “collinear, flip 1” in
Fig 5a, follows the bicollinear energy quite closely. Be-
cause this cost decreases with pressure, we can surmise
that magnetic fluctuations become more energetically
available as pressure is increased.

Optical excitations and magnetism

The direct optical gap was calculated by promoting the
highest energy orbital in the Slater determinant part of
the trial wavefunction to the next excited state orbital.
This constructs a wave function ansatz for an electron-
hole excitation. The results are shown in Fig 6. The re-

sulting DMC(PBE0) energy relative to the DMC(PBE0)
ground state is our estimation of the gap. Interest-
ingly, the DMC(PBE0) gap is within statistical uncer-
tainties of 0 despite the fact PBE0 estimates a rather
large gap, regardless of magnetic ordering. Experimen-
tally [62], the gap is no more than 80 meV at any k-point,
which is consistent with our results for the bicollinear and
collinear magnetic ordering. Only the checkerboard state
is gapped according to DMC(PBE0).

The charge degrees of freedom are therefore coupled to
the spin degrees of freedom. According to these calcula-
tions, in FeSe there is a coupling between the mobility
of charge and the spin ordering. In the remainder of the
paper, we will correlate these properties with those of the
ground state for different spin orderings.
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calculated within DMC(PBE0). For the stripe-like magnetic
states, the gap is zero within statistical error. The unit cell is
a 2× 2 supercell, expanded in the x-y plane, shown as one of
the four outlined boxes in each of the spin densities of Fig. 1.

Interaction of charge and orbitals with magnetism

From the energetic properties, we note two classes of
magnetic order in FeSe: ones which are stripe-like, and
ones which are not stripe-like. The stripe-like orderings
converge in energy with pressure, while the checkerboard
and staggered dimer pattern increases in energy rela-
tive to those orderings. Similarly, the gap calculated in
DMC(PBE0) distinguishes between different orderings,
with metallic character in the stripe-like ordering. In
this section, we will make the following observations:

• Compared to majority electrons, minority spin elec-
trons are more mobile and are more affected by the
spin ordering.

• The one-particle orbitals are occupied differently
depending on the spin ordering.

These effects combine to give a cartoon picture of the
physics that explains the difference in pressure behavior
between the magnetic orders.

Character of minority and majority spin electrons.
To characterize the differences between the spin chan-
nels, we evaluate the local charge compressibility of the
Fe sites: 〈(ni,σ − 〈ni,σ〉)2〉, where niσ is the number of
electrons within a Voronoi polehedron around the ith Fe
site of spin σ. Larger values of the compressibility indi-
cate electrons are more likely to hop between atoms. For
a Fe atom with net ↑ spin, the ↑ electrons are labeled
majority electrons and the ↓ minority, and vice versa for
Fe atoms with net ↓ spin.

In Fig 7a, these results are presented. For all magnetic
orders, the majority spin is very similar and shows a low
local charge compressibility, while the minority spin is
different between different magnetic orders, and its local
charge compressibility is larger than the majority channel
by around 0.3 n2e (electron number squared). This sug-
gests the minority electrons are more mobile, however,
their ability to hop is affected by the local magnetic or-
der. For the stripe-like orders, the minority electrons are
least constrained, and their minority channel compress-
ibility is about 0.1 n2e more than the checkerboard and
dimer state. This measure of mobility seems to be cor-
related with the optical gap calculations, which predict
that the checkerboard pattern induces a gap in contrast
to the other magnetic orders.
One particle orbitals. In Fig 7d, we present the or-

bital occupation of the d orbitals in different spin order-
ings. For stripe-like orderings, the xy, xz, and yz orbitals
are occupied, in agreement with ARPES results [63]. On
the other hand, the 3z2 − r2 orbital is occupied for the
checkerboard ordering. This gives a simple explanation
for the differences in the local charge compressibility:
The checkerboard pattern causes the minority spin to
occupy the out of plane orbital, which would rise to an
insulating state if it were the ground state. This idea can
be confirmed by checking the off-diagonal one-particle
density matrix elements between Fe atoms with parallel
and antiparallel net spins, in Fig 7e. The atomic orbitals
are more hybridized between parallel spin Fe atoms for
the stripe-like orders. The charge degrees of freedom,
which are mainly the minority spins from the Fe, inter-
act strongly with the magnetic ordering. This effect also
interacts with the net magnetic moment and on-site cor-
relations (Fig 7b and Fig 7c).

