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Abstract
QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure 
calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and 
some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include 
variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater–Jastrow type trial 
wavefunctions in conjunction with a sophisticated optimizer capable of optimizing tens of 
thousands of parameters. The orbital space auxiliary-field quantum Monte Carlo method is 
also implemented, enabling cross validation between different highly accurate methods. The 
code is specifically optimized for calculations with large numbers of electrons on the latest 
high performance computing architectures, including multicore central processing unit and 
graphical processing unit systems. We detail the program’s capabilities, outline its structure, 
and give examples of its use in current research calculations. The package is available at  
http://qmcpack.org.

Keywords: quantum Monte Carlo, electronic structure, quantum chemistry

(Some figures may appear in colour only in the online journal)

1. Introduction

An accurate solution of the many-body Schrödinger equa-
tion  is a grand challenge for physics and chemistry25. The 
great difficulty of obtaining accurate yet tractable solu-
tions has led to the development of many complementary 
methods, each bearing unique approximations, limitations, 
and assumptions. Today, the electronic structure of periodic 
condensed matter systems is most commonly obtained using 
density functional theory (DFT), while for isolated molecules 
many-body quantum chemical techniques can also be applied  
[1, 2]. With these techniques, obtaining systematically improv-
able and increasingly accurate results for general systems is 
a major challenge. With DFT, the challenge lies in deriving 
accurate approximations to and constraints on the exact den-
sity functional, such as the recent approximate SCAN func-
tional [3]. For this reason, a systematically improvable DFT 
is a challenging theory and therefore progress is slow. In 
quantum chemistry, the most accurate methods are system-
atically improvable but scale poorly with system size. They 

are not well developed for periodic systems with hundreds of 
electrons, and, in particular, are not yet suitable for describing 
metallic states. Other many-body methods, such as GW and 
dynamical mean-field theory (DMFT), are limited by their 
approximations. GW is systematically affected by a pertur-
bative treatment of the electron–electron interaction. DMFT, 
mostly used for ‘correlated’ electronic systems, suffers from 
the local nature of its self energy despite being non-pertuba-
tive, particularly when applied to low-dimensional systems 
and/or to systems where a strong Hubbard repulsion is not the 
only relevant contribution in the interaction.

Quantum Monte Carlo (QMC) methods provide an alterna-
tive route to solutions of the many-body Schrödinger equa-
tion via stochastic sampling [4]. By sampling the many-body 
wavefunction or its projection, QMC methods largely avoid 
the need to perform numerical integrals that scale poorly with 
system size. Further, QMC methods and implementations 
generally invoke controllable approximations. Although com-
putationally expensive compared to DFT, QMC methods can 
be systematically improved and give nearly exact results in 
some cases. This was most notably performed for the homo-
geneous electron gas in 1980 [5]. Besides their stochasticity, 
the key distinctions between QMC and most other electronic 
structure methods is that (1) for QMC the approximations are 
few and well specified, and (2) QMC usually requires a ‘trial 
wavefunction’ as input. The trial wavefunction is typically 
constructed from the results of less costly methods, e.g. DFT 
or small quantum chemical calculation, and improved via sub-
sequent optimization. QMC methods can be directly applied 

25 This manuscript has been authored by UT-Battelle, LLC under Contract 
No. DE-AC05- 00OR22725 with the US Department of Energy. The United 
States Government retains and the publisher, by accepting the article for 
publication, acknowledges that the United States Government retains a non-
exclusive, paid-up, irrevocable, world-wide license to publish or reproduce 
the published form of this manuscript, or allow others to do so, for United 
States Government purposes. The Department of Energy will provide public 
access to these results of federally sponsored research in accordance with 
the DOE Public Access Plan (http://energy.gov/downloads/doe-public-
access-plan).
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to materials and chemical problems of interest as with any 
other electronic structure method but also serve as an impor-
tant validation tool to assess and improve the approximations 
of less costly methods by providing reference benchmark data.

QMC methods have been applied to isolated molecules 
as well as insulating, semiconducting, and metallic phases 
of condensed matter. Complex molecules [6–8], liquids [9], 
molecular solids [10, 11], solids [12] and defect properties 
of materials [13–17] have been studied at clamped nuclear 
geometries. Molecular dynamics calculations driven by 
QMC nuclear forces, and calculations beyond the Born–
Oppenheimer approximation are also possible, e.g. [18–20]. 
The majority of results have been obtained with approaches 
that operate in real space, using variational Monte Carlo 
(VMC) and diffusion Monte Carlo (DMC) [21–26]. Whereas 
QMC methods that sample the many-body wavefunction 
in real space have been in use for decades, there are an 
increasing number of attractive methods that can be imple-
mented in a basis of atomic orbitals, such as auxiliary-field 
(AFQMC) [27–29], Monte Carlo configuration interaction 
(MCCI) [30, 31] and full-configuration interaction QMC 
(FCIQMC) [32]. Both real-space and basis approaches have 
different strengths and weaknesses. For example, more accu-
rate multiple-projector pseudopotentials and frozen core 
approaches are readily implemented in AFQMC [33, 34] and 
FCIQMC, but these methods are generally thought to have 
a higher computational cost compared to real-space QMC. 
Most significantly, the increasing diversity of QMC methods 
with different approximations will enable cross-validation of 
electronic structure schemes for challenging chemical, phys-
ical and materials problems, and help guide improvements in 
the methodology.
QMCPACK implements a variety of real-space solvers and 

a complementary, recently developed AFQMC solver. The 
package is open source and openly developed. QMCPACK is 
implemented in modern C+ +, making strong use of object 
orientated and template-based generic programming tech-
niques to facilitate high modularity, a separation of func-
tionalities, and significant code reuse. A special emphasis 
has been given to performance, capability, and stability for 
large production calculations. A state-of-the-art wavefunc-
tion optim ization algorithm capable of optimizing tens 
of thousands of parameters enables the most accurate and 
sophisticated wavefunctions to be utilized [35]. The latest 
size-consistent algorithms for pseudopotential evaluation 
[36] and time step [7, 11] are implemented. The code is 
highly optimized for modern high-performance computer 
architectures via extensive vectorization, careful considera-
tion of memory layouts and access patterns [37], efficient 
OpenMP threading, and an implementation for graphics pro-
cessing units (GPUs) using NVIDIA’s CUDA. A significant 
effort is underway to improve the code for exascale archi-
tectures with a single common code base. QMC methods 
are particularly attractive for these future systems due to the 
relatively low data movement required. This combination 
of capabilities and activities helps to distinguish QMCPACK 

from other QMC codes such as QWALK [38], CASINO 
[39], CHAMP [40], and TurboRVB [41].

In this article, we give an overview of the features and 
capabilities of the QMCPACK package. To indicate the future 
development pathways, we outline a number of challenges for 
QMC methods, including development of consistent many-
body pseudopotentials, the addition of spin–orbit interac-
tions to QMC Hamiltonians, and the challenge of exascale 
computing.

2. Open source and open development

QMCPACK is open source and distributed under the open 
source initiative [42] approved University of Illinois/National 
Center for Supercomputing Applications (NCSA) open source 
license. The main project website http://qmcpack.org links to 
versioned releases and the development source code. This also 
includes a substantial manual detailing installation instructions, 
examples for workstation through to supercomputer installa-
tions, and detailed methodology and input parameter descrip-
tions. The source code includes a substantial test framework 
(>300 tests) including unit and integration tests that are used 
to help validate the implementation and test new installations.
QMCPACK is also openly developed. The latest source code 

and updates are coordinated via GitHub, https://github.com/
QMCPACK/qmcpack. This site provides version controlled 
source code, a wiki describing development practices, issue 
(ticket) tracking, and a contribution review framework (pull 
request reviews). The project follows the ‘git flow’ branching 
and development model.

Contributions from new developers are encouraged and 
follow exactly the same mechanism as for established devel-
opers. For example, the ‘finite difference linear response’ 
method [43] was recently contributed and underwent several 
updates to maximize compatibility with the existing source 
code. The full discussion history of contributions is also avail-
able. The open development process, with full change history 
available, allows contributions to be clearly identified and 
credit accurately assigned. The source code change history 
can be tracked to the earliest days of QMCPACK.

All proposed changes to QMCPACK automatically undergo 
continuous integration testing which allows the contributions 
to be run on different architectures and with different soft-
ware versions than might have been used for development, 
e.g. different processor manufacturers, GPUs, or compilers. 
This allows for rapid feedback and reduces risk that signifi-
cant bugs are introduced.

Development directions are set in part based on requests 
from users and experience applying QMCPACK to tuto-
rial through to research level problems. Besides contacting 
the developers directly or using GitHub, a discussion group 
(‘QMCPACK Google group’) provides a method to make sug-
gestions or obtain support. For example, requests to interface 
QMCPACK with additional electronic structure or quantum 
chemistry packages that will enable new science applications 
or solve an existing problem will be given priority.
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3. Code structure

QMCPACK is architected in a modular and generic structure, 
aiming to facilitate the maximum reuse of source code and to 
appropriately abstract key organizational and functional con-
cepts. For example, as detailed below, all the different comp-
onents of a trial wavefunction utilize a common base class and 
provide an identical interface to the different QMC methods. 
This allows any newly contributed wavefunction component 
to become immediately available to all the QMC methods.

Extensive use is made of C++ generic and template 
programming to minimize reimplementation of common 
functionality. For example, the numerical precision is param-
eterized, with single, double and mixed precision available 
largely from a single source definition, and widely used 
functionality such as one- to three-dimensional splines are 
accessed through a common interface.

In the following we give a high-level outline of the major 
abstractions and components in the application. In practice 
and due to the large range of functionality implemented, 
QMCPACK consists of over 200 classes. To aid developers, 
the manual (http://docs.qmcpack.org) provides additional 
guidance while the Doxygen tool is used to produce docu-
mentation to help track functionality and interdependencies. 
Currently this is automatically generated from the latest 
development source and published at http://docs.qmcpack.
org/doxygen/doxy/.

At a high level, QMCPACK consists of the following major 
abstractions and areas of functionality shown in figure 1.

 (a) QMCMain. The topmost level of the application is 
responsible for parallel setup and initially parsing the 
input XML. Each XML section is handed to the appro-
priate functionality to setup the Hamiltonian or run a 
QMC calculation. Notably, the input driver persists 
walkers from section to section. A single QMCPACK input 
file can therefore describe a single simple VMC run, or 
considerably more complex and powerful workflows 
invoking VMC, wavefunction optimization, and produc-
tion DMC calculations at a range of time steps. The user 
can choose the appropriate modality for their research.

 (b) QMC Drivers. These implement major QMC methods 
such as VMC, wavefunction optimization, and reptation. 
Orbital space methods such as AFQMC, described in  
section 13, are also implemented here. Due to the levels 
of abstraction, the drivers have no dependencies on the 
specifics of the trial wavefunction that are in use.

 (c) Walkers and particles. Classes handle the state informa-
tion for each walker, including the lists of particles that 
are updated by the Monte Carlo. Common infrastructure 
for computing minimum images in periodic boundary 
conditions is provided here. Walkers carry additional state 
information depending on the enabled Hamiltonian and 
observables so that appropriate statistics can be reported.

 (d) Hamiltonians. The Hamiltonian used in QMCPACK is 
described by the input XML. This enables model system 
calculations as well as first principles calculations to be 
performed. Beyond Born–Oppenheimer simulations are 

also supported, with the ionic positions a non-constant 
part of the Hamiltonian. The kinetic, bare electron–ion, 
pseudopotential, electron–electron and ion–ion Coulomb 
terms are implemented at this level.

 (e) Observables. Quantities that are not critical to the 
evaluation of the Hamiltonian are termed observables 
and potentially include the density, density matrices, and 
momentum distribution.

 (f) Wavefunctions. The trial wavefunctions are implemented 
as a product of different wavefunction components. This 
includes single and multiple Slater determinants, and one, 
two, and three-body Jastrow terms. Specialized wave-
functions such as backflow and antisymmetrized geminal 
product wavefunctions are also implemented here.

 (g) Single particle orbitals. Orbitals from plane-wave, spline, 
and gaussian basis sets are evaluated for use in e.g. Slater 
determinant components of the wavefunction. Specialty 
basis sets are also implemented, e.g. the plane-wave based 
homogeneous electron gas, and the hybrid augmented-
plane wave basis set combining interstitial plane-waves 
and atomic-core centred spherical harmonic expansions.

 (h) Standard libraries. Where available, standardized imple-
mentations and libraries are used for parallelization 
(MPI), I/O (HDF5, libxml2), linear algebra (BLAS/
LAPACK), and Fourier transforms (FFTW).

4. Performance and parallel scaling

Due to the high computational cost of QMC methods, the 
QMCPACK implementations have been heavily optimized to 
obtain a high on-node performance and a high distributed par-
allel efficiency. Nevertheless, obtaining a highly performing 
and efficient simulation remains an important responsibility 
of the user because a considered choice of QMC methods, 
algorithms, accurate trial wavefunctions, and overall statistics 
can significantly reduce the computational cost.

Many electronic structure methods obtain high computa-
tional efficiency—a high fraction of theoretical floating point 
performance—via use of dense linear algebra such as matrix 
multiplication. Real space QMC methods are noteworthy for 
the relative lack of dense linear algebra and a focus on particle-
like operations, such as computing inter-particle distances or 
evaluating small polynomial functions of particle position. In 
this regard parts of QMC are similar to a classical molecular 
dynamics code.

To obtain high on-node performance, QMCPACK’s imple-
mentations are optimized to vectorize efficiently and to make 
efficient use of modern memory hierarchies and maximize in-
cache data reuse. For example, while historically QMC codes 
have tended to avoid recomputing values, for some operations 
it is now faster to compute properties on the fly. This also 
reduces the memory requirements of the application. We have 
recently completed extensive analysis and reimplementation 
of the core compute kernels of the application, more than 
doubling the speed of many calculations on modern multicore 
processors [37]. The performance obtained for several key 
kernels is shown in figure 2. To improve the computational 
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efficiency of the largest calculations with thousands of elec-
trons where the Slater determinant update cost is significant, 
we have recently proposed a delayed update algorithm that 
enables increased use of matrix–matrix multiplication [44].

