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Abstract

We consider two dependent random times T and U, that correspond to two suc-

cessive events. This setting is motivated by an application to insurance subscription,

where a potential dependence exists between a time before effectiveness of the con-

tract T, and a time U before its termination by the policyholder. The setting also

extends to various types of applications involving two duration variables with some

hierarchical link between the events. Indeed, since a contract can be terminated

only after it becomes effective, data are subject to a particular type of censoring,

where the variable U is systematically censored when the variable T is. In this

framework, a nonparametric conditional copula model is considered, in the spirit

of (Gijbels, Veraverbeke, & Omelka, 2011). The uniform consistency of the condi-

tional association parameter is obtained under conditions of dependence structure

and of censoring mechanism. A simulation study and a real data application show

the practical behavior of the method.
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1 Introduction

In this paper, we consider the estimation of a conditional copula function of a couple of

duration variables, in a framework where the two durations are observed successively. In

numerous practical situations, one can be interested in the occurrence of two events that

happen in a time succession. The example we have in mind comes from the study of

the termination of insurance contracts. From the subscription, the owner may have some

random delay T before the contract to be effective, while the termination of the contract

occurs at a time T +U, with U ≥ 0. Similar situations occur in biostatistics, where T can

be an infection time and U the time before the individual is cured (see for example (Wang

& Wells, 1998), and (Meira-Machado, Sestelo, & Gonçalves, 2016) for a detailed review of

the applications and techniques in this field). This paper aims to study the dependence

structure between two such times T and U, in presence of covariates X ∈ Rd that may

impact the joint distribution.

Copula theory is a quite popular way to deal with dependence, due to Sklar’s Theorem

(Sklar, 1959) which states that the joint distribution function F (t, u) = P(T ≤ t, U ≤ u)

of a bivariate vector (T, U) can be written as

F (t, u) = C(FT (t), FU(u)),

where FT (t) = P(T ≤ t), FU(u) = P(U ≤ u), and C is a copula function (that is a

distribution function over [0, 1]2 with uniform margins), this decomposition being unique

when the margins are continuous. Hence Sklar’s Theorem ensures a separation between

the marginal behaviors of T and U (defined by FT and FU), and the dependence structure,

entirely contained in the function C. Conditional copulas are required when one focus on

the influence of covariates X on this dependence structure (see e.g. (Gijbels et al., 2011),

(Veraverbeke, Gijbels, & Omelka, 2011), (Derumigny & Fermanian, 2017)).

When dealing with duration variables, a supplementary difficulty is caused by the

censoring phenomenon. In the situation we describe, a unique censoring variable C is

involved, representing the time before the end of the statistical study. Indeed, if C <

T +U, the policyholder did not stay under observation long enough to observe the whole

phenomenon we are interested in. Copulas under censoring have been studied, for instance

by (Lakhal-Chaieb, 2010), (Gribkova & Lopez, 2015) and (Geerdens, Acar, & Janssen,

2018). In this paper, we correct the effects of the censoring by using appropriate weights

that allow our conditional copula estimator to be asymptotically consistent.

The rest of the paper is organized as follows. In Section 2, we define the observations
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and the methodology to estimate conditional copulas under censoring. Then, the Section 3

is devoted to the presentation of asymptotic results while we investigate the finite sample

behavior of the procedure in a simulation study and a real data analysis, presented in

Section 4. Technical arguments are presented in the Appendix section.

2 Observations and Methodology

2.1 Model

We consider i.i.d. replications (Ti, Ui, Xi, Ci)1≤i≤n of a random vector (T, U,X,C) and we

aim to study the dependence structure between T ∈ R and U ∈ R. The random variable

X ∈ Rd is a vector of covariates that may have an impact on this dependence structure

(and also on the marginal distributions of T and U), and C ∈ R is a censoring variable.

The variables T and U are not always observed, due to the presence of the censoring.

Instead of (Ti, Ui), one observes
Yi = min(Ti, Ci),

Zi = min(Ui, Ci − Ti),
ηi = 1Ti≤Ci ,

γi = 1Ti+Ui≤Ci .

The covariates Xi are assumed to be fully observed (not subject to censoring). For the

realization of the censoring Ci, two cases exist. In the application we have in mind (see

Section 2.2 and Section 4.2), Ci is known for all observations. In a more general situation,

Ci may not be known. In this last case, the statistical methodology that we develop is a

little bit more delicate as we will see in the following.

The following identifiability assumption is required in order to estimate the distribu-

tion of (T, U,X) from the observations.

Assumption 1 Assume that C is independent from (T, U,X).

Let F (t, u|x) = P(T ≤ t, U ≤ u|X = x) be the conditional distribution function of

(T, U) given X = x, and FT (t|x) = P(T ≤ t|X = x) (resp. FU(u|x) = P(U ≤ u|X = x))

be the conditional distribution function of T (resp. U), where all distribution functions

are assumed to be continuous. We also define τT+U(x) = inf{z : P(Y + Z ≥ z|x) = 0}.
Clearly, the distribution of (T, U,X) can not be estimated (at least nonparametrically)
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for values of (t, u, x) such that t + u ≥ τT+U(x), since it is impossible to observe non-

censored events in this part of the distribution. Sklar’s Theorem ensures that F (t, u|x) =

C(x)(FT (t|x), FU(u|x)), where C(x) denotes the copula of the distribution of (T, U) condi-

tionally on X = x. In the following, we assume that the copula C(x) stays in the same

parametric copula family for all x, but with its association parameter allowed to depend

on x. This is summarized in Assumption 2 below.

Assumption 2 Let C = {Cθ : θ ∈ Θ}, with Θ a compact subset of Rk, be a parametric

family of copula functions. Assume that, for all x in the support of the random vector X,

there exists θ(x) ∈ Θ such that

C(x) = Cθ(x).