A cartoon picture of FeSe

The importance of Hund’s coupling in tuning correla-
tion effects of multiband materials has been extensively
demonstrated by means of dynamical mean field the-
ory (DMFT) calculations [22–24]. These results high-
lighted its role in determining the bad metallic behavior
in iron-based superconductors [25, 26], which are there-
fore sometimes referred as Hund’s metals. DMFT studies
of BaFe2As2 have predicted that kinetic energy should be
lower in the paramagnetic state, although the total en-
ergy is lower in the spin-polarized states due to Hund’s
coupling [27]. Correspondingly, we find that comparing
the paramagnetic state and collinear state, the kinetic
energy is 21.5(8) eV/f.u. larger in collinear, while the
total energy is 1.75 eV/f.u. lower for collinear. Also due
to Hund’s coupling, DMFT studies have predicted that
the high-spin state should be the only highly probable
state [28]. Correspondingly, we find that the iron mag-
netic moment fluctuates around 3.4 µB , with a standard
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FIG. 7: (a) Charge variance, in units of number of electrons squared for different magnetic orderings in the majority and
minority spin channel, as a function of cell volume, illustrating that the minority spin channel is more mobile, and additionally
that the checkerboard ordering’s electrons are more constrained to a given iron site. (b) Magnetic moments inside each

iron’s Voronoi polyhedron. (c) Magnitude of on-site correlations, measured by |Cov(n↑, n↓)|/[Var(n↑)Var(n↓)]1/2. (d) Single-
particle orbital occupations of the iron d-states, measured by the on-diagonal terms of the 1-RDM. Note checkerboard’s charge
density points mostly out of the iron plane, while the other orderings point mostly within the plane. (e) Hybridization of
different orderings, as measured by an average of the off-diagonal elements of the 1-RDM, broken down by interactions between
antiparallel (Antipar.) aligned irons and parallel (Par.).

deviation of 1.5 µB .

A simple picture based on Hund’s coupling can explain
the energetics and other properties presented in the re-
sults section. Hund’s rules dictate that for an atom with
a partially filled shell, we expect the electrons to have to-
tal spin S that maximizes the multiplicity 2S+1. This is
consistent with our computed magnetic moment, which
find that the majority channel is mostly filled, bringing
the moment to around 3.1-3.4 µB . The spin occupation
of the d-states in a reference iron is diagrammatically
shown in the top row of Fig. 8. Also due to Hund’s cou-
pling, the electron that is most likely to hop to nearby
iron atoms would be the electron in the minority channel,
to keep a large S. As illustrated in Fig. 8, this minor-
ity channel is already filled for neighboring irons that are
antiparallel, so only majority spin electrons can hop to
those atoms. Conversely, minority electrons can hop to
neighboring parallel irons, since that spin channel is not
filled. Thus, irons with parallel spins allow the minor-
ity electrons to more easily hop about the aligned iron
sites, therefore decrease the kinetic energy. As seen in

Fig. 7d the magnetic ordering affects the occupation of
the d states, hence affects the labeling of the states in
Fig. 8, but the basic idea is unchanged.

While the minority spins require at least some paral-
lel iron magnetic moments, the large localized magnetic
moments also interact antiferromagnetically, leading to a
competition between these two mechanisms. As a com-
promise, antiferromagnetic configurations with ferromag-
netic chains emerge as the lowest energy configurations.