High parallel scalability is determined by exploiting par-
allelization at two levels. First, on node parallelization is 

achieved through OpenMP threading, or CUDA on GPUs. 
This allows common read-only data such as trial wavefunc-
tion coefficients to be shared between threads, reducing 
overall memory usage. Each OpenMP thread updates one or 
more walkers, and multiple walkers can be assigned to each 
GPU. The second level of parallelization is obtained via MPI. 

Figure 1. High-level overview of the structure of QMCPACK. For simplicity many smaller components are not shown. This includes the 
particle classes, distance tables, and the branching and load balancing classes. The ‘…’ indicate additional high-level functionality is 
available. Dependencies between components flow from top to bottom, except for the libraries which are used by all component of the 
application.

Figure 2. Computational performance of key kernels in QMCPACK for an NiO 32 atom cell on Intel Knights Landing processors. By using 
a Structure of Arrays (SoA) layout and improving the implemented algorithms, higher arithmetic intensity (AI) is obtained compared to 
the Array of Structures (AoS) data layout used exclusively in older versions of QMCPACK. A significantly higher overall performance, 
measured in GFLOPS, is obtained in the new implementation.

J. Phys.: Condens. Matter 30 (2018) 195901
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For simulations with a variable number of QMC walkers, load 
balancing is performed by default at every step. Asynchronous 
messaging is used to reduce the time to load balance all the 
walkers across all the nodes, but in the current implementation 
a global reduction is still required to compute the ensemble 
average energy needed for load balancing. As shown in 
figure 3, even for modest calculations the scalability is suffi-
cient to fully utilize the largest supercomputers. The first level 
of parallelization within each node reduces the total volume 
of MPI messaging because the load balancing only needs to 
be performed at the per-node level. Options to adjust the load 
balancing frequency and alternative algorithms such as sto-
chastic reconfiguration [45] are available.

5. Real space QMC methods

5.1. Introduction

The main production algorithms in QMCPACK use methods 
based on Monte Carlo sampling of electron positions in real 
space to produce highly accurate estimates of the many-body 
ground-state wavefunction |Φ0〉 and its associated properties. 
Note that QMC also has complementary orbital space-based 
approaches that work within second quantization, as described 
in section 13.

VMC and DMC are the most commonly applied real-space 
QMC methods. Within VMC, the simplest scheme, Monte 
Carlo sampling is used to obtain estimates of the energy of a 
trial wavefunction

EVMC =

∫
Ψ∗ĤΨ. (1)

In DMC, the ground-state wavefunction is obtained by projec-
tion of the imaginary time Schrödinger equation

−∂Ψ

∂β
= ĤΨ (2)

to long time, where β = it  and has units of imaginary time. 
(Hartree units are used here and throughout, except where 

noted.) Crucial to both methods is an accurate trial or guiding 
wavefunction. Clearly, in VMC the trial wavefunction com-
pletely determines the accuracy and statistical efficiency of 
the result. In DMC it is the nodal surface of the trial wavefunc-
tion that determines the accuracy, while the overall trial wave-
function determines the statistical efficiency. The full range of 
supported trial wavefunctions is described in section 6.

The real-space methods use a Hamiltonian within the 
Born–Oppenheimer approximation (BOA):

Ĥ = −1
2

∑
i

∇2
i +

1
2

∑
i�=j

1
|ri − rj|

+
∑

i,J

veJ(ri, RJ) (3)

where the lower case indices and positions ri refer to the elec-
trons, and the upper case indices and positions RI refer to the 
ions. In order, the terms in (3) correspond to the kinetic energy 
of the electrons, the potential energy of the electrons, and the 
potential energy due to interactions between electrons and 
ions. The energy contribution due to the Coulomb interactions 
of the atoms is constant within the BOA, and is computed by 
an Ewald sum. Further details are given in section 8

For technical reasons, in the following we will work with 
the ‘importance sampled’ Schrödinger equation, which can be 
obtained from the imaginary time Schrödinger equation  by 
rewriting it in terms of f (r,β) = ΨT(r)Ψ(r,β).

∂f
∂τ

= L̂f (r,β) (4)

= [λe∇ · (∇− F(r))− (EL(r)− ET)] f (r,β) (5)

where ΨT(r) is the trial wavefunction, F(r) = 2∇ logΨT(r) 
is the ‘wavefunction force’, and ET(r) = ΨT(r)−1ĤΨT(r) is 
the ‘local energy’. L̂ is the ‘importance-sampled Hamiltonian’ 
operator. To help future discussion, we split L̂ into a ‘drift/dif-
fusion’ operator K̂  and a ‘branching’ operator Ê , given by

K̂ =
1
2
∇ · (∇− F(r)) (6)

Ê = − (EL(r)− ET) . (7)
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Figure 3. Parallel scaling of QMCPACK on two architectures for DMC calculations of a NiO 128 atom cell with 1536 valence electrons. 
Titan nodes have a single GPU each, and these runs used 512 000 total walkers. Each Blue Gene Q node has a 16 core processor, and these 
runs used 458 752 total walkers.
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One advantage of working with the physical Hamiltonian 
as opposed to an auxiliary problem (as in Kohn–Sham DFT), 
is that the variational theorem of quantum mechanics holds, 
which states that for a trial wavefunction ΨT ,

EΨT =
〈ΨT |Ĥ|ΨT〉
〈ΨT |ΨT〉

=
〈ΨT |EL(r̂)|ΨT〉

〈ΨT |ΨT〉
� E0. (8)

The strict equality holds if ΨT  is the ground-state of Ĥ . A 
corollary is that the variance of the trial wavefunction also 
obeys the following:

σ2
ΨT

=
〈ΨT |Ĥ2 − (EΨT )

2|ΨT〉
〈ΨT |ΨT〉

� 0. (9)

The variational principle is significant, since it gives us 
a well-defined metric for which wavefunctions are better or 
worse approximations to the ground state. This can be turned 
into an actual algorithm by parameterizing families of wave-
function ansatz with parameters c. One can then minimize 
equation (8) with respect to c to obtain a best estimate for the 
state.

5.2. Variational Monte Carlo

The oldest approach for dealing with the Schrödinger equa-
tion  for realistic systems involves writing an approximation 
for the ground-state wavefunction and evaluating expectation 
values. There are two ingredients in this procedure: evaluating 
equation (8) for some set of variational parameters c, and then 
minimizing. The optimization procedure is covered in detail 
in section 10.

The energy expectation value in equation (8), as well as all 
physical expectation values, are integrals of a form that are 
amenable to Metropolis Monte Carlo sampling. Thus, we can 
evaluate equation (8) (for example) by the following:

EΨT =

∫
dr|ΨT(r)|2EL(r)∫

dr|ΨT(r)|2
=

1
Ns

∑
i

EL(r(ti)) + ξ. (10)

Ns is the number of samples and ξ is a Gaussian-distributed 
statistical error whose variance scales like 1/

√
Ns . We write 

the sample configurations as r(ti) to emphasize that metrop-
olis Monte Carlo generates samples sequentially via a random 
walk along a Markov chain. To parallelize the algorithm, mul-
tiple independent Markov chains or ‘walkers’ are used.

5.2.1. Trial moves. QMCPACK supports VMC trial moves with 
and without drift. This means that the move r → r′ is drawn 
from the transition probability distribution given by:

T(r → r′, τ) =
1

(4πλτ)3N/2 exp

(
− (r′ − r − 2λτF(r))2

4λτ

)
.

 (11)
For drift based moves, F(r) is taken to be the same wave-

function force as appears in equation (4). For moves without 
drift, F(r) = 0. In the absence of pathologies in the trial 
wavefunction, the use of the drift term is almost always more 
efficient.

In addition to drift or no-drift based moves, the code sup-
ports particle-by-particle or all-electron moves. All-electron 
moves are conceptually the simplest. One proposes the move 
r → r′ = r +∆ by drawing the 3Ne dimensional vector 
∆ from the distribution in equation  (11). This move is then 
accepted or rejected with probability:

A(r → r′) = min

(
1.0,

|ΨT(r′)|2

|ΨT(r)|2
T(r′ → r)
T(r → r′)

)
. (12)

In contrast, particle-by-particle moves work by iterating 
sequentially over all electrons. Considering an electron i at 
position ri. A particle-by-particle move is executed by first 
drawing a new position for electron i from the following prob-
ability distribution.

T(r0, . . . , ri → r′i , . . . , rNe) =
1

(4πλτ)3/2

× exp

(
− (r′i − ri − 2λτFi(r))

2

4λτ

)
.

 

(13)

Then, the move is accepted or rejected using a similar accep-
tance probability as in equation  (12). Particle-by-particle 
moves are typically favored over all-electron moves, due to 
their higher statistical and numerical efficiencies in practice. 
However, all-electron moves may be competitive for small 
systems or for sophisticated trial wavefunctions where single 
particle moves can not be cheaply evaluated numerically.

5.3. Projector Monte Carlo

One can substantially improve upon the accuracy of VMC 
by using projector Monte Carlo methods such as DMC. 
The ‘projector’ is the formal solution of the imaginary time 
Schrödinger equation  Ĝ(β) = exp(−βĤ), and has the very 
desirable property that given any trial wavefunction |ΨT〉 
which is non-orthogonal to the ground-state wavefunction, 
one can obtain the ground-state |Φ0〉 by the following:

lim
β→∞

Ĝ(β)|ΨT〉 = e−βE0 |Φ0〉. (14)

For efficiency reasons, we consider the projector G̃(r, r′,β) 
associated with the importance sampled Schrödinger equa-
tion. For realistic systems, it is exceedingly rare to have exact 
analytic expressions for the projector. However, we can solve 

for the Green’s function ˆ̃G(τ) of equation (4) approximately 
for short times τ. Solving the drift/diffusion equations and rate 
equations independently in the short-time limits, one uses the 
symmetric Trotter formula:

exp
(
τ(Â + B̂)

)
= exp

(τ
2

B̂
)
exp

(
τ Â

)
exp

(τ
2

B̂
)
+ O(τ 2)

 (15)
to stitch these independent solutions together into an approxi-
mate solution for the importance sampled Green’s function:

G̃(r, r′, τ) =
〈
r| ˆ̃G(τ)|r′

〉
= GDD(r, r′, τ)GB(r, r′, τ) + O(τ 2).

 (16)
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GDD(r, r′, τ) is the Green’s function for the drift/diffusion 
operator λe∇ · (∇− F(r)). Assuming that F(r) is slowly var-
ying, its solution is given by:

G̃DD(r, r′, τ) =
1

(4πλτ)3N/2 exp

(
− (r′ − r − 2λτF(r))2

4λτ

)
.

 (17)
The Green’s function for the local energy operator is:

G̃B(r, r′, τ) = P0 exp

(
−1

2
(EL(r) + EL(r′)− 2ET)τ

)
.

 (18)
Near the nodes of ΨT(r) and near bare ions, singularities 

render the ‘slowly-varying’ approximation used in equa-
tion  (17) invalid. Improved drift-diffusion projectors have 
been derived which have been shown to reduce the time step 
error [46]. QMCPACK implements drift rescaling based on 
proximity to the nodal surface, following the prescription in 
[46] for single-electron and all-electron moves. Rescaling 
based on proximity to bare ions is not yet implemented.

5.4. Diffusion Monte Carlo

Diffusion Monte Carlo works by stochastically simulating 
the imaginary-time evolution of an initially prepared state 
f (r, 0) = |ΨT(r)|2. This is done by exploiting the math-
ematical correspondence between Fokker–Planck equa-
tions  for the evolution of probability distributions, and 
Langevin equations  describing the stochastic evolution of 
particle trajectories. To shift to a Langevin picture, we rep-
resent an initial state f (r, 0) by an ensemble of Nw walkers 
{r0(0), r1(0), . . . , rNw−1(0)} distributed according to f (r, 0). 
Assume each walker also has an associated weight wi(β) where 
wi(0)  =  1.0. We consider the action of the short-time Green’s 
function G̃(r, r′, τ) on this distribution.

The action of the drift-diffusion propagator can be simu-
lated with a random drift-diffusion step, given by:

r(β + τ) = r(β) + 2λτF(r(β)) +
√

2λτξ. (19)

Here, ξ is a 3Ne dimensional Gaussian random vector with 
unit variance. Once a new position generated, the GB(r, r′, τ) 
contribution is dealt with by updating the walker weight wi(β) 
with the following formula:

w(β + τ) = w(β)GB(r(β), r(β + τ), τ). (20)

Expectation values of local observables A(r) over the dis-
tribution f (r,β) are obtained by a weighted average:

〈A〉f (β) =

∑Nw−1
i=0 wi(β)A(ri(β))∑Nw−1

i=0 wi(β)
. (21)

Implementing everything discussed up to this point results 
in ‘pure diffusion’ Monte Carlo. However, due to the exponen-
tial growth/decay of the walker weights with β, the efficiency 
of this method decays exponentially with the projection time. 
‘Branching’ diffusion Monte Carlo circumvents this problem 
by implementing equation (20) stochastically through the rep-
lication/removal of walkers. For each walker i, Mi copies of 
the walker are made after the drift/diffusion step according 

to the formula Mi = INT(wi(β + τ) + ξ), where ξ is a uniform 
random number between 0 and 1. The weights of these Mi 
walkers are renormalized and the copies then proceed to the 
next time step. Notice that Mi  =  0 implies that the walker is 
killed.

To avoid a walker population explosion or collapse, prac-
tical DMC simulations adjust ET dynamically to keep the pop-
ulation finite and stable. In QMCPACK this is achieved using 
either a variable number of walkers combined with the above 
population control, or via a fixed walker count scheme (‘sto-
chastic reconfiguration’ [45]). Both schemes can potentially 
introduce a ‘population control bias’ that must be checked 
and controlled for, particularly for small populations. To min-
imize or check for bias, the population should be as large as 
 possible, should be allowed to fluctuate significantly, and the 
simulation run for a long time.

To correctly simulate Fermionic systems and avoid a col-
lapse of the propagated wavefunction to a Bosonic solution, 
the ‘fixed-node approximation’ is implemented. This con-
strains the projected solution to the nodal surface of the trial 
wavefunction, thereby preserving Fermionicity. Proposed 
moves that result in a nodal crossing are detected through the 
change in sign of the wavefunction and are rejected. This is 
usually the most significant approximation made, and requires 
accurate trial wavefunctions.