Our aim is to retrieve the function θ(x) from our observations.

2.2 Motivation of this model

Our method applies to a problem which arises in the field of insurance subscription. The

data we consider (described in Section 4.2.1) belongs to an insurance broker who wants to

have information about the quality of the underwriters who sell the insurance contracts.

A first indicator would be the volume of sales per underwriter, but a crucial issue is to

have insight in the quality of the contracts that have been subscribed. One element to

appreciate this quality is the time the consumer keeps his contract, before terminating it

and starting another contract with a different insurer. In our framework, the lifetime of

the contract is the variable U, that is the difference between the date of termination of

the contract and the date of effect. The date of effect of the policy is usually not the same

as the date of subscription. We denote by T the time between the date of subscription

and the date of effect.

It seems obvious that the two durations T and U should not be independent. The

knowledge of their dependence structure is a precious indicator to develop sales strategies

and to evaluate the turnover in an insurance portfolio. Additionally, many variables on the

customer are usually available, and these variables may have an impact on the dependence

structure. This motivates the use of conditional copulas to model the dependence between

T and U .
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2.3 Conditional copula estimation

Let M(x, θ) = E[log cθ(FT (T |X), FU(U |X))|X = x], where cθ(a, b) = ∂2
a,bCθ(a, b) denotes

the copula density associated with copula function Cθ. We have, by definition of θ(x),

θ(x) = arg max
θ∈Θ

M(x, θ).

To ensure identifiability of the model, we assume that for all x in the support of X, θ(x)

is the unique maximum of M(x, θ). The idea of our procedure is to estimate the function

M, and then to perform its maximization in order to estimate θ(x).

In an ideal situation, first consider that FT and FU are exactly known. If we had

observed the complete data (Ti, Ui, Xi)1≤i≤n, we could have estimated M(x, θ) thanks to

a Nadaraya-Watson estimator ((Watson, 1964) and (Nadaraya, 1964)) such as

n∑
i=1

wi,n(x) log cθ(FT (Ti|Xi), FU(Ui|Xi)),

where

wi,n(x) =
K
(
Xi−x
h

)∑n
j=1 K

(
Xj−x
h

) , (2.1)

and K is a kernel function (i.e. a positive and symmetric real valued function such that∫
K(u)du = 1). However, this is impossible in our case due to the presence of censoring.

If we consider nevertheless a function φ such that E[|φ(T, U,X)|] <∞ and φ(t, u, x) = 0

for t+ u ≥ τU+T (x), then under Assumption 1, elementary computations show that

E

[
δφ(Y, Z,X)

SC(Y + Z)

∣∣∣∣X] = E [φ(T, U,X)|X] , (2.2)

with SC(t) = P(C > t), and δ = ηγ.

As a consequence of equation (2.2), we see that if the function SC were known, the

function M(x, θ) could be estimated by the kernel estimator

n∑
i=1

wi,n(x)
δi log cθ(FT (Yi|Xi), FU(Zi|Xi))

SC(Yi + Zi)
,

with wi,n(x) as in (2.1). The kernel functionK that we consider in this article is assumed to

be a symmetric positive and bounded function, with K(u) = 0 for ‖u‖ ≥ 1,
∫
K(u)du = 1

and
∫
‖u‖2K(u)du <∞.

In practice, the function SC is not known. However, it can be estimated, at least in

the two situations that we mention in Section 2.1.
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• First case: Ci is observed for all individuals. In this situation, we can estimate

SC(t) with the empirical survival function, i.e.

Ŝ
(1)
C (t) =

1

n

n∑
i=1

1Ci>t. (2.3)

• Second case: Some Ci are unobserved due to the censoring. In this sec-

ond situation, the function SC can be estimated by a Kaplan-Meier estimator, see

(Kaplan & Meier, 1958). Put more precisely, consider{
Y ′i = min(Ci, Ti + Ui),

δ′i = 1Ci≤Ti+Ui .
(2.4)

In our framework, the variables (Y ′i , δ
′
i) are observed. Moreover, Ci is independent

from Ti + Ui from Assumption 1. As a consequence, the survival function SC can

be consistently estimated by

Ŝ
(2)
C (t) =

∏
Y ′i≤t

(
1− δ′i∑n

j=1 1Y ′j≥Y ′i

)
,

assuming that there are no ties among the (Y ′i )1≤i≤n.

Additionally, the margins FT and FU may not be known in practice. Several techniques

may be used to estimate them, as it will be discussed in Section 2.4. To state the results

in the most general form, we define Ai = FT (Yi|Xi) and Bi = FU(Zi|Xi), and consider

that we have at our disposal pseudo-observations (Âi, B̂i)1≤i≤n.

This leads to our final estimator of θ(x), that is

θ̂h(x) = arg max
θ∈Θ

Mn,h(x, θ), (2.5)

where

Mn,h(x, θ) =
1

nhd

n∑
i=1

Wi,nK

(
Xi − x
h

)
log cθ(Âi, B̂i)ŵi(νn), (2.6)

with Wi,n = δi/Ŝ
(j)
C (Yi+Zi) for j = 1, 2 depending on our ability to observe Ci or not, νn a

sequence tending to zero which will be defined later on (see Section 3.2), and introducing

a trimming function ŵi defined for a sequence ηn, as

ŵi(ηn) = 1min(Âi,B̂i,1−Âi,1−B̂i)≥ηn .
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The presence of the trimming is required to prevent the procedure from an erratic behav-

ior when the pseudo-observations are close to the border of the unit square. The weights

Wi,n may be seen as an approximation of Wi = δi/SC(Yi +Zi), which, according to (2.2),

would be the way we would correct the presence of the censoring if we knew exactly its dis-

tribution SC . Let us observe that Mn,h(x, θ) is an estimator of Mf (x, θ) = M(x, θ)fX(x),

where fX denotes the density of the random vector X ∈ Rd. Maximizing M or Mf with

respect to θ is of course equivalent.