This picture unifies many of the observations from our
calculations. The checkerboard state is distinguished
from the other states by its lack of parallel nearest neigh-
bors, similar to how the ferromagnetic state is distin-
guished by its lack of antiparallel neighbors. These two
extremes are higher in energy, and are disfavored as pres-
sure increases the importance of Fe-Fe interactions. Be-
cause the checkerboard has no parallel nearest neighbor,
its iron d-electrons are more trapped on a single site,
leading to a low charge variance, and states that primar-
ily occupy the dz2−r2 orbital. All stripe-like states have
a combination of antiparallel and parallel nearest neigh-
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Reference iron:

Parallel Neighbor:

Antiparallel Neighbor:

FIG. 8: Diagrams depicting the occupations of the d-orbitals
of a reference iron, one of its neighbors with parallel net mag-
netic moment, and another neighbor with antiparallel mag-
netic moment. The minority channel is spin down for the top
two, and is spin up for the last. The minority electron on
the reference atom is most likely to hop to a neighbor, for
example, the greyed out down electron on dz2−r2 . It may
easily hop to its parallel neighbor, which may fill its dx2−y2

orbital as suggested by the grey box. It may not hop to any
of the orbitals of the antiparallel neighbor, since the down
spin channel is filled. Any hopping from the reference iron
to its antiparallel neighbor must occur in the spin-up chan-
nel, which consequently violates Hund’s rule for the reference
iron.

bors, and allow the electrons to delocalize along the irons
chains, leading to higher correlations, higher variance,
and more Fe-Fe hybridization. Although the staggered
dimer ordering is energetically competitive at low pres-
sures, its energy, charge variance, and magnetic moment
are similar to checkerboard, and at high pressures, be-
comes energetically unfavorable just as the checkerboard
ordering does. Although the staggered dimer does allow
some delocalization between the dimered parallel spins,
the itinerant spins are still trapped on the dimers, and
therefore this state’s energetics follow the checkerboard
behavior at higher pressures.

This competition of interactions sets up a fine balance
between many qualitatively different magnetic configu-
rations. Parameters in the structure can tilt this bal-
ance one way or another, leading to a strong magneto-
structural coupling. This is evident both from the strong
magnetic dependence of the bulk modulus in Fig. 3, as
well as in Fig. 4, where zSe can exchange the ground
state configuration between at least two magnetic con-
figurations. This logic can be straightforwardly applied
to iron telluride (FeTe), the non superconducting parent
compound of FeSe. This material has the ground state

magnetic ordering at a zTe around 1.75 Å, which implies
that the zTe should be decreased to force a crossover.
By this logic, FeTe would superconduct if it were put in
tensile stress, as it has been observed [64].

CONCLUSION

In summary, we have shown that QMC calculations
can obtain an accurate description of the electronic struc-
ture of FeSe. The lattice constants, bulk modulus, and
bandwidth are all very close to the experimental values
and significantly improve over DFT calculations. Our
results are substantiated by the agreement between dif-
ferent and complementary QMC techniques employed.
We showed that they yield sufficiently small statistical
and systematic errors to study the relative energetics of
different magnetic orders, which behave differently from
those predicted by DFT. The largest error in the calcu-
lations appear to be due to finite size supercells, which
we checked to be small enough that the trends presented
here are preserved.

As an outcome of the high-accuracy calculations, we
have determined that collinear and bicollinear motifs be-
come close in energy as pressure increases, while the
checkerboard motif increases in energy with pressure.
This behavior is correlated with delocalization of the mi-
nority electrons on the high-spin Fe atom. Collinear and
bicollinear motifs allow for more delocalization, which in-
creases in importance as the pressure is increased. This
delocalization effect is strong enough to change the oc-
cupation of atomic orbitals in FeSe depending on the
magnetic ordering, so it is larger than the crystal field
splitting of the orbitals. The spontaneous breaking of
C4 symmetry (or more properly S4 symmetry)[36, 65], is
a result of this physics. Magnetic configurations which
contain spin chains are thus favored over the whole con-
sidered range of pressure.