Finally, we note that several important modifications for 
production calculations: QMCPACK implements the ‘small 
time-step error’ algorithm due to Umrigar et al [46], where the 
drift term is modified near wavefunction nodes and effective 
time step introduced to improve the time step convergence of 
the algorithm. The recently proposed size-consistent variation 
[7, 11] is also implemented. This is particularly effective for 
computing energy differences between very different sized-
systems, such as absorption energies or the formation energies 
of molecular crystals [11].

5.5. Reptation Monte Carlo

Reptation Monte Carlo is constructed by exploiting the 
Feynman path-integral formulation of Schrödinger’s equa-
tion [47]. Its primary advantages over DMC are its ability to 
estimate observables over pure distributions in polynomial 
time, and lack of population bias and control issues. Consider 
the ground-state ‘partition function’:

Z(β) = 〈ΨT |e−βĤ|ΨT〉. (22)
First, we split e−βĤ into n segments each spanning an imagi-
nary time τ = β/n. After inserting n  +  1 position space reso-
lutions of the identity and rewriting the resulting expression in 
terms of the importance sampled projector, we find that Z(β) 
can be written as:

Z(β) =

∫
dr(t0) . . . dr(tn)P[X]e−

∑n−1
i=0 LDMC(r(ti),r(ti+1)) (23)

P[X] = |ΨT(r(t0))|2G̃DD(r(t0), r(t1)) . . . G̃DD(r(tn−1), r(tn))
 (24)
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LDMC(r, r′) =
τ

2
(EL(r) + EL(r′)− 2ET) . (25)

X is shorthand for a ‘path’ X = (r(t0), . . . , r(tn)). The 
reader will recognize Z(β) as a path integral. LDMC is called 
the ‘link action’, which when summed over t, gives the action 
for the path X. P[X] is the probability of a walker which is ini-
tially distributed according to |ΨT(r)|2 executing the directed 
random walk from r(t0) to r(tn) along the path X.

All reptation moves in QMCPACK use the ‘bounce algo-
rithm’ [48]. For proposed moves, the improved propagators 
described in the DMC section are directly used in reptation. 
In addition to nodal drift-rescaling, we incorporate the DMC 
effective time step and energy filtering methods directly into 
the link-action, which helps to significantly reduce ergodicity 
problems associated with reptiles getting stuck in low energy 
regions of configuration space. In the event that reptiles still 
get stuck, the age of all reptile beads is accumulated. If a bead 
exceeds some specified age, the entire reptile is forced to 
propagate for n steps without rejection and then re-equilibrate.

Since P[X] cancels out of the reptile accept/reject step, any 
all-electron move which is a valid VMC configuration is sup-
ported in RMC. In addition to traditional all-electron moves, 
QMCPACK also supports reptile proposals which are built 
from a sequence of Ne particle-by-particle moves. Reptile 
moves proposed with these ‘particle-by-particle’ moves 
exhibit higher acceptance ratios than the traditional all-elec-
tron moves, and are thus favored if memory is available.

Propagation in RMC is supported for all-electron, local, 
and semi-local pseudopotential Hamiltonians. The fixed-node 
constraint is enforced by rejecting proposed node crossings 
and immediately bouncing.

Since the random walk of each reptile is totally inde-
pendent of other reptiles, RMC is straightforwardly parallel-
ized. In addition to generic MPI parallelization, QMCPACK ’s 
RMC driver is able to place one reptile per OpenMP thread on 
shared memory systems.

6. Trial wavefunctions

Within QMC methods, the goal of the trial wavefunction is 
to represent the true Fermionic many-body wavefunction of 
the studied system as accurately as possible, including all 
the correlated electron physics. Due to the large number of 
evaluations of the wavefunction values and derivatives during 
the Monte Carlo sampling, it is also important that the trial 
wavefunction be computationally cheap enough and use little 
enough memory in order to be practical. These are different 
considerations from those applied in DFT and in the more 
closely related quantum chemical methods, leading to dif-
ferent preferences.

Several different trial wavefunction forms are imple-
mented in QMCPACK, with varying suitability for solid state 
and molecular systems, and different trade-offs between acc-
uracy, memory usage, and number of parameters. The most 
common form is the multi-determinant Slater–Jastrow form 
section 6.1, where the orbitals in each determinant are evalu-
ated using either real-space splines or a Gaussian basis set 

section 6.2. The orbitals are usually obtained from a mean-
field method and imported to QMCPACK. The determinantal 
part ensures that the trial wavefunction is properly antisym-
metric with respect to exchange of electron positions, i.e. 
Fermionic. Additional correlations are incorporated via a 
symmetric real-space Jastrow factor section  7. The Jastrow 
factor is usually obtained via optimization entirely within 
QMCPACK, as described in section 10.

6.1. Multi-determinant Slater–Jastrow form

For the vast majority of molecular and solid-state studies, the 
trial wavefunction is written as the product of an antisym-
metric function and a symmetric Jastrow function

ΨT =

M∑
i=1

ciD
↑
i D↓

i eJ , (26)

where the N electron trial wavefunction ΨT  is expanded in a 
weighted sum of products of up and down spin determinants, 
D. These are in turn multiplied by a real-space Jastrow factor, 
J. When exponentiated, this factor is nodeless and the nodes 
of the trial wavefunction are therefore purely determined 
by the determinantal parts. A single product of up-spin and 
down-spin determinants would correspond to a mean-field or 
Hartree–Fock starting point. Larger determinantal sums can 
be obtained, e.g. from multi-configuration self-consistent field 
quantum chemical calculations, CIPSI section  13.3, or be 
constructed based on physical or chemical reasoning. Excited 
states may be constructed by manipulating the occupancy of 
the Slater determinants in the input, e.g. to create an exciton. 
Wavefunctions with greater or fewer electrons than the neutral 
ground state may be similarly prepared to compute electronic 
affinities or ionization potentials.

Due to the potentially large computational cost in evalu-
ating the trial wavefunction, QMCPACK uses previously 
computed data and optimized methods to avoid full recom-
putation wherever effective and practical. For single electron 
moves, QMCPACK uses the Sherman–Morrison algorithm, 
as described in [49]. For large calculations with thousands 
of electrons, the delayed update scheme of [44] is currently 
being implemented. For calculations with multiple determi-
nants, QMCPACK implements the ‘table method’ of Clark et al 
[50]. This exploits the relationship between largely similar 
determinants to cheaply compute the determinant values while 
only requiring the full N2 memory cost of a single determi-
nant. This enables, e.g. molecular calculations that approach 
or even reach ‘chemical accuracy’ to be performed [51]. To 
date, calculations with up to O(106) determinants have been 
performed (see section 13.3), with larger calculations clearly 
possible [52].

6.2. Orbitals

The single-particle orbitals in the Slater determinants are 
generally determined by another electronic structure code 
and imported into QMCPACK for calculations. QMCPACK 
has an easily extensible mechanism for adding new ways of 
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representing single-particle orbitals. This can be particularly 
useful when addressing model systems or performing special-
ized tests. For example, QMCPACK supports specialty homo-
geneous electron gas and plane-wave based wavefunctions, 
and for work on spherical quantum dots, radial numerical 
functions [53]. However, by far the most common sources of 
orbitals are plane-wave based from Quantum Espresso (QE) 
[54, 55], and Gaussian based from the GAMESS code [56]. 
Converters from these codes are provided and can straightfor-
wardly be extended to other methodologically related codes.

6.2.1. B-spline basis sets. For calculations involving peri-
odic boundary conditions, the standard route is to first perform 
a DFT calculation using QE and to then import the plane-
wave coefficients into QMCPACK. Finite molecular systems 
can also be studied by adding a considerable vacuum region. 
QMCPACK then allows the boundary conditions to be made 
aperiodic, even for orbitals originally based on plane-waves.

Although the single-particle orbitals can be evaluated 
directly in the plane-wave basis, this requires evaluating each 
plane-wave for every orbital and is thus very expensive: the 
cost grows with the number of plane-waves. For this reason, 
the single-particle orbitals are usually converted into a uniform 
3D B-spline representation in real-space. As implemented, this 
requires a constant 64 coefficients to be accessed in memory 
to evaluate each single-particle wavefunction regardless of the 
size of the underlying basis. These operations are optimized 
to vectorize very well on current computer architectures, ena-
bling the orbital evaluation to run very efficiently.

The principal downside of a B-spline basis is memory 
consumption, particularly for large simulation cells. Naively, 
the memory cost scales as O(N2). For larger calculations the 
B-spline tables can easily grow to tens or even hundreds of 
gigabytes, potentially exceeding available memory. Currently 
QMCPACK shares the B-spline table among all processors on 
a node (or GPU), but memory limitations can still constrain 
the calculations that can be performed. In the case of super-
cell calculations, QMCPACK can exploit Bloch’s theorem to 
reduce the demand. To save additional memory, the spline 
coefficients may also be stored in single precision, halving 
the amount of memory required compared to the full double 
precision used in the originating plane-wave code. However, 
memory usage of B-splines remains a problem for large simu-
lation cells.

To further reduce memory costs, QMCPACK can utilize a 
hybrid basis set composed of radial splines times spherical 
harmonics near the atoms and B-splines elsewhere in space 
[57, 58]. This is similar to the augmented plane-wave schemes 
used by some DFT implementations. The scheme allows for 
the high frequency components of the trial wavefunction near 
the atomic nuclei to be represented by a compact radial func-
tion and the smoother part of the wavefunction in the inter-
stitial regions to be represented by a much coarser B-spline 
table. The hybrid basis can reduce memory use by a factor of 
four to eight compared to the standard B-spline representation 
while maintaining accuracy. Obtaining the hybrid representa-
tion from a plane-wave basis requires an initial computation-
ally costly conversion.

6.2.2. Gaussian basis sets. For molecular systems, one typi-
cally uses a Gaussian basis set to represent the single-particle 
orbitals. QMCPACK supports standard quantum chemical basis 
sets including contractions and for arbitrary angular momenta. 
Atomic or natural orbitals can therefore be directly imported 
from standard quantum chemistry codes. Interfaces currently 
exist to GAMESS [56], quantum package [59], and for pack-
ages supporting the MOLDEN format. Interfacing requires 
converting the output of the intended package to QMCPACK’s  
XML or HDF5 format. For all-electron calculations, a cusp 
correction scheme is implemented to enforce the electron-
nuclear cusp.

6.2.3. Specialized basis sets. Besides the B-spline and 
Gaussian basis sets described above, QMCPACK implements 
several additional specialized basis sets for specific prob-
lems. This includes Slater trial orbitals, the homogeneous 
electron gas, and radial numerical functions for atomic 
calcul ations. Due to the flexible internal architecture, orbitals 
can be expressed in any combination of these functions. For 
example, in [60], it was proposed to save memory by stor-
ing orbitals on different sets of B-spline tables based on their 
kinetic energy. This scheme did not require any source code 
modifications.

6.3. Backflow wavefunctions

Improvement of the nodal surface can be achieved through 
backflow wavefunctions, complementing the multidetermi-
nant route. The formal justification for backflow wavefunc-
tions rests on the homogeneous electron gas and Fermi liquid 
theory [61]. Backflow appears promising for bulk applications 
[62], and has also been shown to aid in capturing dynamical 
correlations in molecular systems when used in conjunction 
with multideterminant wavefunctions [63].

Backflow wavefunctions are constructed from determi-
nantal wavefunctions as follows. Instead of evaluating the 
Slater matrix Mij = φj(ri) at the bare electron coordinates ri, 
we evaluate it at new quasiparticle coordinates M̃ij = φj(qi). 
The ‘backflow transformation’ from ri → qi is defined as:

qiα = riα +
∑
α�β

∑
iα �=jβ

ηαβ(|riα − rjβ |)(riα − rjβ ). (27)

In QMCPACK, the ηαβ(r) are short-ranged, spherically sym-
metric functions represented by fully optimizable B-splines. 
QMCPACK allows for separate optimization of same-spin, 
opposite-spin, and electron-ion terms. Currently, backflow is 
fully supported only with single determinant wavefunctions, 
but it can be used in both bulk and molecular systems.

7. Jastrow factors

Jastrow factors [64] are included in the trial wavefunction to 
improve the representation of the many-body wavefunction. 
This non-negative Bosonic factor is in principle an arbitrary 
function of all electron and ionic positions, but in prac-
tical calculations are most commonly built from functions 
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systematically incorporating one, two, and three-body cor-
relations. Notably, the Jastrow factor can readily satisfy the 
electron–electron and electron–nucleus cusp conditions [65, 
66], which are very slow to converge in the multidetermi-
nant expansions commonly used in quantum chemistry. The 
improved representation of the many-body wavefunction nat-
urally reduces the statistical variance of the local energy and 
also improves the quality of the DMC projection operator [67, 
68], which is useful in the context of timestep and nonlocal 
pseudopotential localization errors.

The Bosonic ground state for N particles can be written

ΨB = e−J(R) (28)

with J symmetric and where R  denotes all the particle posi-
tions. For fermions, the fixed-node [69, 70] (or fixed-phase 
[71]) wavefunction that arises from DMC projection has a 
related form. In this case, a Jastrow wavefunction appears 
as a prefactor [72] modifying the local structure of the input 
Fermionic trial wavefunction, ΦT  to account for many-body 
correlations:

ΨFN = e−J(R)ΦT(R). (29)

The Jastrow factor can be formally represented in a many-
body expansion

J =
∑
σi

u1(rσi) +
1
2

∑
σσ′ij

u2(rσi, rσ′j)

+
1
6

∑
σσ′σ′′ijk

u3(rσi, rσ′j, rσ′′k) + · · ·

 

(30)

with each n-body term un being symmetric under particle 
exchange.

The one-body term is approximated in QMCPACK as a sum 
over atom-centered s-wave type functions that depend on the 
local ionic species I

u1(rσi) =
∑
Iµ

uσI(|rσi − rIµ|) (31)

with rIµ being the position of the μth ion of species I. The 
dependence on spin is optional.

The two-body term is approximated as a spin-dependent 
liquid-like factor (the electron–electron term) optionally with 
a second factor that additionally depends on the ionic coordi-
nates (the electron–electron–ion term)

u2(rσi, rσ′j) = uσσ′(|rσi − rσ′j|)

+
∑
Iµ

uσσ′I(|rσi − rIµ|, |rσ′j − rIµ|, |rσi − rσ′j|).

 (32)
In each case, the up-up and down-down terms are constrained 
to be equal.