The practical performance of our nonparametric estimator θ̂h(x) depends on an ap-

propriate choice of the bandwidth h. In Section 4.2.2, we present a data-driven method

to select an appropriate h empirically.

2.4 Estimation of the margins

Sklar’s Theorem allows to separate the marginal distributions from the dependence struc-

ture. Therefore we do not wish to specify the way the margins are estimated since various

approaches may be used, possibly different from a margin to another. We will assume that

this estimation has been performed separately, in a preliminary step. A parametric or

semiparametric model can be put on the margins. If one only focuses on the dependence

structure, a nonparametric estimation of the margins can be performed, for example using

kernel estimation. In this case, one may use

F̂T (t|x) =
n∑
i=1

Wi,n

K
(
Xi−x
h′

)∑n
j=1 K

(
Xj−x
h′

)1Yi≤t, (2.7)

with a similar definition for F̂U (replacing Yi by Zi). Let us note that the bandwidth h′

can be different from the bandwidth used to estimate the copula parameter. Moreover,

different bandwidths may be used for each of the margins. The method of equation (2.7) is

the one that we use in the real data application of Section 4.2, whereas for the simulated

data (Section 4.1) we use a Kaplan-Meier estimator without kernel since the marginal

distributions are assumed to be independent of X.

The results that we propose in the following are valid under the condition that Âi =

F̂T (Yi|Xi) and B̂i = F̂U(Zi|Xi) are close to Ai = FT (Yi|Xi) and Bi = FU(Zi|Xi), but do

not impose a particular method to compute the pseudo-observations. The conditions that

we require (see Assumption 8) are valid for a large number of estimation techniques and

at least hold for the estimator (2.7).
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3 Uniform rate of convergence for θ̂h(x)

As usual in nonparametric estimation, the error θ̂h(x)−θ(x) can be decomposed into some

bias term, and a stochastic term that corresponds to the fluctuations of θ̂h(x) around its

central value. The most delicate convergence result to obtain is Theorem 3.2, which deals

with the stochastic term, while Theorem 3.1 only studies the deterministic term, that can

be handled by standard results in approximation theory.

3.1 Bias term

Let

θ∗h(x) = arg max
θ∈Θ

1

hd
E

[
K

(
X − x
h

)
log cθ(FT (T |X), FU(U |X))

]
.

The difference between θ∗h(x) and θ(x) represents the bias of the method, where the

empirical mean in Mn,h has been replaced by its limit value (we will show this convergence

in the Appendix section). The aim of this section is to determine the uniform rate of

convergence of this bias term on a set X , which is assumed to be compact and strictly

included in the support of the random vector X.

We use the notation c(a, b|x) := cθ(x)(a, b) to denote the the conditional copula density

given X = x. Also, let φ(a, b, θ) = log cθ(a, b), φ̇(a, b, θ) = ∇θ log cθ(a, b) and φ̈(a, b, θ) =

∇2
θ log cθ(a, b).

Assumptions 3 to 5 are required to obtain the convergence of the bias term. The first

two can be understood as regularity assumptions on the model when x varies.

Assumption 3 Assume that the function (a, b, θ) → φ(a, b, θ) is twice continuously dif-

ferentiable with respect to θ, and that for all θ ∈ Θ, x ∈ X ,

{|1 + φ(a, b, θ)|+ ‖φ̈(a, b, θ)‖}c(a, b|x) ≤ Λ1(a, b), (3.8)

with
∫

Λ1(a, b)dadb <∞.

Assumption 4 Assume that the function (a, b, x)→ c(a, b|x)fX(x) is twice continuously

differentiable with respect to x, and that for all θ ∈ Θ, x ∈ X ,

‖φ̇(a, b, θ)‖ · ‖∇2
x{c(a, b|x)fX(x)}‖ ≤ Λ2(a, b), (3.9)

with
∫

Λ2(a, b)dadb <∞.
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The next assumption is required to ensure that the maximization problem is locally

quadratically close to the true value θ(x).

Assumption 5 Assume that there exists some c0 > 0 such that, for all x ∈ X , we have

∀v ∈ Rd, 〈E[φ̈(FT (T |X), FU(U |X), θ(x))|X = x] · v, v〉 ≤ −c0‖v‖2 ≤ 0,

where 〈v, w〉 denotes the scalar product of two vectors v and w in Rd.

Moreover, assume that the density of X denoted by fX is such that fX(x) ≥ c0 for all

x ∈ X .

We now can state our result about the bias term.

Theorem 3.1 Under Assumptions 1 to 5,

sup
x∈X
‖θ∗h(x)− θ(x)‖ = O(h2).

This h2 rate is classical when dealing with kernel smoothing. This rate could of course

be improved by strengthening the regularity of the conditional copula function, and by

considering a higher order kernel (that is a function K such that
∫
ujK(u)du = 0 for all

j ≤ k, with k larger than 1).

The proof of Theorem 3.1 is dealt with in the Appendix section (see Section 6.1).

3.2 Stochastic term

This section presents the main theoretical result of the paper, which shows the uniform

convergence of the stochastic term. The convergence rate involves four terms as given in

Theorem 3.2 below; a traditional rate for kernel smoothing estimators (n−1/2h−d/2[log n]1/2),

and additional terms that may become preponderant if the estimation of the margins is

performed at a slow rate or if the copula density and its derivatives behave too wildly

close to the frontier of the unit square. We first begin with the assumptions required to

obtain the result.