From the above results, we can see that the magnetic
degrees of freedom are strongly coupled with the charge
and orbital degrees of freedom. In a similar way, since
the relative magnetic energies are dependent on the hop-
ping of minority electrons from site to site, they are
also strongly dependent on the structure. There is thus
both spin-charge and spin-structural coupling in this sys-
tem. As one of us showed recently[33, 66], the cuprates
also show strong magneto-structural and magneto-charge
coupling. One might speculate that both of these effects
are necessary for high Tc and it may prove fruitful to
look for similar effects in proposed new superconductors.

We would like to thank the many people who have
given useful suggestions and comments throughout this
work. They include Francesco Mauri, Veronica Vildosola,
and Ruben Weht.

B.B. would like to thank the NSF Graduate Research
Fellowship for funding. L.K.W. was supported by the



11

U.S. Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research, Scientific Dis-
covery through Advanced Computing (SciDAC) program
under Award Number FG02-12ER46875. Computational
resources were provided through the INCITE PhotoSu-
per and SuperMatSim programs. S.S, M.C. and M.D.
acknowledge computational resources provided through
the HPCI System Research Project (Nos. hp120174 and
hp140092) on K computer at RIKEN Advanced Insti-
tute for Computational Science, and on the HOKUSAI
GreatWave computer under the project G15034. M. C.
thanks the GENCI french program to provide additional
computer time through the Grant No. 2014096493.

APPENDIX

Convergence and validation

In this appendix we present an extensive study of the
convergence of the main parameters involved in our QMC
calculations. Within DMC(PBE0), the only parameter
to be optimized in the Slater determinant is the amount
of exact exchange w. The optimization of FN-DMC en-
ergy as a function of w is presented in Fig 10. As al-
ready mentioned in the main manuscript, we notice that
the best FN-DMC is generally obtained with ∼ 25% of
exact exchange for all magnetic configurations; this cor-
responds to the PBE0 density functional. The conver-
gence of the FN-DMC energy with other parameters of
QMC methods is reported in Fig 9. For the DMC(PBE0)
method, in Fig. 9b, we present energy convergence as a
function of Fe and Se basis set exponents by showing the
behavior of the exponent of our most diffuse gaussian
basis exponent as it gets more diffuse. Benchmark cal-
culations of DMC(PBE0) against the time step used in
the projection are presented in Fig 9d. We employed a
time step of 0.01 for all DMC(PBE0) calculations. On
the other hand, lattice regularized FN-DMC algorithm
employed for DMC(opt) method (see next section) suf-
fers from the lattice step error in Laplacian discretization.
Convergence with lattice step is shown for the collinear
configuration in Fig 9f. We used a lattice step of 0.125
a.u. for all DMC(opt) calculations.

We turn now our attention to finite size errors (FSE)
which represent the main source of error in our QMC cal-
culations. We performed several DFT test calculations
to determine the impact of one-body FSE. For both 8
f.u. and 16 f.u. supercells (used for DMC(PBE0) and
DMC(opt) methods respectively) a 4x4x4 k-point grid is
enough to obtain results converged within 1 meV inde-
pendently from the density functional used, as shown in
9a. The same k-point grid in the PBE0 wavefunction
is also sufficient to converge FN-DMC energies within
the same threshold. For the DMC(PBE0) calculations,
we twist average over a set of 8 twist conditions [47],

for unit cells ranging from 4 to 16 f.u., expanding the
supercell in the x-y plane, and z direction (adding an
additional layer). The resulting finite-size extrapolations
are depicted in Fig 9c. The finite size extrapolation in
the z direction is the checkerboard line above the other
checkerboard line. The true infinite size limit will likely
lie in between these two extrapolations. Although the
finite size effects are relevant, they do not alter any con-
clusions of the main text. Going from low to high pres-
sure, the finite size errors amplify the change in energy
differences between checkerboard and collinear. Extrap-
olating with more than two points is prohibitively ex-
pensive for the bicollinear state, and so how finite size
effects affects the pressure dependence of the energy dif-
ferences between collinear and bicollinear is not clear, as
the extrapolations are within error bars. However, it is
certainly clear that bicollinear both remains very close in
energy to the collinear state—even in the extrapolation—
whereas checkerboard’s energy certainly rises well above
the other states.