A wide range of options are available for the one-dimen-
sional electron–ion (uσI) and electron–electron (uσσ′) Jastrow 
correlation functions including B-splines, first and second-
order Padé functions, long and short ranged Yukawa func-
tions, and various short-ranged functions suitable for model 
helium. The most commonly used choice for either correla-
tion function is a one-dimensional cubic B-spline

u(r) =
M∑

m=0

pmB3

(
r

rc/M
− m

)
 (33)

where B3(x) denotes a cardinal cubic B-spline function defined 
on the interval x ∈ [−3, 1) (centered at x  =  −1), {pn} are the 
control points, and rc is the cutoff radius. The last M control 
points (p1 . . . pM) comprise the optimizable parameters while 
p0 is determined by the cusp condition

p0 = p2 −
2M
rc

∂u
∂r

∣∣∣∣
r=0

. (34)

The Jastrow cutoffs should be selected in the region of non-
vanishing density in open boundary conditions. In periodic 
boundary conditions the cutoffs must be smaller than the sim-
ulation cell Wigner–Seitz radius.

The three-body electron–electron–ion correlation function 
(uσσ′I ) currently used in QMCPACK is identical to the one pro-
posed in [73]:

uσσ′I(rσI , rσ′I , rσσ′) =

MeI∑
�=0

MeI∑
m=0

Mee∑
n=0

γ�mnr�σIr
m
σ′Ir

n
σσ′

×
(

rσI −
rc

2

)3
Θ
(

rσI −
rc

2

)

×
(

rσ′I −
rc

2

)3
Θ
(

rσ′I −
rc

2

)
.

 

(35)

Here MeI and Mee are the maximum polynomial orders of the 
electron-ion and electron–electron distances, respectively, 
{γ�mn} are the optimizable parameters (modulo constraints), 
rc is a cutoff radius, and rab are the distances between electrons 
or ions a and b. i.e. the correlation function is only a function 
of the interparticle distances and not a more complex function 
of the particle positions, r. As indicated by the Θ functions, 
correlations are set to zero beyond a distance of rc/2 in either 
of the electron–ion distances and the largest meaningful elec-
tron–electron distance is rc. This is the highest-order Jastrow 
correlation function currently implemented.

Today, solid state applications of QMCPACK usually utilize 
one and two-body B-spline Jastrow functions, with calcul-
ations on heavier elements often also using the three-body 
term described above. While there are not yet any comprehen-
sive comparisons between the different forms of the Jastrow 
factor in current use, this choice appears to give very similar 
accuracy to other forms. Experience with atoms and mol-
ecules is similar. In the future, should systematic studies find 
a new form of Jastrow factor to be more efficient or effective, 
it can be rapidly introduced due to the object oriented nature 
of the application.

8. Hamiltonian

The Hamiltonian is represented in QMCPACK as a sum of 
abstract components

Ĥ =
∑

n

Ĥn (36)
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with each component implemented as a class. The function-
ality of all Hamiltonian component classes is dictated by a 
shared base class. The primary shared characteristic of each 
component is the evaluation of its contribution to the local 
energy

EL =
∑

n

ELn, ELn ≡ Ψ−1
T ĤnΨT . (37)

In QMC algorithms, the local energy (as well as other observ-
ables) is collected after all Monte Carlo walkers have advanced 
one step in configuration space.

Possibly uniquely, the Hamiltonian that is solved is speci-
fied in the QMCPACK input. This makes QMCPACK suitable for 
model studies as well as ab initio calculations. The most gen-
eral Hamiltonian that can currently be handled by QMCPACK 
is non-relativistic with pairwise interactions between quantum 
(electrons or nuclei) or classical (nuclei only) particles and 
possibly external fields

Ĥ =
∑

q

T̂q +
∑
q�=q′

V̂qq′ +
∑

qc

V̂qc +
∑
c�=c′

Vcc′ +
∑

q

V̂ext
q +

∑
c

Vext
c .

 (38)
Here q and c denote the species of quantum and classical par-
ticles, respectively.

While non-adiabatic (multiple quantum species) and 
model-potential (e.g. low-temperature helium) calculations 
are possible, we focus the remainder of the discussion to the 
most typical case: electronic structure problems within the 
Born–Oppenheimer (clamped nuclei) approximation [74]. In 
this case, the many body Hamiltonian is (in atomic units)

Ĥ = − 1
2

∑
i

∇2
i +

∑
i<j

vee(ri, rj) +
∑

i

∑
Iµ

veI(ri, rIµ)

+
∑

IµI′µ′

vII′(rIµ, rI′µ′)

 

(39)

where i and j sum over electron indices and Iµ denotes the μth 
ion with species I.
QMCPACK supports all-electron and pseudopotential 

calcul ations in both open and periodic boundary conditions. 
The choice of ion core and boundary conditions affects the 
potential terms and we now briefly review these forms. For 
all-electron calculations in open boundary conditions, all of 
the interaction potential terms are related simply to the bare 
Coulomb interaction vC(r) ≡ 1/r

vee(ri, rj) = vC(|ri − rj|)
veI(ri, rIµ) = −ZIvC(|ri − rIµ|)

vII′(rIµ, rI′µ′) = ZIZI′vC(|rIµ − rI′µ′ |).
 

(40)

In periodic boundary conditions, the long-ranged part of 
each potential contributes an infinite number of terms due to 
the series of image cells filling all of the space.

v(|r1 − r2|) −→
∞∑

n=0

v(|r1 − r2 + nTL|). (41)

Sums of this type are evaluated via the Ewald summation 
technique [75]. An optimized breakup [76] into long and 

short-ranged contributions is used to minimize computational 
effort.

With the introduction of semi-local pseudopotentials, the 
electron–ion term takes the form

veI(ri, rIµ) = vloc(|ri − rIµ|) +
∑
�m

|Y�m
〉
[v�(|ri − rIµ|)

−vloc(|ri − rIµ|)]
〈
Y�m|

 
(42)

where all of the non-local channel terms vanish beyond cutoff 
radii that may be unique to each channel and the local part 
approaches −Zeff/r in the long distance limit (Zeff is the 
effective core charge presented by the pseudopotential). The 
evaluation of the local energy for semi-local pseudopoten-
tials follows the algorithm laid out by Mitas et al [77] with a 
12-point angular integration used by default.

In DMC calculations, the semi-local potentials are evalu-
ated within the locality approximation [77], or the more recent 
‘t-moves’ approximations [36, 78] that restore the variational 
principle the the DMC algorithm. In particular, the algorithm 
of [36] restores size-extensivity.

9. Boundary conditions

QMCPACK accommodates both periodic and open boundary 
conditions in one, two or three dimensions, including mixed 
boundary conditions. After the pseudopotential and fixed-
node approx imations in QMC, the choice of boundary con-
ditions imposes another set of approximations onto a system 
that must be treated with care.

9.1. Long-range interactions

The long-ranged Coulombic interactions of the electrons 
and ions must be handled with care in order to ensure that 
the potential energy does not diverge when using periodic 
boundary conditions. In QMCPACK, the interparticle interac-
tions are computed using an optimized implementation [76] 
of the well-known strategy of decomposing the interactions 
into short and long ranged components, and performing sums 
over the former and latter in real and reciprocal space, respec-
tively [75].

9.2. Twist-averaged boundary conditions

Bloch’s theorem demonstrates how a finite wavefunction can 
be used to simulate an infinite lattice within periodic boundary 
conditions by incorporating the following symmetry:

Ψ(r1 + Lm, r2, . . . , rN) = eiK·LmΨ(r1, r2, . . . , rN) 
(43)

where K is a vector in reciprocal space, Lm is a lattice vector 
of the supercell, and Θm ≡ K · Lm , is the ‘twist angle’ [2]. 
For pure periodic boundary conditions (in which Θ = 0), 
systems converge slowly to their thermodynamic limit due to 
shell effects and quantization of momentum [79]. Therefore, 
to improve convergence speed and accuracy, one should 
average over many simulations done with different twist 
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angles, a scheme called ‘twist-averaged boundary conditions’. 
In QMCPACK, the averaging is done in post-processing, using 
e.g. qmca section 14.1 and/or Nexus section 15.

10. Optimization

In all real-space quantum Monte Carlo calculations, opti-
mizing the wavefunction significantly improves both the 
accuracy and efficiency of computation. However, it is 
very difficult to directly adopt deterministic minimization 
approaches due to the stochastic nature of quantities with 
Monte Carlo. Thanks to major algorithmic improvements, it is 
now feasible to optim ize up to tens of thousands of parameters 
in a wavefunction for a large solid or molecule. QMCPACK 
implements multiple optimizers based on the state-of-the-
art linear method with several techniques, described below, 
improving its robustness, efficiency and capability.

10.1.The linear method

QMCPACK optimizes trial functions using an implementation 
of the linear method (LM) [80] that includes modifications to 
improve stability in the face of variables of greatly differing 
stiffnesses, facilitate the optimization of excited states, and 
reducing the memory footprint when optimizing large num-
bers of variational parameters. The LM is sometime referred 
to as ‘energy minimization’, although the approach is more 
general. The LM gets its name from the way that it employs a 
linear expansion of the wavefunction,

|Φ〉 =
Nv∑

y=0

cy|Ψy〉,
 (44)
where |Ψy〉 for y ∈ {1, 2, 3, ...} is the derivative of the trial 
function |Ψ〉 with respect to its yth variational parameter and 
|Ψ0〉 ≡ |Ψ〉, within an expanded energy expression,

E(�c) =
〈Φ|H|Φ〉
〈Φ|Φ〉

. (45)

Using this linear approximation to how the energy changes 
with the variational parameters, minimizing E with respect 
to �c  can be achieved by solving the generalized eigenvalue 
problem

Nv∑
y=0

〈Ψx|H|Ψy〉
〈Ψ|Ψ〉

cy = E
Nv∑

y=0

〈Ψx|Ψy〉
〈Ψ|Ψ〉

cy (46)

or, written in matrix-vector notation,

H �c = E S �c, (47)

the matrix elements for which are evaluated by Monte Carlo 
integration [81, 82] in direct analogy to how VMC evalu-
ates the energy. If one assumes the improved trial function 
|Φ〉 is similar to the previous trial function |Ψ〉, which implies 
that the ratio cx/c0 is small for all x ∈ {1, 2, 3, ...}, then 
a reasonable approximation to |Φ〉 can be had by replacing 
µx → µx + cx/c0 for each variational parameter µx  in |Ψ〉. As 
for other optimization methods that compute an update based 

on some local approximation to the target function, such as 
Newton–Raphson, this process is then repeated until further 
updates no longer lower the energy.

10.2.Stabilizing the linear method

In practice, it is important to implement an analogue to the 
trust radius schemes common to Newton–Raphson in order 
to ensure that the solution of equation  (46) does not corre-
spond to an unreasonably long step in variable space, or, put 
another way, to ensure that the ratio cx/c0 is not too large. The 
LM optimizer in QMCPACK supports two mechanisms for pre-
venting too-large updates: a diagonal shift α as employed in 
the original algorithm [80] as well as an overlap-based shift β 
that becomes important when parameters of greatly different 
stiffnesses are present. Using these shifts, the Hamiltonian 
matrix is modified to become

H → H + αA + βB, (48)

where A and B provide stabilization via the original and 
overlap shifts, respectively. As in the original method, 
QMCPACK uses Axy = δxy(1 − δx0) and the adjustable shift 
strength α to effectively raise the energy along each direction 
of change while leaving the current wavefunction |Ψ0〉 = |Ψ〉 
unaffected.

While the original shifting scheme has been effective in 
many cases, it can struggle if two different variational param-
eters produce wavefunction derivatives of vastly different 
sizes. For example, imagine a two-variable wavefunction 
whose overlap matrix evaluates to

S =




1 0 0
0 1 0
0 0 106


 . (49)

Performing the usual �ν = (S
1
2 )�c  transformation to produce a 

standard eigenvalue problem (with β set to zero for now) gives 
us

S− 1
2 HS− 1

2�ν +




1 0 0
0 α 0
0 0 α

106


�ν = E�ν. (50)

We see that, if we were to make α large enough to significantly 
penalize the second variable direction, the first  direction would 
be penalized so much that it would essentially become a fixed 
parameter.

The purpose of the overlap shift is to resolve this issue by 
adding an energy penalty based on the norm of the part of �c  
corresponding to directions orthogonal to the current wave-
function |Ψ〉, which would correctly penalize steps along 
directions of large derivative norms more than those along 
directions of small derivative norms. This goal is accom-
plished by the definitions

Qxy = δxy − δx0(1 − δy0)S0y (51)

Txy = (1 − δx0δy0)
[
Q+SQ

]
xy (52)
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B =
(
Q+

)−1 TQ−1 (53)

in which Q transforms into a basis in which all update direc-
tions are orthogonal to the current wavefunction |Ψ〉 (this 
transformation is equivalent to that of equation (24) of [81]). 
T is the overlap matrix in this basis with its first element 
zeroed out so that the current wavefunction is not penalized. 
Finally, the inverses of Q and its adjoint transform us back to 
the basis of the original generalized eigenvalue problem so 
that the effect of the overlap shift cay be written in the form 
of equation (48). Note that, in practice, it is not necessary to 
construct B explicitly, as QMCPACK solves the generalized 
eigenvalue equation by iterative Krylov subspace expansion, 
during which the Krylov basis (whose first vector is always 
|Ψ〉) is kept orthonormal by the Gram–Schmidt procedure. In 
this Krylov basis, applying the overlap shift involves merely 
adding β to the diagonal of the subspace Hamiltonian matrix 
(except, of course, to the first element corresponding to |Ψ〉). 
This Krylov approach also has the benefit of ensuring that 
the overall update is orthogonal to the current wavefunction, 
which is related to norm-conservation and was found to be 
desirable by the LM’s original developers [80–82].

Although like most trust-radius schemes the optimal 
choices for α and β are somewhat heuristic, QMCPACK auto-
matically adjusts them after each iteration of the LM by solving 
for the updates generated by three different sets of shifts and 
retaining the shift that gave the best update, as determined by 
a correlated-sampling comparison of their energies on a fresh 
sample. For maximum efficiency in regimes where optim-
ization is not difficult but sampling is expensive, QMCPACK 
retains the ability to run in a single-shift, no-second-sample 
mode. When running instead in multi-shift mode, we have 
observed that successful optimizations often result with the 
simple initial choice of α = β = 1. In principle, however, 
one might expect α < β to be more effective, because when 
the β shift is filling the role of limiting the update size, α is 
only needed to penalize (hopefully rare) linear dependencies 
between update directions that β, being overlap-based, cannot 
address.