Since θ̂h(x) can be seen as a conditional version of the semiparametric copula estimator

proposed by (Tsukahara, 2005) and (Genest, Ghoudi, & Rivest, 1995), the conditions

required to obtain the convergence of the stochastic term are basically the same as in

these two papers, with some modifications imposed by the use of smoothing and because

of the censoring.
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We remind that a function r : (0, 1) → (0,∞) is called u−shaped if r is symmetric

about 1/2 and decreasing on (0, 1/2]. For such a u−shaped function r, and for 0 < ζ < 1,

define

rζ(t) = r(ζt)10<t≤1/2 + r(1− ζ(1− t))11/2<t<1.

A u−shaped function is called a reproducing u−shaped function if it verifies that rζ ≤Mζr

for all ζ > 0 in a neighborhood of 0, with Mζ a finite constant. In the following we note

R the set of reproducing u−shaped functions.

Assumptions 6 and 7 are close to assumptions A.1 to A.5 present in (Tsukahara, 2005).

They ensure that the modulus of continuity of φ satisfies some integrability conditions,

and that the derivatives of φ are dominated by u−shaped functions in order to control

the explosion of these derivatives close to the border of the unit square. As shown in

(Tsukahara, 2005), these conditions are satisfied by a large number of copula families.

Due to the censoring, a term SC(T + U) appears at the denominator. A similar

assumption is present for example in (Gill, 1983), (Stute, 1995) or (Gribkova & Lopez,

2015). In case of heavy censoring, that is if SC decreases too fast, the integrability

conditions in Assumptions 6 and 7 may not hold. This is a classical issue in survival

analysis: in such a situation, the right-tails of the distributions of T and U are rarely

observed since the censoring variable tends to take small values. A solution is then to

restrain the study of the distribution of T and U conditionally on T +U ≤ τ, where τ is a

fixed bound, strictly included in the support of the variable T +U, though this introduces

an asymptotic bias.

Assumption 6 Assume that

| log cθ(a, b)− log cθ′(a, b)| ≤ R(a, b)‖θ − θ′‖,

and that, for some p > 2 and some θ0 ∈ Θ,

sup
x∈X

E

[
|log cθ0(FT (T |X), FU(U |X))|p + [R(FT (T |X), FU(U |X))]p

[SC(T + U)]p−1

∣∣∣X = x

]
<∞. (3.10)

Also assume that, for some p′ > 1,

sup
x∈X

E

[
|log cθ0(FT (T |X), FU(U |X))|p

′
+ [R(FT (T |X), FU(U |X))]p

′

SC(T + U)2p′−1

∣∣∣X = x

]
<∞. (3.11)

Finally, assume that

lim inf
n→∞

nh
d

1−2/p [log n]−1 > 0, (3.12)
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and that

lim inf
n→∞

nh2d > 0. (3.13)

Assumption 7 Assume that there exist functions rj and r̃j in R, j = 1, 2, such that

‖φ̇(a, b, θ)‖ ≤ r1(a)r2(b),

|∂aφ(a, b, θ)|+ ‖∂aφ̇(a, b, θ)‖ ≤ r̃1(a)r2(b),

|∂bφ(a, b, θ)|+ ‖∂bφ̇(a, b, θ)‖ ≤ r̃2(b)r1(a).

Assume further that for some p′′ > 1, we have

sup
x∈X

E

[(
r̃1(FT (T |X)p

′′
r2(FU(U |X)p

′′
+ r̃2(FU(U |X)p

′′
r1(FT (T |X)p

′′

SC(T + U)p′′−1

) ∣∣∣X = x

]
<∞.

The next assumption concerns the estimation of the margins. The results we provide

may hold for different strategies of estimation of the margins (nonparametric, semipara-

metric or parametric). We only require a rate of consistency for the margins, a comparison

of this rate with the speed νn, and the condition (3.14) below which involves the rate of

convergence of the margins and p′′.

Assumption 8 Assume that

sup
1≤i≤n

|Âi − Ai|+ |B̂i −Bi| = OP (εn),

with εn = o(νn), and

lim
β↘1

lim sup
n→∞

εnn
1/p′′−1/(2β) = 0, (3.14)

where p′′ is defined in Assumption 7.

We now can state the main result of this section, which is proven in Section 6.7.

Theorem 3.2 Under Assumptions 1 to 8, we have for any β > 1,

sup
x∈X
‖θ̂h(x)− θ∗h(x)‖ = OP (n−1/2h−d/2[log n]1/2 + ν1−1/p

n + εnn
max(1/p′′−1/(2β),0)

+ nmax(1/p′−1/(2β),0)−1/2).

The rate of convergence of the stochastic term can be decomposed in four parts. The

rate n−1/2h−d/2[log n]1/2 corresponds to the standard convergence rate for kernel estima-

tors when the margins and the censoring mechanism are known. The second term, ν
1−1/p
n
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is caused by the trimming function. The third term comes from the estimation of the

margins, while the last one is caused by the estimation of the censoring distribution. Let

us discuss the impact of each of these three terms, and of the parameters p, p′ and p′′

related to the moment conditions of Assumptions 6 and 7.

• Trimming term: let us recall that the term νn can be chosen arbitrarily close to the

rate εn. At worse, that is if the largest value of p that we can take is close to 2, a

rough bound of this rate is ε
1/2
n . This rate can be considerably improved if p is large,

which happens if the copula density and its derivatives do not explode too fast close

to the boundary of the unit square, and if the censoring is not too heavy.

• Estimation of the margins: the rate εn is potentially deteriorated if p′′ ≤ 2. Indeed

the quantity nmax(1/p′′−1/(2β),0) is equal to one if p′′ > 2.