For DMC(opt), all calculations have been done with
a 16 f.u. supercell. Structural optimization was per-
formed with periodic boundary conditions only. All
other calculations were instead averaged between peri-
odic (PBC) and fully antiperiodic (APBC) boundary
conditions. Further finite size corrections to DMC(opt)
energies are obtained by adding one-body corrections
estimated from fully converged DFT-LDA calculations
and two-body corrections evaluated within the KZK ap-
proach [67, 68]. In Figure 9e is reported the convergence
of DMC(opt) energy in the paramagnetic phase as a func-
tion of the system size after applying the corrections.

We verified that DMC(PBE0) and DMC(opt) are in
agreement when the calculation is carried out with ex-
actly the same setup. For this purpose, we used a small
4 f.u. supercell in the collinear configuration at the Γ-
point. We computed the optimal Se height by fitting
the total energy curve with both methods and we found
1.46(1) Å for the DMC(opt) method and 1.40(5) Å for
the DMC(PBE0) method. The two values lies within one
standard deviation of each other, and we consider them
in statistical agreement.

Finally, we check the impact of finite size errors on the
energy differences between collinear and checkerboard or-
derings. For this purpose, we compared finite size ex-
trapolations at a fixed zSe ≈ 1.42 with the typical setup
employed for production runs, i.e. 8 f.u. averaged over
8 twists for DMC(PBE0) and 16 f.u. averaged over
periodic and fully antiperiodic boundary conditions for
DMC(opt). The results are presented in Fig. 11. We
found that the extrapolations as well as the larger cell
sizes we used were within statistical error. This suggests
that the fixed node error of DMC(PBE0) when com-
pared to the best Jastrow-correlated single-deteminant
wavefunctions is below statistical errors with respect to
magnetic energy differences. It is possible that this
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FIG. 9: Convergence of DFT and DMC parameters. Axes labeled by E − Emin are energies relative to the minimum energy
of the points in the subfigure. (a) Convergence of k-point grid for DFT calculations for the 8 f.u. cell. A 4 × 4 × 4 grid was
used for all these calculations. (b) Convergence of DMC(PBE0) basis set parameters for the 8 f.u. cell, at zero pressure. “Fe
basis exp” and “Se basis exp” refer to the value of the smallest exponent in the basis. Values of around 0.26 and 0.2 were
used for Fe and Se respectively. While in the latter case the total energy is decreasing, the energy differences are stable. (c)
Finite size extrapolation for DMC(PBE0) at the largest and smallest volumes considered, twist averaging over 8 boundary
conditions. Energy is relative to the collinear energy for each size. The two checkerboard lines reflect a finite size extrapolation
in the ẑ direction (upper line) and extrapolation in the x-y plane (lower line). The full extrapolation will likely be near
the center of the two line endpoints. (d) Time step extrapolation for the DMC(PBE0) at 8 f.u. at the largest and smallest
volumes considered. A value of 0.01 a.u. was adopted for all DMC(PBE0) calculations. (e) Finite size extrapolation for the
DMC(opt) calculations, with periodic (PBC) and antiperiodic (APBC) boundary conditions, along with their average (Avg.).
These benchmark calculations are performed in the paramagnetic phase and energies are corrected for one-body and two-body
finite size errors. (f) Extrapolation of the lattice spacing used for the laplacian discretization for the LR-DMC, i.e. DMC(opt),
calculations. These benchmark calculations are performed in the collinear phase. A value of 0.125 a.u. was adopted for all
calculations.

fixed node error is still larger than our statistical errors
when comparing to the exact energy differences; how-
ever, this would require investigation beyond Jastrow-
correlated single-determinant trial wavefunctions, which
due to computational complexity, we leave for another
study.
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