10.3.Optimizing for excited states

QMCPACK’s current LM optimization engine supports 
both standard energy minimization and the minimization 
of a recently introduced [83] excited state target function, 
〈Ψ|(ω − Ĥ)|Ψ〉/〈Ψ|(ω − Ĥ)2|Ψ〉, whose global minimum is 
the exact energy eigenstate immediately above the targeted 
energy ω. Although this technology is a very recent develop-
ment and will doubtless evolve in time as the science behind 
excited state targeting matures, we felt it important to make an 
early version of it available to the community. Optimization 
proceeds in much the same way as for a ground state, with the 
user specifying ω and the stabilization shifts α and β and the 
LM repeatedly solving generalized eigenvalue equations anal-
ogous to equation  (46) to generate wavefunction updates. 
Additional methods for automatically selecting and updating 
ω have been developed [84]. For details into this targeting 

function and how it is optimized, we refer the reader to the 
original publication [83].

10.4.Handling large parameter sets

One important limitation of the LM comes when the number 
of variational parameters rises to 10 000 or more, at which 
point the contributions to H and S made by each Markov 
chain become cumbersome to store in memory, especially 
when running one Markov chain per core on a large parallel 
system in which per-core memory is limited. QMCPACK cur-
rently addresses this memory bottleneck using the blocked 
LM [35], a recent algorithm that separates the variable space 
into blocks, estimates the most important variable-change 
directions within each block, and then uses these directions 
to construct a reduced and vastly more memory efficient LM 
eigenvalue problem to generate an update direction in the 
overall variable space. Like excited state targeting, this is a 
new feature that can be expected to evolve in time, and has 
been made openly available to the community in the spirit of 
rapid dissemination. As of this writing, it has not been widely 
tested outside of the work in its original publication [35], but 
in time we expect to have a clearer picture of its capabilities.

10.5.Multi-objective optimization

QMCPACK also supports optimizing variational parameters 
based on not only the total energy but also variance. In certain 
situations, the best target object may not be the energy only 
but a cost function mixing both energy and variance which 
reduces to zero when the wavefunction is exact. The cost func-
tion can be any linear combination of energy and variance. 
QMCPACK picks the optimal parameter set corresponding to 
the minimal value of a quartic function fitting the cost func-
tion evaluated on seven shifts by correlated-sampling.

11. Observables

A broad range of observables and estimators are available in 
QMCPACK. In this section we describe the total number den-
sity (density), number density resolved by particle spin (spin-
density), spherically averaged pair correlation function (gofr), 
static structure factor (sk), energy density (energydensity), 
one body reduced density matrix (dm1b) and force (Forces) 
estimators. These estimators can be evaluated for the entire 
run (e.g. all VMC and DMC sections) when added to the 
Hamiltonian section in the input file, or applied to a specific 
section. Higher order density matrix quantities for calculating 
quantum entanglement have also been studied previously, e.g. 
[85–87].

11.1. Density and spin density

The particle number density operator is given by

n̂r =
∑

i

δ(r − ri).
 

(54)
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This estimator accumulates the number density on a uniform 
histogram grid over the simulation cell. The value obtained 
for a grid cell c with volume Ωc is then the average number of 
particles in that cell

nc =

∫
dR|Ψ|2

∫
Ωc dr

∑
i

δ(r − ri). (55)

When using periodic boundary conditions, the density will be 
collected for the cell (or supercell) defined by the simulation. 
When using non-periodic boundary conditions, a cell has to 
be defined in order to set a grid. It is then recommended to 
center the system (molecule) in the middle of the defined cell. 
The collected data is stored in HDF5 format in a .stat.h5 file. 
Using Nexus section 15, one can use the qdens tool to extract 
the data in a *.xsf format readable with visualization tools 
such as XCrysDens [88, 89] or VESTA [90]. Examples of 
density plots are shown in figure 4. Similar to the density, the 
spin-density estimator can be also collected for each indepen-
dent spin, as shown and analyzed in [91] for magnetic states 
in Ti4O7.

11.2. Pair correlation function

The functional form of the species-resolved radial pair cor-
relation function operator is

gss′(r) =
V

4πr2NsNs′

Ns∑
is=1

Ns′∑
js′=1

δ(r − |ris − rjs′ |). (56)

Here Ns is the number of particles of species s and V  is the 
supercell volume. If s = s′, then the sum is restricted so that 
is �= js.

An estimate of gss′(r) is obtained as a radial histogram with 
a set of Nb uniform bins of width δr. This can be expressed 
analytically as

g̃ss′(r) =
V

4πr2NsNs′

Ns∑
i=1

Ns′∑
j=1

1
δr

∫ r+δr/2

r−δr/2
dr′δ(r′ − |rsi − rs′j|),

 (57)

where the radial position r is restricted to reside at the bin 
centers δr/2, 3δr/2, . . ..

11.3. Static structure factor

Let ρe
k =

∑
j eik·re

j  be the Fourier space electron density, with 
re

j  being the coordinate of the jth electron. k is a wavevector 
commensurate with the simulation cell. The static electron 
structure factor S(k) can be measured at all commensurate k 
such that |k| � (LR_DIM_CUTOFF)rc. Ne is the number of 
electrons, LR_DIM_CUTOFF is the optimized breakup param-
eter, and rc is the Wigner–Seitz radius. It is defined as follows:

S(k) =
1

Ne 〈ρ
e
−kρ

e
k〉. (58)

11.4. Energy density estimator

An energy density operator, Êr , satisfies
∫

drÊr = Ĥ, (59)

where the integral is over all space and Ĥ  is the Hamiltonian. 
In QMCPACK, the energy density is split into kinetic and 
potential components

Êr = T̂r + V̂r (60)

with each component given by

T̂r =
1
2

∑
i

δ(r − ri)p̂2
i

V̂r =
∑
i<j

δ(r − ri) + δ(r − rj)

2
v̂ee(ri, rj)

+
∑

i�

δ(r − ri) + δ(r − r̃�)
2

v̂eI(ri, r̃�)

+
∑
�<m

δ(r − r̃�) + δ(r − r̃m)

2
v̂II(r̃�, r̃m).

 
(61)

Figure 4. Left: electron density of (Fe(H2O)6)
2+ cluster in a 10 Å box using 100  ×  100  ×  100 grid points, based on calculations in [92]. 

Right: electron density of TiO2 in a grid of 80  ×  80  ×  80 grid points, based on calculations in [93].
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Here ri and r̃� represent electron and ion positions, respec-
tively, p̂i is a single electron momentum operator, and 
v̂ee(ri, rj), v̂eI(ri, r̃�), v̂II(r̃�, r̃m) are the electron–electron, 
electron–ion, and ion–ion pair potential operators (including 
non-local pseudopotentials, if present). This form of the energy 
density is size-consistent, i.e. the partially integrated energy 
density operators of well separated atoms gives the isolated 
Hamiltonians of the respective atoms. For periodic systems 
with twist averaged boundary conditions, the energy density 
is formally correct only for either a set of supercell k-points 
that correspond to real-valued wavefunctions, or a k-point set 
that has inversion symmetry around a k-point having a real-
valued wavefunction. For more information about the energy 
density, see [94].

The energy density can be accumulated on piecewise uni-
form three dimensional grids in generalized Cartesian, cylin-
drical, or spherical coordinates. The energy density integrated 
within Voronoi volumes centered on ion positions is also 
available. The total particle number density is also accumu-
lated on the same grids by the energy density estimator for 
convenience so that related quantities, such as the regional 
energy per particle, can be computed easily.

11.5. One-body density matrix

The N-body density matrix in DMC is ρ̂N = |ΨT
〉〈
ΨFN | (for 

VMC, substitute ΨT  for ΨFN ). The one body reduced density 
matrix (1RDM) is obtained by tracing out all particle coordi-
nates but one:

n̂1 =
∑

n

TrRn |ΨT
〉〈
ΨFN|. (62)

In the formula above, the sum is over all electron indices  
and TrRn(∗) ≡

∫
dRn

〈
Rn| ∗ |Rn

〉
 with Rn = [r1, ..., rn−1, rn+1, ..., rN ].  

When the sum is restricted over spin up or down electrons, 
one obtains a density matrix for each spin species. The 1RDM 
computed by QMCPACK is partitioned in this way.

In real space, the matrix elements of the 1RDM are

n1(r, r′) =
〈
r|n̂1|r′

〉
=

∑
n

∫
dRnΨT(r, Rn)Ψ

∗
FN(r

′, Rn).

 (63)
A more efficient and compact representation of the 1RDM 

is obtained by expanding in single particle orbitals, e.g. from 
a Hartree–Fock or DFT calculation, {φi}:

n1(i, j) =
〈
φi|n̂1|φj

〉

=

∫
dRΨ∗

FN(R)ΨT(R)
∑

n

∫
dr′n

ΨT(r′n, Rn)

ΨT(rn, Rn)
φi(r′n)

∗φj(rn).

 (64)
The integration over r′ in equation (64) is inefficient when 

one is also interested in obtaining matrices involving ener-
getic quantities, such as the energy density matrix [94] or the 
related and more well known Generalized Fock matrix. For 
this reason, we compute: [94]

n1(i, j) ≈
∫

dRΨFN(R)∗ΨT(R)
∑

n

∫
dr′n

ΨT(r′n, Rn)
∗

ΨT(rn, Rn)∗
φi(rn)

∗φj(r′n).

 (65)

11.6. Forces

For all-electron calculations, naïvely estimating the bare 
Coulomb Hellman–Feynman force with quantum Monte 
Carlo suffers from a fatal problem: while the expectation 
value of this estimator is well defined, the 1/r2 divergence 
causes the variance to be infinite, meaning we can not obtain 
a meaningful error bar for this quantity. There are several 
schemes to circumvent this. For all-electron calculations, 
QMCPACK can currently calculate forces and stress using the 
Chiesa estimator [95] in both open and periodic boundary 
conditions. Implementation details and validation of forces 
in periodic boundary conditions can be found in [96]. In the 
future, pseudopotential forces will be supported, and methods 
to reduce the variance of existing estimators are currently 
being explored.

12. Forward-walking estimators

Forward-walking is a method by which one can sample the 
pure fixed-node distribution 〈Φ0|Φ0〉. Specifically, one mul-
tiplies each walker’s DMC mixed estimate for the observable 

O, O(R)ΨT(R)
ΨT(R) , by the weighting factor Φ0(R)

ΨT(R). This weighting 

factor for any walker R  is proportional to the total number 
of descendants the walker will have after a sufficiently long 
projection time β.

To forward-walk on an observable, one declares a generic 
forward-walking estimator within a Hamiltonian block, and 
then specifies the observables to forward-walk on and for-
ward-walking parameters.

13. Orbital space QMC methods

13.1. Introduction

In addition to real-space QMC methods, QMCPACK also sup-
ports orbital-space QMC approaches for the study of atomic, 
molecular and solid-state systems. AFQMC is implemented 
internally, while interfaces to selected configuration inter-
action (SCI) methods have been developed. [97–100] The 
starting point of orbital-space approaches is the Hamiltonian 
in second quantization, typically defined by

Ĥ =
∑

i,j

hijĉ
†
i ĉj +

1
2

∑
i,j,k,l

Vijklĉ
†
i ĉ†j ĉlĉk, (66)

where ĉ†i (ĉi) are the creation (annihilation) operators for 
spinors associated with a given single particle basis set, with 
associated one- and two-electron matrix elements given by hij 
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and Vijkl . The choice of the single particle basis along with 
the calcul ation of the appropriate Hamiltonian matrix ele-
ments must be performed by a separate electronic structure 
package. The Hamiltonian matrix elements are expected in 
the FCIDUMP format used by codes including Molpro [101], 
PySCF [102] and VASP [103–105]. The calculations are typi-
cally performed on a single particle basis defined by the solu-
tion of a Hartree–Fock or DFT calculation. Both finite and 
periodic calculations are possible.

13.2. Auxiliary-field quantum Monte Carlo (AFQMC)

The fundamental idea behind AFQMC is identical to that 
of DMC, namely that the propagation of many-body states 
in imaginary time leads to the lowest eigenstate of the 
Hamiltonian with non-zero overlap [27]. In contrast with 
DMC, AFQMC operates in the Hilbert space of non-orthog-
onal Slater determinants and uses the Hubbard–Stratonovich 
transformation [106, 107] to express the short-time approx-
imation of the propagator as an integral over propagators 
that contain only one-body terms. The application of one-
body propagators to walkers in the algorithm (represented by 
Slater determinants) leads to rotations of the corresponding 
Slater determinants that define a random walk, similar to 
the random walk in real-space followed by walkers in DMC 
[108]. QMCPACK implements the constrained-path algorithm 
of Zhang and Krakauer with the phaseless approximation  
[27, 109]. Similar to the algorithm of Zhang and Krakauer, 
we use importance sampling and force-bias to improve the 
sampling efficiency of the algorithm. For a complete descrip-
tion of the implemented algorithm, see the lecture notes on 
AFQMC by Zhang in the open-access book [28] and [29].

The AFQMC implementation in QMCPACK attempts to 
minimize the memory requirements of the calculation, while 
increasing the performance of the associated computations. 
This is done by a combination of: (1) distributed sparse 
representations of large data structures (e.g. two-electron 
integrals), (2) efficient use of shared-memory on multi-core 
architectures, (3) combination of efficient BLAS and sparse-
BLAS routines for all major computations, and (4) an effi-
cient distributed algorithm for walker propagation. Notice 
that the code is able to distribute the work associated with 
the propagation of a walker over many nodes, enabling access 
to systems with thousands of basis functions with a full ab 
initio representation. Both single determinant as well as 
multi-determinant trial wave-functions are implemented. In 
the case of multi-determinant expansions, both orthogonal 
as well as non-orthogonal expansions are efficiently imple-
mented. For orthogonal expansions, a fast algorithm based on 
the Sherman–Morrison–Woodbury formula is implemented 
which leads to a modest increase in computing time for deter-
minant expansions involving even many thousands of terms.