• Estimation of the censoring distribution: as for the previous term, if p′ > 2, this

term is n−1/2 and becomes negligible.

Clearly, these three additional terms only disappear if the estimation of the margins

is performed at a sufficiently fast rate, and if the explosion of the copula density and its

derivatives (combined to the strength of the censoring) is controlled.

4 Experiments of the method using data

In the following part, the method developed in Section 2 to estimate the conditional

dependence parameter of a copula is illustrated numerically.

Four families of parametric copulas (Gaussian, Clayton, Gumbel and Frank) are tested

to model the dependence between T and U :

• the Gaussian copula family C1 = {C1
θ : θ ∈ [−1; 1]}, where C1

θ(a, b) = gθ (g−1(a) + g−1(b)),

with gθ is the cumulative distribution function of a bivariate Gaussian vector (V1, V2)

– with mean E(V1, V2) = (0, 0), marginal variances Var(V1) = Var(V2) = 1 and co-

variance Cov(V1, V2) = θ – and g−1 is the inverse cumulative distribution function

of a standard normal random variable.

• the Clayton copula family C2 = {C2
θ : θ > 0}, with C2

θ(a, b) =
(
a−θ + b−θ − 1

)−1/θ

• the Gumbel copula family C3 = {C3
θ : θ ≥ 1}, with

C3
θ(a, b) = exp

[
−
(
(− log(a))θ + (− log(b))θ

)1/θ
]
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• the Frank copula family C4 = {C4
θ : θ ∈ R\{0}} with

C4
θ(a, b) = −1

θ
log

[
1 +

(exp(−θa)− 1)(exp(−θb)− 1)

exp(−θ)− 1

]
4.1 Simulated data

4.1.1 Data setting

We first consider simulated data for the model testing. The covariate vector X is taken

as one dimensional, with uniform law on [0, 1]. On the other hand, the successive times

T and U are independent of X and follow log-normal distributions : log(T ) ∼ N (0, 1)

(resp. log(U) ∼ N (0, 1)).

Given a sample (Ti, Ui)1≤i≤n, let nc =
∑n

i=1

∑n
j=1 1Ti<Tj ,Ui<Uj be the number of con-

cordant pairs in the sample, and nd =
∑n

i=1

∑n
j=1 1Ti<Tj ,Ui>Uj be the number of discordant

pairs. Then the Kendall tau (Kendall, 1938) between T and U expresses as

τn =
nc − nd
nc + nd

. (4.15)

Its expected value is given by τ = 2E
[
1(T̃1−T̃2)(Ũ1−Ũ2)>0

]
−1 where (T̃1, Ũ1) (resp. (T̃2, Ũ2))

follows the same law as (T, U) and (T̃1, Ũ1) is independent of (T̃2, Ũ2).

The dependence between T and U in the simulations is set using the Kendall τ through

the relation :

log(τ/1− τ) = a+ b ·X (4.16)

with a = −3 and b = 4. Indeed, for any of the four copula families we consider, there

is a bijection between the copula parameter θ and the expected value of the Kendall tau

(Genest & MacKay, 1986). Then, making the assumption that the dependence between

T and U belongs to some copula family, it is enough to set a value for τ to specify the

conditional copula between T and U (see Section 4.1.2).

Let q = P (T + U > C) the censoring rate of the variable T + U . The influence of q

on the results is studied in the experiments. To do so, the distribution of the censoring

variable C, whose log is assumed to follow an exponential distribution, is adjusted so that

the desired censoring rate is achieved among the simulated data (q = 0.3 or q = 0.5).

4.1.2 Description of the experiments

Each simulated dataset consists of n = 1000 observations. For each copula family

(Cl)l=1,...,4, we estimate the copula parameter θ at five different x values, which corre-

spond to five distinct values τ(x) and θl(x) that are summarized in Tab. 1. The marginal

13



laws of T and U are estimated with the Kaplan-Meier estimator, as well as the survival

function of the censoring SC , used to compute the weights Wi,n (see equation (2.6)).

Also, we use a quadratic kernel : K(u) = 15/16 · (1 − u2)2 · 1|u|≤1 to localize the esti-

mation in x neighborhoods, and different candidate values for the bandwidth parameter

h (see Fig. 1). For each bandwidth h, this results in estimators (θ̂lh(x))l=1,..4 of the

conditional copula parameters at the point x, for the copula families (Cl)l=1,..,4. We can

compare them with the exact parameters (θl(x))l=1,..4 by computing the quadratic errors

at each x value : ∀ l = 1, . . . , 4, εlh(x) = (θ̂lh(x) − θl(x))2. Then the error of a cop-

ula model Cl with bandwidth h is taken as the average of εlh(x) over the five x values:

∀ l = 1, . . . , 4, εlh = 1/5
∑

x∈{x values} ε
l
h(x).

4.1.3 Results

The results of the simulations are shown in Fig. 1. We represent the mean values of

εlh, computed over 100 i.i.d. replications of the above procedure of data simulation and

copula fitting, as a function of h. The error is split into a bias part and a variance part,

which are known to form an additive decomposition of the total error, and that we also

represent in Fig. 1.

All the six graphics present the same pattern in a u-shape for the total error. For small

h, the bias is low but the high variance of the estimator leads to a bad precision of the

estimator overall. The situation is reversed when h takes big values, with low variance

and high bias for the estimator. The optimal value for the bandwidth then has to be

taken among middle values of h.

As expected we also remark that the increase of the rate of censoring deteriorates the

precision of the estimation.