13.3. Selected CI and CIPSI wavefunction interface

As discussed previously, a direct path towards improving 
the accuracy of a QMC calculation is through a better trial 

wavefunction. One approach is to use selected CI methods 
such as CIPSI (configuration interaction using a perturbative 
selection done iteratively), or the recently developed adaptive 
sampling CI (ASCI) [99] and heat bath CI (HBCI) [100]. The 
principle behind selected CI methods was first published in 
1955 by Nesbet [97]. The first calculations on atoms were per-
formed by Diner, Malrieu and Claverie [110] in 1967. Many 
advances have since been made with selected CI techniques, 
and it has been applied widely to atomic, molecular and peri-
odic systems [111–118]. The method is based on an iterative 
process during which a wavefunction is improved at each step. 
During each iteration, the current wavefunction is used in con-
junction with the Hamiltonian to find important contributions 
that will be added to the wavefunction in the next iteration. In 
most selected CI approaches, the importance of a contrib ution 
is determined from a many body perturbation theory estimate. 
A full description of CIPSI, its algorithms, and results on 
various systems can be found in [98, 119, 120]. A descrip-
tion of new improvements to selected CI techniques that have 
been demonstrated with ASCI and HBCI can be found in [99, 
100]. The CIPSI method [98, 119–121] is implemented in the 
Quantum Package (QP) code [59] developed by the Caffarel 
group. QMCPACK does not implement CIPSI, but is able to use 
output from the QP code via tight integration.

In the following we use the C2O2H3N molecule, figure 5, 
to illustrate the use of CIPSI to obtain an improved trial wave-
function. The C2O2H3N molecule is part of the cycloreversion 
of heterocyclic rings database [122], for which the geom-
etry was optimized with DFT using the B3LYP function in 
a 6–31G basis set. Orbitals are represented within the aug-
ccpVTZ basis set. The energetics of this molecule are known 
to have a strong dependence on the choice of functional in 
DFT simulations [122]. Diagnostics based on coupled cluster 
theory (CC) with single, double, and peturbative triple exci-
tations (CCSD(T)) [123] suggest a multireference character 
[124], a known problem for these techniques [125]. The multi-
reference capability of DMC-CIPSI makes it an ideal tool for 
treating difficult systems with large static correlations.

The FCI space for C2O2H3N in aug-ccpVTZ is approxi-
mately 1088 determinants. Fortunately, using all of these 
determinants is not necessary to converge a QMC calcul ation 
to chemical accuracy. We truncate determinants based on their 
magnitudes with a user defined threshold ε [119], which allows 

Figure 5. The C2O2H3N molecule. The colors red, gray, blue 
and white correspond to oxygen, carbon, nitrogen, and hydrogen 
respectively. The geometry is from the heterocyclic rings database 
[122].
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the wavefunction to be evaluated in QMCPACK with a cost 
growing as 

√
Ndet , where Ndet is the number of determinants. 

Truncation values of 10−3, 10−4, 10−5 and 10−6 result in wave-
functions of 239, 44 539, 541 380 and 908 128 determinants, 
respectively. For each truncated wavefunction we optimize 
one, two and three-body Jastrow factors with VMC. To isolate 
the improvement of the nodal surface when adding determi-
nants from CIPSI, the coefficients of the determinants were 
not optimized, although this could result in a further improve-
ment in the wavefunctions. DMC results are extrapolated to 
a zero time-step using time-steps of τ = 0.001, 0.0008 and 
0.0005.

DMC results in table 1 show that the DMC results are conv-
erged close to 0.001 Ha, or better than chemical accuracy of 
1 kcal mol−1, by around 500 000 determiants. Figure 6 shows 
the energy as a function of different single-determinant trial 
wavefunctions as well as multideterminant wavefunctions 
generated with CIPSI. The latter show a systematic improve-
ment of the nodal surface as a function of the number of deter-
minants. However, it is also interesting to note that in this case 
the single determinant B3LYP results are quite accurate, high-
lighting the importance of orbital selection and optimization 
to improve efficiency [126].

14. Utilities

14.1. Averaging quantities in the MC data

QMCPACK includes the qmca Python-based tool to average 
quantities in the output files and aid in performing statistical 

analysis. Given the name of an output file, qmca will compute 
the average of each quantity in the file. Results of separate 
simulations can also be aggregated, such as for different twists 
(twist averaging), multiple steps (autocorrelation analysis) or 
multiple Jastrow parameters (Jastrow optimization).

In addition to all the quantities computed by QMCPACK, 
qmca computes the data variance and efficiency. qmca also 
allows visualizing the evolution of MC quantities over the 
course of the simulation by a trace offering a quick picture 
of whether the random walk had expected behavior as in 
example figure 7.

14.2. Wavefunction converters

An important step before running a QMC calculation is to 
obtain the trial wavefunction from another electronic struc-
ture or quantum chemical code and convert it into a format 
readable by QMCPACK. In addition to the large set of con-
verters available through Nexus, QMCPACK comes with two 
converters upon compilation. Connections to other codes will 
be developed on request.

convert4qmc: When compiling QMCPACK, an extra binary 
called convert4qmc is also created. convert4qmc manages 
gaussian trial wavefunctions from codes such as GAMESS 
[127], VSVB [128] or quantum package [59]. convert4qmc 
handles the conversion of single determinant, multidetermi-
nants (CASSCF, CI, CIPSI), numerical and Gaussian basis 
sets. The output file generated can be either in an XML or 
HDF5 format. convert4qmc allows the user to add mul-
tiple option to the wavefunction such as a Jastrow function 

Table 1. Energies in Hartree of C2O2H3N as a function of the number of determinants Ndet in the trial wavefunction obtained using 
CIPSI(E), CIPSI(E  +  PT2) and DMC. CIPSI(E) is the variational energy, while CIPSI(E  +  PT2) includes perturbative corrections.

Ndet CIPSI(E) CIPSI(E  +  PT2) DMC

1 −281.6729 −283.0063 −283.070(1)
239 −281.7423 −282.9063 −283.073(1)
44 539 −282.0802 −282.7339 −283.078(1)
541 380 −282.2951 −282.6772 −283.088(1)
908 128 −282.4029 −282.6775 −283.089(1)

-283.095

-283.090

-283.085

-283.080

-283.075

-283.070

-283.065

PBE PBE0 B3LYP Hartree
Fock

CIPSI
239

CIPSI
44539

CIPSI
541380

CIPSI
908128

D
M

C
 E

ne
rg

y 
(H

a)

Source of Trial Wavefunction

Figure 6. DMC energy of C2O2H3N using different trial wavefunctions. Using the aug-ccpVTZ basis, wavefunctions are generated 
from Hartree–Fock, PBE, and hybrid functionals PBE0 and B3LYP. Multideterminant CIPSI trial wavefunctions contain up to 908 128 
determinants, as indicated. The dashed line is a guide to the eye and indicates the systematic improvement of the CIPSI wavefunctions.

J. Phys.: Condens. Matter 30 (2018) 195901



J Kim et al

19

(two-body, three-body or Pade), cusp conditions, or limit the 
number of determinants to include.

pw2qmcpack: When using a plane-wave trial wavefunction 
from the PWSCF code in the QE suite [54, 55], pw2qmcpack.x 
is used. Source code patches are included with QMCPACK to 
produce the pw2qmcpack.x binary for specific QE versions, 
necessary to collect and write the wavefunction in the correct 
format for QMCPACK.

15. Workflow automation using Nexus

Completing the research project path from project conception 
to polished results requires a great amount of computational 
and researcher effort. Much of the effort stems from the fact 
that obtaining even single, non-production energies from 
QMC is a multi-stage process requiring orbital generation 
(e.g. with a DFT code), orbital file format conversion, Jastrow 
optimization via VMC, subsequent DMC projection, and later 
analysis. This process must usually be repeated many times 
to ensure convergence of the results with respect to system 
size, k-point mesh, B-spline mesh, and DMC timestep, as 
well as for the different solids or molecules of interest. Often 
this entire process must be performed first in the validation of 
pseudopotentials (e.g. via atomic or dimer calculations). As a 
further complication, the appropriate computational environ-
ment—or host computer—can vary with the stage in the chain 
from small clusters for DFT work, mid-size machines for 
wavefunction optimization, and sometimes very large super-
computing resources for DMC or AFQMC. Simplifying the 
management of these processes is of key importance to mini-
mize the full time to solution for QMC.

Scientific workflow automation tools have been used with 
much success in the electronic structure community to reduce 

both the burden on the researcher and to reduce the propaga-
tion of human error with improved systematization. Packaged 
with QMCPACK is an automation tool, called Nexus [129], 
which has been tailored to the computational workflows of 
QMC. The system handles several steps in the simulation pro-
cess typically requiring human involvement such as atomic 
structure manipulation, input file and job submission script 
generation, batch job monitoring and error detection, selection 
of optimized wavefunctions, and post-processing of statistical 
data. Nexus also handles the flow of information between sim-
ulations in a workflow chain, such as passing on the relaxed 
atomic structure, orbital file information, and optimal Jastrow 
parameters to subsequent simulations that require them. The 
system is suitable for both exploratory and production QMC 
calculations spanning multiple machines, including those 
approaching a high-throughput style.

Nexus is written in Python following an object-oriented 
approach to allow extensibility to multiple simulation codes 
and host execution environments. Nexus currently has inter-
faces to QE [54, 55], GAMESS [56, 127], VASP [103, 104, 
130, 131], QMCPACK, and a number of associated post-pro-
cessing and file conversion tools. Nexus does not require 
access to the internet or to an installed database to run, instead 
operating only via the filesystem. Nexus is therefore suitable 
for the widest range of computer environments. Supported 
machine environments include standard Linux workstations 
as well as high performance computers. Explicit support 
exists for systems at the National Energy Research Scientific 
Computing Center, the Oak Ridge Leadership Computing 
Facility, the Argonne Leadership Computing Facility, Sandia 
National Laboratories high-performance computing resources, 
the NCSA, the Texas Advanced Computing Center, the Center 
for Computational Innovations at Rensselaer Polytechnic 
Institute, and the Leibniz Supercomputing Centre. Variations 
in the job submission and monitoring environments at each 
institution necessitate specific extensions to ensure operability 
across this wide range of resources.

Users interact with Nexus by writing short Python scripts 
that generally resemble input files. Use of such ‘input files’ 
allow the user to spend more time on project design rather 
than execution and naturally comprise both a record of calcul-
ations performed and a means to fully reproduce them. Nexus 
has been used extensively in summer schools on QMCPACK 
and recent research papers. An additional benefit of the work-
flows is the greatly improved ability to reproduce the calcul-
ations at a later date, and to speed up related research projects 
through reuse.

16. Examples

In the following we give examples of recent applications of 
QMCPACK to illustrate the insights achievable with the cur-
rently implemented QMC algorithms and to highlight use 
of specific features of the application. A molecular example, 
where the trial wavefunction is systematically converged 
using CIPSI is given in section 13.3.

Figure 7. Screenshot of qmca trace analysis. The solid black line 
connects the values of the local energy at each Monte Carlo block 
(labeled ‘samples’). The average value is marked with a horizontal, 
solid red line. One standard deviation above and below the average 
are marked with horizontal, dashed red lines. The trace of this run is 
largely centered around the average with no large-scale oscillations 
or major shifts, indicating a good quality Monte Carlo run.
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16.1. Black phosphorus

Black phosphorus (BP) has enormous potential for techno-
logical applications because it is layered like graphite and can 
be exfoliated to form a 2D material that is naturally a semi-
conductor. There are some technical complications in making 
devices due to effects such as the degradation of the material 
when exposed to air or water. Ab initio calculations can help 
understand such processes and act as a laboratory in which 
to test mitigation strategies. However, the interaction between 
the BP layers was thought to be dispersive in nature. Non-
covalent interactions are a classically difficult case to treat 
with density functional based approaches, while, QMC has 
been shown to perform as well as the most accurate quantum 
chemical methods while also being applicable to extended 
and larger systems [132–134]. We employed QMCPACK to 
calculate the interaction between BP layers as well as the bulk 
material [135]. We found that in one particular arrangement 
the interaction between the layers was very well reproduced 
by one van der Waals (vdW)-corrected DFT functional, but 
as soon as the stacking between the layers was changed, the 
functional’s performance degraded.

In order to understand this phenomenon, we looked at 
the change in the charge density induced by the presence of 
nearby layers of BP. Classically, one might expect very little 
change in the charge density due to a vdW interaction, and this 
property is rigorously upheld by various vdW-corrected DFT 
functionals. However, we found a large charge reorganization 
caused by the presence of nearby BP layers and of a character 
that was different than that predicted by DFT.

This study took advantage of QMCPACK’s ability to handle 
mixed boundary conditions section 9. For BP monolayers and 
bilayers, we used periodic boundary conditions parallel to the 
layers, but open boundary conditions perpendicular to them. 
Also, we found the interaction energies were very sensitive 
to finite size effects, and the ability to perform calculation 
on many different supercells of the material was crucial to 
determine their exact form. The B-spline representation was 
used for the orbitals in the trial wavefunctions section 6.2.1. 
Finally, the ability of the code to evaluate the charge density 
from the calculation was crucial.

16.2. Bilayer α-graphyne

Carbon can form two-dimensional sheets of sp–sp2-hybrid-
ized atoms, α-graphyne. Its existence was predicted three 
decades ago [136] and has recently received a great deal of 
attention because of its intriguing potential as a new Dirac 
material [137–139]. Among various available forms of a 
graphyne-based structures, a bilayer α-graphyne consisting of 
two stacked two-dimensional hexagonal lattices can be ener-
getically stabilized in two different stacking modes (AB and 
Ab mode) out of a total of six available modes; note that the 
α-graphyne hexagons are much larger than those of graphene. 
While an AB mode has been predicted to exhibit electronic 
properties similar to those of an AB bilayer of graphene, 

Ab-stacked graphyne is expected to possess split Dirac cones 
at the Fermi level, and its gaps can be opened with and applied 
electric field normal to the surface [140]. Theoretical predic-
tions of these electronic properties of bilayer graphynes were 
made by using first-principle DFT methods [140]. However, 
DFT studies failed to suggest which of the AB and Ab 
stacking mode is the most energetically stable one because 
of the approximate description of vdW forces within the non-
interacting Kohn–Sham scheme. As seen in table 2, computed 
interlayer distances and binding energies obtained from DFT 
calculations are strongly scattered depending on which spe-
cific exchange-correlation functional was used.