Although we have shown in Section 3 that the estimation procedure we propose is

asymptotically consistent, it was important to verify that the method behaves well with

finite samples. In this regard, the results of Fig. 1 show that, for the four copula families,

reasonable errors could be achieved with our method. In the four cases, a value of h equal

to 0.15 is a good compromise between the bias and the variance, so that the total error

is close from its minimum.
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x 0.10 0.30 0.50 0.70 0.90

Kendall tau : τ(x) 0.07 0.14 0.27 0.45 0.65

Gaussian : θ1(x) 0.11 0.22 0.41 0.65 0.85

Clayton : θ2(x) 0.15 0.33 0.74 1.64 3.64

Gumbel : θ3(x) 1.07 1.17 1.37 1.82 2.82

Frank : θ4(x) 0.62 1.30 2.57 4.90 9.29

Tab. 1: Values of the Kendall tau and of the exact copula parameters at the five different

x points

4.2 Application on real data

4.2.1 Description of the data

We have applied our estimation methodology to data provided by a broker of health

insurance contracts. In the context of the study, the time T corresponds to the effective

time of a contract (i.e. the duration between the date of subscription and the date

of effect of the contract), whereas U is the termination time of the contract (i.e. the

duration between the date of effect and the date of termination of the contract). As the

churn of a contract holder impacts the commission received by a broker for this contract,

it is important from the broker’s point of view to understand the dependence between

the successive times T and U , and especially to measure it given some characteristics

X of the contract holder. Indeed, evaluating such dependence allows to fairly compare

two underwriters that have been selling insurance products to customers with different

characteristics, by weighting the performances of the underwriters with a value factor

(that is a factor which gives the expected value of a given customer). This study of the

dependence should take into account the censoring that is present in the data, which is

due to the fact that any contract may stop to be under observation before T , or U , occurs

(e.g. due to the end of the study, or the end of the observation period). In the following,

we tackle the problem of the estimation of the dependence between T and U , given the

age of the contract holder at the subscription.

The dataset that we study has 224897 entries, recorded from 1st October 2009 to 31th

July 2016. We observe that the dataset can be split into two parts according to whether

a contract date of effect is on January 1, or not. Indeed, contracts coming into effect on

January 1 represent more than one third of the database, and are generally associated

with longer delays before the date of effect. For those contracts, the dependence between

15



Fig. 1: For each copula family Cl and each rate of censoring q ∈ {0.3, 0.5}, mean values

of εlh (100 repetitions) as a function of h, and their decompositions into bias and variance

terms. Size of the simulated datasets: n = 1000.

T and U is stronger. We focus on this part of the database in the following application.
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4.2.2 Methodology in the experiments

For the modelling of the dependence between T and U conditionally on X, which is in our

situation the age of the contract holder at the subscription, we analyze the results given

by the Gaussian, Clayton, Gumbel and Frank parametric copula families (see Section 4).

The estimation is made according to the equation (2.5). We use a quadratic kernel as

in the simulated data experiments. The survival function of the censoring is estimated

thanks to the estimator of the equation (2.3). Indeed, in this application the censoring

variable is the age of the contract (from its subscription to the end of the observation

period), hence it is always observed since the perimeter of the study corresponds to

contracts that have been subscribed. The pseudo observations Âi and B̂i are derived

using local Kaplan-Meier estimators of the marginal distributions of T and U , whose

formula are given at equation (2.7).

Assuming no prior on the direction of the dependence between T and U , our fitting pro-

cedure for copula needs to be adapted to cases where the sign of the dependence changes

as the age of the policyholder varies. This requirement is not problematic for the Gaussian

copula and the Frank copula, which may model positive and negative dependences, but

the Clayton copula and the Gumbel copula can only model positive dependences. More-

over, the Gaussian copula and the Frank copula are symmetric (i.e. the copula densities

satisfy cθ(a, b) = cθ(1 − b, 1 − a)), whereas the Clayton copula and the Gumbel copula

are not. Hence, for the latter two copulas, we need to fit the copula four times to cover

all possible dependence relations between T and U : we successively fit the copula on

the pseudo-observations (Âi, B̂i), (1− Âi, B̂i), (Âi, 1− B̂i) and (1− Âi, 1− B̂i) where Âi

and B̂i are defined in Section 2.4. This gives four candidate maximums of the criteria

Mn,h (equation (2.6)), from which we can select the highest maximum. The dependence

between T and U is then positive if the maximum corresponds to the case (Âi, B̂i) or

(1− Âi, 1− B̂i), and negative otherwise.

In the following numerical experiments, we use a train-test approach with 100 repeti-

tions. For each of the 100 iterations, two non-overlapping subsamples Dtr (train) and Dte
(test), of size 10000 (ntr = nte = 10000), are drawn from the initial dataset. On the train-

ing set, and for each age x from 20 to 80, we apply our method to compute (θ̂lh,tr(x))l=1,..4,

the estimates of the conditional copula parameters corresponding to the copula families

(Cl)l=1,..,4 and to the values h = 1, 5, 10, 20, 40. On the test set, we estimate the conditional

Kendall tau between T and U , at each age x. This is done using the following kernel esti-

mator of the Kendall tau : for all test observations i, let Wi,n(x) = Wi,nK((Xi − x)/h1),
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where Wi,n is defined at equation (2.6), (Xi)i=1,..,nte denotes the age values and h1 = 1.

Then let nwc =
∑nte

i=1

∑nte
j=1 Wi,n(x)1Ti<Tj ,Ui<Uj and nwd =

∑nte
i=1

∑nte
j=1Wi,n(x)1Ti<Tj ,Ui>Uj ;

we can estimate the conditional Kendall tau at the age x by τ̂wh1,te(x) = (nwc −nwd )/(nwc +nwd ).

The conditional Kendall tau is also estimated on the training set (τ̂wh1,tr(x)), using the same

method.

To compare the results of the different copula families and to identify the optimal value

for the bandwidth parameter h, we compute train and test errors based on Kendall tau

estimates. Thanks to the one to one relations between the parameter θ and the Kendall

tau for the copula families (Cl)l=1,..,4 (see Section 4.1.1), we deduce from the estimators

(θ̂lh,tr(x))l=1,..4 train estimates of the conditional Kendall tau (τ̂ lh,tr(x))l=1,..4. Then we

define the test (resp. train) error at a point x as εlh,te(x) = (τ̂ lh,tr(x) − τ̂wh1,te(x))2 (resp.

εlh,tr(x) = (τ̂ lh,tr(x) − τ̂wh1,tr(x))2), and thereafter the test (resp. train) error of the copula

model as the aggregated error over all x values : εlh,te =
∑80

x=20 w̄x,teε
l
h,te(x) (resp. εlh,tr =∑80

x=20 w̄x,trε
l
h,tr(x)), with w̄x,te = wx,te/

∑80
x=20wx,te and wx,te =

∑
i∈Dte K((Xi − x)/h1)

(resp. w̄x,tr = wx,tr/
∑80

x=20wx,tr and wx,tr =
∑

i∈Dtr K((Xi − x)/h1)).

4.2.3 Results

We represent in Fig. 2 box plots of the train and test square root errors ((ε lh,tr)
1/2)l=1,..,4

and ((ε lh,te)
1/2)l=1,..,4 measured over the 100 iterations, for each copula family and each

bandwidth value h. The results show that the Frank copula achieves the lowest error

(both train and test) on the data, and should be privileged to model the dependence

between the two durations. Also, we observe that the test error is generally minimal for

h = 20, which indicates that 20 years is the appropriate time scale to observe trends in

the conditional dependence.

On Fig. 3, we show the average values of the conditional copula parameters for the

fitted copulas, as well as 95% confidence intervals for the exact parameters. The graphic

for the Frank copula indicates that the strength of the dependence between T and U

decreases between the ages 20 and 40, and then increases from 40 to 65 (i.e. until the age

of retirement), before it starts to decrease again. This means that young adults (20-30)

and seniors (55-75) are more likely than other age categories to have their decision to

terminate their contract impacted by the effective time of the contract, in the sens that

a long effective time causes an higher probability of rapid termination of the contract.

The Fig. 4 shows that a different evolution of the dependence is observed for the

contracts associated with higher product’s level (i.e. better guarantees). These contracts
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Fig. 2: For each copula family and each bandwidth value h, box plot of the train and test

square root errors ((ε lh,tr)
1/2)l=1,..,4 and ((ε lh,te)

1/2)l=1,..,4 (n = 10000, 100 repetitions).

exhibit a strong negative dependence overall, which becomes even stronger for the people

aged over 60.
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Fig. 3: For each copula family, mean value of the conditional copula parameter as a

function of the age x (h = 20, n = 10000, 100 repetitions). As we notice in Section

4.2.2, the Gumbel copula and the Clayton copula don’t vary in the same direction as the

Gaussian copula and the Frank copula.

5 Conclusion

In this paper, we proposed a methodology for estimating a conditional copula function

under random censoring, when the two variables linked through the copula are successive

times. The model is semiparametric, since we assume that the conditional copula does not
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Fig. 4: Impact of the variable level of insurance on the conditional dependence between

T and U , given the age of the prospect (Frank copula, h = 20, 100 repetition).

leave a parametric family, but with a nonparametric assumption on the dependence of the

association parameter on the covariates. From a numerical point of view, the procedure

is simple, since it relies on a weighted log-likelihood approach. The kernel smoothing

approach can be extended to local linear modeling, as in (Gijbels et al., 2011) in presence

of complete data. Let us mention that our results hold with only standard conditions

on the estimation of the margins, giving a relative freedom to practitioners on how they

want to perform this estimation. Moreover, we provide conditions on the censoring which

allow to understand the behavior of the method even in the tail of the distribution (that

is near the right and upper corner of the unit square when looking at the copula). This

indication is precious since under random censoring an important question is to control

the behavior of the method near the right tail.
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Code

The code used for producing the results is available at the address :

github.com/YohannLeFaou/copula-successive-duration-times.
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6 Appendix: technical results

This appendix section gathers the proofs of Theorems 3.1 (Section 6.1) and 3.2 (Sections

6.2 to 6.7). The auxiliary results required to prove Theorem 3.2 consist of replacing the

weights Wi,n by Wi in the criterion Mn,h (Section 6.3), dealing with the trimming function

(Section 6.4), replacing the pseudo-observations by their limit values (Section 6.5), and

providing a control of the stochastic term uniformly in x (Section 6.6).

The uniform consistency result is then obtained by applying the results of (Einmahl

& Mason, 2005) on kernel smoothing (Section 6.7).

6.1 Proof of Theorem 3.1 (Bias term)

Let

M
(c)
f (x, θ) =

1

hd
E

[
K

(
X − x
h

)
log cθ(FT (T |X), FU(U |X))

]
.

First observe that∫
K(v)φ(FT (t|x+ hv), FU(u|x+ hv), θ)dF (t, u|x+ hv)fX(x+ hv)dv =∫

K(v)φ(a, b, θ)c(a, b|x+ hv)fX(x+ hv)dvdadb.

The right-hand side converges towards∫
φ(a, b, θ)c(a, b|x)dadbfX(x) = M(x, θ)fX(x) (6.17)

as h → 0, uniformly in θ and x, from Lebesgue’s dominated convergence theorem and

Assumption 3. Thus,

sup
x∈X
‖θ∗h(x)− θ(x)‖ =

h→0
o(1). (6.18)
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Next, we use a Taylor expansion to show the speed of convergence of supx ‖θ∗h(x) −
θ(x)‖. For all j = 1, . . . , k, let∇θjM

(c)
f (x, θ) the jth component of the gradient∇θM

(c)
f (x, θ).