In order to establish which stacking mode is the most stable 
one, DMC calculations, that include without any approx-
imations the long-range vdW interactions, were performed 
to compute the equilibrium interlayer distance and binding 
energy for Ab and AB bilayer graphyne [141]. DMC equi-
librium binding energy for the AB stacking mode (23.2(2) 
meV/atom) is estimated to be slightly larger than that for 
Ab stacking mode (22.3(3) meV/atom), which suggests that 
the AB-stacked bilayer is energetically favored over the Ab 
stacking mode. In comparing the DMC results with results 
from vdW-corrected DFT functionals, including the pairwise 
correction of Grimme (DFT-D2) [142, 143], self-consistent 
non-local vdW functional (vdW-DF) [144], and simplified 
non-local vdW-correction (rVV10) [145], it was found that 
those significantly underestimate the interlayer binding ener-
gies for both stacking modes (see figure 8).

It is interesting to find which vdW-corrected DFT functional 
most accurately describe the weak interlayer vdW  interaction 
in bilayer α-graphynes by comparing the DFT results to the 
DMC ones. As table 2 shows, there is no vdW-corrected DFT 
functional that achieves good accuracy for both interlayer 
distance and binding energy. However, the rVV10 functional 
produces almost identical equilibrium interlayer distances as 
DMC, and the vdW-DF results for interlayer binding energies 
and ∆EAB−Ab are the closest ones to the DMC results for both 
stacking modes. Therefore, one may conclude that rVV10 can 
provide well-optimized vdW geometries for low-dimensional 
carbon allotropes, while vdW-DF gives the best vdW ener-
getics among the various vdW-corrected DFT functionals 
investigated here.

Table 2. Equilibrium interlayer distance R0 (Å) and binding 
energies Eb (meV/atom) for an Ab and AB bilayer α-graphyne 
using DMC and various vdW-corrected DFT functionals [141]. 
∆EAB−Ab indicates the binding energy difference between AB and 
Ab α-graphyne.

Method

α-graphyne(AB) α-graphyne(Ab)

∆EAB−AbR0 Eb R0 Eb

DFT-D2 3.25 13.4 3.37 13.6 −0.2
vdW-DF 3.47 19.8 3.64 18.5 1.3
rVV10 3.27 17.9 3.41 17.8 0.1
DMC 3.24(1) 23.2(2) 3.43(2) 22.3(3) 0.9(4)
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16.3. Titanium dioxide (TiO2)

The row 3 and row 4 transition metals are extremely useful 
elements for a number of applications, ranging from magnetic 
applications to solar cells and catalysis. The reason for their 
versatility is the partially filled d-shell, which gives rise to a 
number of oxidation and spin states. The 3d electronic states 
are also rather localized and give rise to relatively strong elec-
tronic correlations, especially in the transition metal oxides, 
such as NiO and TiO2. This has as a consequence that standard 
computational approaches using density functional theory 
within the local density approximation (LDA) or the general-
ized gradient approximation (GGA) are inadequate and fre-
quently give incorrect results.

TiO2 occurs in a variety of polymorphs. Three of those 
occur naturally: rutile, anatase and brookite. Rutile is the 
most abundant one and is used as a white pigment as well 
as an opacifier and an ultraviolet radiation absorber, while 
anatase is the most photocatalytically active polymorph 
[146, 147].

In spite of the prevalence and many applications of TiO2, 
it is very difficult to determine which of the polymorphs is 
the most stable one. Experimental studies have indicated that 
rutile is the most stable structure, and anatase and brookite 
are metastable. However, the enthalpy differences between the 
polymorphs are very small, of the order of 1 mHa per formula 
unit, making precise determinations very difficult [148–155].

Figure 8. Interlayer binding energy for (a) AB, and (b) Ab stacking mode of a bilayer α-graphyne using various DFT XC functionals and 
DMC as function of interlayer distance R. The dotted lines indicate a Morse function fit. Reprinted with permission from [141]. Copyright 
2017 American Chemical Society.
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Figure 9. The Helmholtz free energy of rutile, anatase and brookite as a function of temperature. All the values are shifted by the 
calculated Helmholtz free energy of anatase at 0 K. The energy differences between brookite and rutile at 0–400 K, and between anatase and 
rutile at 450–850 K are provided in the insets (a) and (b). The energy of brookite is always larger than that of the other two solids, while the 
energy of rutile becomes lower than that of anatase at 650  ±  150 K. The error bars indicate the statistical uncertainty due to the QMC data 
used for the 0 K energy differences. Reproduced from [93]. © IOP Publishing Ltd. All rights reserved.
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Electronic structure calculations using a broad range of 
local and gradient corrected functionals give anatase as the 
lowest-energy polymorph, and thereafter brookite and rutile 
[156, 157], in supposed disagreement with experiments. 
DFT  +  U can give the apparent correct ordering of the poly-
morphs for a sufficiently large U value [158, 159]. Hybrid 
functionals can also give the correct energetic ordering of 
the polymorphs, but only using very large fractions of exact 
exchange [159].

In two recent studies [93, 160], diffusion Monte Carlo 
calculations were used to examine TiO2 polymorphs with 
the goal of determining the energetic ordering at zero and 
finite temperatures. Both studies gave the result that anatase 
is the most stable polymorph at 0 K, with very small energy 
differences between rutile and brookite. Finite-temperature 
Helmholtz free energies were then calculated by including 
phonon contributions based on DFT phonon calculations. The 
results in both studies were very similar: the finite-temperature 
contributions from lattice vibrations drove the free energy of 
the rutile polymorph to be the smallest at temperatures above 
approximately 650 K (see figure  9). These two studies may 
finally resolve the question of the most stable polymorphs of 
TiO2: at 0 K, anatase is the most stable one, while lattice vibra-
tions drive a transition from anatase to rutile at about 650 K.

16.4. The Magnéli phase Ti4O7

Because of its many oxidation states, titanium can form 
a variety of stoichiometrically different oxides. One par-
ticular set are the Magnéli phases with the generic formula 
Ti2nO(2n−1). These form ordered crystals with diminishing 
band gaps with increasing n. In particular, Ti4O7 forms a 
magnetic semiconductor at temperatures below 120 K [161, 
162]. DFT finds multiple low energy states, but the ordering 
depends on the functional used.

DMC calculations [91] found the same energetic ordering 
of the lowest three states as the DFT calculations by Zhong 
et  al [163], but with larger energy separations. A detailed 

examination of the spin densities and local moments on the 
Ti4+ ions showed that the DFT methods actually gave very 
good representations of the total moments. However, the 
orbital alignments were different in DMC, especially in the 
FM state. This certainly will give rise to different energy dif-
ferences compared to DFT as the energy differences between 
the states can rather accurately be attributed to Heisenberg 
exchange between the magnetic Ti ions, which will differ with 
the different orbital alignments.

16.5. Vanadium dioxide (VO2)

VO2 has a rich phase diagram which can be exploited in novel 
device applications. At ambient pressure, the unstrained VO2 
undergoes a metal to insulator transition (MIT) at Tc ≈ 341 
K from the low temperature monoclinic M1 phase to the high 
temperature rutile (R) phase [164–166]. This phase transition 
has been studied rather extensively, in part due to the on-going 
debate on the driving mechanism of this MIT. The challenge 
in describing this material is often related to the representa-
tion of electron correlations in this strongly correlated elec-
tron material [167–173]. Commonly, experimental studies are 
accompanied with density functional theory (DFT) calcul-
ations for better understanding. Additionally, DFT has been 
used in isolation to provide insight into the mechanism of the 
MIT [174–177]. However, the failings of DFT in this context 
are also well known [178–180]. If functional development led 
to systematic improvement [181], this should be measurable 
in both the total energy and the electron density; the two prop-
erties that the exact functional must perfectly reproduce.

Recent QMC calculations of VO2 were used as a reference 
in assessing various DFT formulations [182]. Supercells of 
48 atoms were used to model the antiferromagnetic ground 
state of the M1 and R phases, and a 3 × 3 × 3 grid was used 
in twist-averaging. The QMC calculations used LDA  +  U 
orbitals for the nodes, where the optimized U-value of 3.5 eV 
was obtained from DMC as the value that minimized the vari-
ational DMC energy.

Figure 10. Radial distribution function of absolute total density difference from extrapolated estimator around V atom for various 
theoretical methods using RRKJ pseudopotentials: (a) M1 phase, and (b) R phase. As a function of increasing U value the LDA  +  U 
density tends to an improved accuracy, i.e. as U is increased LDA  +  U curves get closer to zero. Reprinted figure with permission from 
[182], Copyright 2017 by the American Physical Society.
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In general, it was observed that the best description of ener-
getics between the structural phases did not correspond to the 
best accuracy in the charge density. An accurate spin density 
was found to lead to a correct energetic ordering of the dif-
ferent magnetic states. However, local, semilocal, and meta-
GGA functionals tend to erroneously favor demagnetization 
of the vanadium sites, which can be reconciled in terms of 
the self-interaction error. The metrics used also revealed the 
limitations in the description of correlated 3d-orbital physics 
present in currently available functionals. This is evident, e.g. 
in the density metrics shown in figure 10, where spatial vari-
ations in the electron density with respect to DMC reference 
are shown; the extrapolated estimator is used as the DMC 
reference.

16.6. NiO and potassium-doped NiO

Nickel oxide is the poster-child for correlated transition 
metal oxides. It has a simple rocksalt structure and is at low 
temper atures a Type II antiferromagnetic insulator. Not only 
is NiO interesting as a prototypical correlated transition metal 
oxide, but it is typically a p-type semiconductor, one of a very 
small number of p-type oxides, because as-deposited NiO 
typically has a Ni deficiency. Stoichiometric NiO can also be 
p-doped with suitable monovalent elements, e.g. with Li or 
K. This brings the basic questions of what are the energetics 
of vacancies or substitutional dopants in NiO, and how do 
their descriptions in DFT-based calculations differ from those 
based on QMC? 

DMC calculations [183] were performed on 64-atom 
supercells with a single substitutional K dopant or Ni or O 
vacancies. DMC results for ground state properties were in 
very good agreement with experiments, compared to the DFT 
results (see table 3). There was also a large difference in defect 

creation energies, with DFT energies underestimating them 
table 4. The optical gaps were also underestimated by DFT, as 
expected. DMC calculations of the optical gap were larger, in 
fact much larger than experimental values. Calculations of the 
gap using a 128-atom supercell reduced the gap, but the vari-
ance was large enough for this size cell that the reduction of 
the gap for the larger supercell was not statistically significant. 
In any case, the gap calculations indicate that finite-size cor-
rections can be significant in DMC gap calculations and also 
point to the need for improved excited state methodologies 
in QMC calculations of solids, where the errors are currently 
larger than for ground states.

16.7. Pseudopotential development and testing

Testing pseudopotentials is an important part of QMC due 
to (i) the historic challenge of developing accurate pseudo-
potentials for many-body methods such as QMC and his-
torical reuse of DFT or Hartree–Fock-derived potentials, and 
(ii) the importance of checking any biases unique to QMC 
such as the T-moves and locality approximations in DMC. 
Comparing atomic properties such as ionization potentials, 
and dimer properties such as bond lengths and binding 
energies obtained by DMC with experimental or quantum 
chemical results, provides a robust, inexpensive, and trans-
ferable test of pseudopotential quality. Recently, QMCPACK 
and Nexus [129] were used jointly to validate a collection 
of newly developed pseudopotentials for the early-row trans-
ition metals (Sc–Zn) [190].

DMC calculations were performed for five atomic charge 
states (ranging from neutral to 4+) and at nine transition 
metal–oxygen dimer bond lengths for each species. Orbitals 
were generated with QE using the experimental spin multi-
plicity within LDA [5, 191] or HSE [192, 193] for atoms and 
LDA for dimers. Two-body Jastrow functions were optimized 
at each atomic charge state and at the equilibrium geometry 
for dimers. Subsequent DMC calculations were performed 
with both T-moves and the locality approximation to assess 
the affect of pseudopotential localization errors. This large 
number of calculations is best handled using workflow soft-
ware such as Nexus.

The resulting DMC atomic ionization potentials and 
dimer bond lengths, binding energies and vibration fre-
quencies were compared with prior DMC results using 
Gaussian-based Hartree–Fock [194–196] pseudopotentials, 
all electron quantum chemistry results using MRCI [197, 
198] and CCSD(T) [199–201] approaches, and experiment. 
On essential all measures, the various theoretical approaches 
performed similarly well compared with experiment. The 
current pseudopotential DMC results were within 0.2 eV of 
experiment on average for atomic ionization potentials and 
dimer binding energies, with the T-moves and locality approx-
imation generally agreeing to 0.05 eV for these energy differ-
ences. Equilibrium bond lengths were found to be within 0.5% 
of the experimental values, while the more sensitive vibration 
frequencies agreed to around 3%. This work as well as sub-
sequent studies have verified the quality of the new potentials 

Table 3. Values of lattice constant (a), bulk modulus (B0), and 
cohesive energy (Ecoh) for AFM-II type NiO obtained from a Vinet 
fit of the equation of state computed using GGA  +  U and DMC at 
U  =  Uopt and a 16-atom type II AFM NiO supercell.

Method a (Å) B0 (GPa) Ecoh (eV/f.u.)

GGA  +  U 4.234 192 8.54
DMC 4.161(7) 218(14) 9.54(5)
Experimenta 4.17 145–206 9.5

a [184].

Table 4. DMC formation energies of a K dopant (Ef) NiO under 
O-rich condition, and optical gap (Eg) for NiO and K-doped NiO in 
a 64-atom supercell [183]. Energies are in eV.

Method Ef(K) Eg (NiO) Eg (KNiO)

GGA 1.9 1.4 0.7
GGA  +  U 0.6 3.6 2.9
DMC 1.3(3) 5.8(3) 4.8(4)

5.0(7)a

Exp. — 4.323 3.7–3.93

a Optical gap calculated in a 128 atoms supercell.
b [185–188].
c [189].
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for QMC studies of transition metal containing systems, but 
further improvements are desirable section 17.1.

17. Future extensions and challenges

17.1. Pseudopotentials

The atomic core energies scale quadratically with the nuclear 
charge, Z, while the valence energies stay essentially constant 
across all chemical elements. The energy fluctuations from the 
core therefore dominate any QMC calculation and, indeed, the 
overall cost is ∝ Za with a between 5.5 and 6.5 [202, 203]. It 
is therefore highly desirable to construct an effective, valence-
only Hamiltonian with the atomic cores removed. In fact, a 
related problem is encountered also in one-particle calcul-
ations with plane-waves. For that matter, even in many-body 
calculations with heavy atoms fully correlating the core(s) 
would eventually dominate the calculations regardless of the 
employed method.

Pseudopotentials (PPs) and the closely related effec-
tive core potentials (ECPs) have been used in condensed 
matter calculations as well as in basis set quantum chemical 
calcul ations for several decades [1]. At the very basic level, 
the atomic cores and corresponding degrees of freedom are 
replaced by PPs/ECPs operators that mimic the action of 
the core states on the valence electrons. Traditional PP/ECP 
constructions are based on one-particle solutions of the atom 
and typically involve norm conservation/shape consistency so 
that the pseudo-orbitals match the true original all-electron 
orbitals outside some appropriate core radius. Many advances 
for ECPs/PPs have been proposed that generalize, make more 
efficient, improve or more accurately reproduce the true 
atomic properties, e.g. [204–207]. For QMC calcul ations, 
one improvement that has been used to improve the transfer-
ability has been based on fitting Hartree–Fock or Dirac–Fock 
energy differences for a set of atomic and ionic excitations. 
Furthermore, many-body constructions have been suggested 
by means of reproducing the (correlated) one-particle den-
sity matrices beyond a certain radius or by improving upon 
DFT solution for a given atom using many-body perturbation 
theory.

Despite all these elaborate and sophisticated efforts, at pre-
sent, PPs remain a very laborious part of QMC studies. The 
main reason is that QMC often reaches accuracy beyond and 
sometimes well beyond the accuracy of traditional and even 
currently most advanced PP/ECP constructions. Additional 
complications come from dealing with the non-locality in the 
QMC framework that introduces further complications and 
demands on quality of the trial wavefunctions. As a result, PP/
ECP for every element has to be painstakingly retested and 
benchmarked anew and if the inaccuracies sufficiently bias the 
valence properties of interest, one has to go back to square 
one and construct a more accurate PP/ECP. Furthermore, tech-
niques in DFT that use solid state results to improve transfer-
ability, e.g. [208], are not practical in QMC because of the 

computational cost of the large supercells required to conv-
erge finite size errors.

To overcome these highly technical but important barriers 
it is desirable to develop a new generation of PPs/ECPs based 
on correlated constructions from the outset, provide high acc-
uracy that would not limit the subsequent QMC results, and 
also be efficiently used in QMC. In addition, one would like to 
have flexibility in choosing the core-valence partitioning and 
transferability not only at ambient (equilibrium) conditions 
but also at high pressures, non-equilibrium conformations and 
other broader set of conditions.

The goal is therefore not only to reproduce the proper-
ties of the atom within one-particle theory and then hope for 
best in many-body calculation. Our effort would be focused 
on reproducing the true many-body properties of the orig-
inal system(s), i.e. atom(s), in a variety of settings. For this 
purpose, we plan to derive new generation of PPs/ECPs 
that would be based on a number of new criteria targeted to 
uphold its accuracy and fidelity to the true original many-body 
Hamiltonian. In particular,

 (i) we plan to construct an atomic ECP operator that will 
match a subset of the many-body spectrum as close as 
possible to the original atomic Hamiltonian. This will 
involve a set of states that have the largest weights in 
molecular, surface, solid or other chemical settings; 

 (ii) include more options for multiple core-valence parti-
tioning whenever appropriate; 

 (iii) express PPs/ECPs in a simple representations/forms 
that enable their use with multiple methods ranging 
from traditional DFT and plane wave-based packages to 
many-body approaches based on stochastic and explicit 
expansions in basis set methods; 

 (iv) try to capture all of the relevant physics that is feasible 
at the current state-of-the-art, e.g. impact of correlated 
cores together with correlated valence, describe relativity 
with the best available account of correlation, explicit 
treatment of spin–orbit effects, etc.

Clearly this is an ambitious plan that will require significant 
effort and time, and as such it is almost a never ending task 
(since it is almost always possible to slightly improve upon 
the previous version). Nevertheless, we believe that equally 
important is the adoption of new standards: many-body 
instead of one-particle framework, testing and benchmarking 
by a multitude of methods that cross-validate the quality of the 
PPs/ECPs, and systematic documentation and improvements 
so that PPs/ECPs can be used without endless retesting and 
with true many-body quality of the corresponding operators 
shown upfront. To-date, explicitly correlated ECPs have been 
developed for a selection of first and second row elements 
[209], with future developments for the rest of the periodic 
table underway.

These developments will be collected on a new community 
website, http://pseudopotentiallibrary.org, that will be used for 
storing the data and will also include tests and benchmarks. 
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The PPs/ECPs will also be available as a part of the QMCPACK 
package.

17.2. Spin–orbit interaction

Until now, almost all electronic structure QMC calculations 
have been carried out with spins of individual electrons being 
fixed, up or down. This is easy to justify for Hamiltonians 
without explicit spin operators. Such Hamiltonians commute 
with any spin, so that up or down orientations are conserved 
and the solution of the many-body problem is therefore con-
fined to the space of spatial coordinates, and spin states are 
imposed as a symmetry (e.g. a triplet state). Many interesting 
phenomena involve the interaction between the spin and spa-
tial degrees of freedom, such as the spin–orbit interaction. 
Recently, dynamic spins as quantum variables has been real-
ized in DMC in order to treat such interactions directly, see 
[210] and [211]. We plan to implement dynamic spins into 
QMCPACK, and a brief outline of the necessary changes are 
outlined below.

In order to implement spin-dependent operators, spin vari-
ables need to be introduced as dynamic quantum variables. 
This requires a change from one-particle orbitals to one-par-
ticle spinors

χn(ri, si) = αϕ↑
n(ri)χ

↑(si) + βϕ↓
n(ri)χ

↓(si) 
(67)

where the spatial orbitals can be different for the spin up 
and down channels. The spin functions χ↑(↓) take on dis-
crete values in the minimal spin representation, namely 
χ↑(1/2) = χ↓(−1/2) = 1 and χ↑(−1/2) = χ↓(1/2) = 0. 
The simplest antisymmetric wavefunction is then a single deter-
minant of the one-particle spinors, rather than the product of 
spin-up and spin-down determinants. In order to increase 
the efficiency of sampling the spin degrees of freedom, the 
spinors will be represented using a continuous (overcomplete) 
representation

χ↑(↓)(si) = e±isi (68)

where si ∈ (0, 2π). These explicitly varying spins result in 
complex wavefunctions, for which we must abandon the 
fixed-node approximation that applies to real-valued wave-
functions. By writing the many-body wavefunction in terms 
of an amplitude and phase Ψ = ρ exp [iΦ], the real part of the 
Schrödinger equation becomes

−∂ρ

∂τ
=

[
−1

2
∇2 + V +

1
2
|∇Φ|2 + WRe

]
ρ (69)

where WRe is Re
[
Ψ−1WΨ

]
 and W is any nonlocal operator 

such as a PP. Since we do not know the exact phase, we 
approximate it by the use of a trial phase using the fixed-phase 
approximation [71]. Since ρ is positive-definite, there is no 
nodal surface and the DMC algorithm is seemingly the same 
as for Bosonic ground states with an additional potential pro-
vided by the trial phase.

Sampling of the spin variables can be achieved by intro-
ducing a spin ‘kinetic energy’, namely

Tsi = − 1
2µs

[
∂2

∂s2
i
+ 1

]
 (70)

such that it annihilates an arbitrary spinor and does not con-
tribute to the total energy. However, the introduction of this 
operator modifies the DMC Green’s function to include a dif-
fusion and drift term for the spin variables S = (s1, s2, . . . , sN). 
The µs is a spin mass, which can be interpreted as a time step 
for the spin variable propagation.

Once the spins are treated as variables rather than static 
labels, spin-dependent Hamiltonians can be treated. For 
the spin–orbit integration, a generalization of the non-local 
operators used in QMC calculations is necessary. Relativistic 
quantum chemistry calculations utilize the semi-local form

Wi =
∑
�

�+1/2∑
j=−|�−1/2|

j∑
m=−j

W�j(ri)|�jmj〉〈�jmj| (71)

for fully relativistic PPs that include scalar-relativistic and 
spin–orbit effects [212]. Utilizing the spin representation 
introduced above, the contribution from the non-local PP 
is inherently complex. When evaluating the localization of 

the PP with the trial wavefunction Re
[
Ψ−1

T WΨT
]
, one will 

encounter terms such as 〈Ωs|�jm〉, where Ω is the solid-angle 
and s is the spin variable for an individual electron. These 
terms are given as

〈Ωs|�, j = �± 1/2, mj〉 = ±
√

�± m + 1/2
2�+ 1

Y�,m−1/2(Ω)eis

+

√
�∓ m + 1/2

2�+ 1
Y�,m+1/2(Ω)e−is.

 (72)
By summing over each electron and ion and taking the real 
part, one obtains the contribution to the local energy from 
the complex non-local PP in the locality approx imation. As 
is described in [211], a generalization to the Casula T-moves 
[36, 78] has been constructed for complex non-local opera-
tors such as the relativistic PPs above, and will also be 
included.

17.3. Adapting to trends in high performance computing

Predicting details about future high performance computing 
architectures is difficult, but some general trends can be 
observed that should motivate application design decisions in 
an effort of increasing forward portability. As Moore’s Law 
and Dennard scaling slow due to physical limitations, recent 
strategies for gaining performance have largely consisted of 
increasing the parallel capability of hardware. However, the 
time and power costs of moving data during program execu-
tion also limits the traditional increase in parallelism by 
scaling out commodity-type nodes and connecting them by 
a high performance interconnect. As a result, parallelism is 
being added both at the overall system level as before, and 
also within the processors by increasing thread count, and 
within the node by adding specialized compute accelerators 
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such as GPUs, FPGAs, etc. Besides increasingly complex 
compute hierarchies, memory is also becoming hierarchical 
and more complex, e.g. with the addition of non-volatile 
memory and various types of on-package high-bandwidth 
memories. Although the traditional memory structure already 
involved multi-level caches and system RAM, this complexity 
was almost entirely managed by the hardware controllers 
and compilers. However, as the memory hierarchy deepens, 
it could become necessary for the application developer to 
more actively manage its usage to realize desired performance 
increases. Adapting to these changes is very important for 
QMC because the high computational cost often results in 
the methods being run on the latest supercomputers with the 
newest architectures.

While QMC methods have considerable natural parallelism 
that makes maintaining parallel efficiency fairly straightfor-
ward on most traditional hardware, the real desire is to reduce 
the overall time to solution for any given problem of interest. 
This means that simply mapping more walkers to more avail-
able threads does not scale indefinitely for our purposes, and a 
multifaceted strategy is needed to leverage increasingly com-
plex modern computer architectures. The emergence of GPU-
based HPC architectures around half a decade ago indicated 
that maintaining high performance was no longer ‘business 
as usual’.

In order to take advantage of the massive increase in the 
number of lightweight threads that were offered by GPUs, the 
parallel strategy in QMCPACK was re-mapped from walker-
based parallelism to particle-based parallelism. However, as 
compute accelerators get more powerful with an increasing 
number of available threads, and more powerful threads have 
their own vectorization capabilities, additional parallelism 
must be exploited. For example, so that multiple threads 
can be assigned to a single particle within each walker when 
working on compute intensive operations such as the inverse 
matrix update and Jastrow function calculations. Meanwhile, 
the natural parallelism present in the Monte Carlo method 
cannot be abandoned, as it will always be desirable to use 
more walkers. For this piece of the strategy to continue to be 
viable, better protocols for equilibration are needed to ensure 
that the overall time to solution can continue to be reduced.

It is common for HPC application developers to strive for 
a forward portable design to minimize the effort required in 
adapting their code to new architectures. With the trend for 
increasing complexity and a variety of compute and memory 
architecture configurations, a flexible application design is as 
important as ever for attaining good ‘performance portabil-
ity’—the ability to run efficiently on significantly different 
architectures, e.g. conventional processors, GPUs, and poten-
tially even FPGAs.
QMCPACK is being actively developed to adopt to the 

changing computational landscape. In particular, to (i) run 
efficiently on systems with fewer ‘fat’ nodes with deeper 
heterogeneous compute capabilities as well as systems with 
a larger number of more homogeneous ‘thin’ nodes by sup-
porting multiple granularities of computation, (ii) accom-
modating multiple types of fine-grained multi-threading and 
vectorization to fully utilize the processors and compute 

accelerators, and (iii) make effective use of the increasingly 
complex memory hierarchy. To facilitate this task, simpli-
fied ‘miniapps’ have been developed for real space QMC 
and AFQMC. These are distributed via https://github.com/
QMCPACK. The miniapps encapsulate the main operations 
of each method while avoiding the full complexity of the 
main application and enabling use as testbeds for different 
programming models and middleware layers that help treat 
the above complexities. In the long term, we hope for a future 
C++ standard that provides a migration path to an effective 
and portable solution.

18. Summary

We have described the current capabilities of the open source 
and openly developed QMCPACK quantum Monte Carlo 
package. The methods implemented enable full many-body 
electronic structure calculations to be performed for a wide 
range of molecular to periodic condensed matter systems, 
including metals, and using either all-electrons or pseudo-
potentials in the Hamiltonian. By solving the Schrödinger 
equation using statistical methods, large and complex systems 
can be studied to unprecedented accuracy, including systems 
where other electronic structure methods have difficulty.
QMCPACK contains both real space and orbital space 

quantum Monte Carlo algorithms. Both classes of algorithm 
involve only limited and well-controlled approximations 
and can potentially be systematically converged to give near 
exact results. By virtue of the different approximations and 
conv ergence routes involved, these enable cross-validation 
between the methods and promise to significantly strengthen 
predictions where very different methodologies agree. The 
methods are well suited to today’s supercomputers and the 
architectural trends towards exascale computing. Both the 
parallel scalability and on-node numerical performance of 
QMCPACK are state of the art, minimizing time to scientific 
solution. Updates are planned to take full advantage of the 
trends in high-performance computing in a performance-port-
able manner. Due to the rapid development in the fundamental 
quantum Monte Carlo algorithms and methodology, we plan 
to continue to extend QMCPACK to incorporate the best new 
methods from the current authors as well as those developed 
or contributed by the wider quantum Monte Carlo community.
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