Since ∇θM
(c)
f (x, θ∗h(x)) = 0, we have

∀j = 1, . . . , k, 〈∇θ∇θjM
(c)
f (x, θ̃jh(x)), θ∗h(x)− θ(x)〉 = −∇θjM

(c)
f (x, θ(x)), (6.19)

with ∀j, θ̃jh(x) ∈ [θ∗h(x); θ(x)]. For the left hand side of (6.19) we have,

‖∇θ∇θjM
(c)
f (x, θ̃jh(x))−∇θ∇θjM(x, θ(x))fX(x)‖ ≤ ‖∇θ∇θjM

(c)
f (x, θ̃jh(x))−∇θ∇θjM

(c)
f (x, θ(x))‖

+ ‖∇θ∇θjM
(c)
f (x, θ(x))−∇θ∇θjM(x, θ(x))fX(x)‖.

Clearly supx ‖∇θ∇θjM
(c)
f (x, θ̃jh(x))−∇θ∇θjM

(c)
f (x, θ(x))‖ = o(1) by (6.18) and the smooth-

ness condition of φ in Assumption 3.

Moreover, supx ‖∇θ∇θjM
(c)
f (x, θ(x)) − ∇θ∇θjM(x, θ(x))fX(x)‖ = o(1) using the same

kind of development as in (6.17) (applied to ∇θ∇θjφ(a, b, θ) instead of φ(a, b, θ)), and

Lebesgue’s theorem.

Hence, one gets

sup
x
‖∇θ∇θjM

(c)
f (x, θ̃jh(x))−∇θ∇θjM(x, θ(x))fX(x)‖ =

h→0
o(1),

so that using Assumption 5 and combining the left side of the k equations of (6.19), we

have for h sufficiently small,

∀x ∈ X ,
k∑
j=1

∣∣∣〈∇θ∇θjM
(c)
f (x, θ̃jh(x)), θ∗h(x)− θ(x)〉

∣∣∣ ≥ c′0‖θ∗h(x)− θ(x)‖, (6.20)

with c′0 > 0 a given constant.

Moreover, we have for the right hand side of (6.19),

∀j, sup
x∈X

∣∣∣∇θjM
(c)
f (x, θ(x))

∣∣∣ = O(h2). (6.21)

Indeed, a second order Taylor expansion leads to

∇θM
(c)
f (x, θ(x)) =

h2

2

∫
K(v)φ̇(a, b, θ(x))〈∇2

x{c(a, b|x̃)fX(x̃)}·v, v〉dvdadb,

for some x̃ between x and x+ hv, and the right-hand side is O(h2) uniformly in x thanks

to Assumption 4.

Combining equations (6.19), (6.20) and (6.21) then leads to

sup
x
‖θ∗h(x)− θ(x)‖ =

h→0
O(h2).
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6.2 Consistency of the Stochastic term

Before showing the convergence rate of θ̂h(x), we first show its uniform consistency in

Proposition 6.1, by looking at its difference with the bias term θ∗h(x).

Proposition 6.1 Under the assumptions of Theorem 3.2,

sup
x
‖θ̂h(x)− θ∗h(x)‖ =

n→∞
oP (1). (6.22)

Proof. To show (6.22), first decompose

|Mn,h(x, θ)−M (c)
f (x, θ)| ≤ |Mn,h(x, θ)−M∗

n,h(x, θ)|+ |M∗
n,h(x, θ)−M

(c)
f (x, θ)|,

where

M∗
n,h(x, θ) =

1

nhd

n∑
i=1

Wi,nK

(
Xi − x
h

)
log cθ(Ai, Bi)ω̂i(νn). (6.23)

Let β0 ∈]1; p′/(2− p′)[. From Lemma 6.2 and Lemma 6.3,

M∗
n,h(x, θ) =

1

nhd

n∑
i=1

WiK

(
Xi − x
h

)
log cθ(Ai, Bi) +OP (nmax(1/p′−1/(2β0),0)−1/2) + oP (1),

uniformly in x and θ. Indeed, remark that the convergence rate in Lemma 6.3 is oP (1).

Moreover, β0 satisfies 1/p′ − 1/(2β0)− 1/2 < 0, so that n1/p′−1/(2β0)−1/2 = o(1).

Next, from equation (3.14), let β1 > 1 such that

lim
δ↘0

lim sup
n→∞

εnn
1/p′′−1/(2β1) = 0. (6.24)

From Lemma 6.4 applied with β1, we get

sup
x∈X ,θ∈Θ

|Mn,h(x, θ)−M∗
n,h(x, θ)| = OP (εnn

max(1/p′′−1/(2β1),0))

so that supx∈X ,θ∈Θ |Mn,h(x, θ)−M∗
n,h(x, θ)| = oP (1) thanks to equation (6.24).

Then, Theorem 4 of (Einmahl & Mason, 2005) applies using Assumption 6 to show that

supx∈X ,θ∈Θ | 1
nhd

∑n
i=1WiK

(
Xi−x
h

)
log cθ(Ai, Bi)−M (c)

f (x, θ)| = oP (1), which concludes the

proof.

6.3 Estimation of SC

Lemma 6.2 below shows that, provided that an integrability condition holds, the weights

Wi,n (relying on the estimation of ŜC the survival function of the censoring) are asymp-

totically equivalent to the weights Wi.
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Lemma 6.2 Let F denote a class of functions ψ such that, ∀ψ ∈ F , |ψ(y, z, x)| ≤
Ψ(y, z, x). Assume that for some p′ > 1,

sup
x∈X

E

[
Ψ(T, U,X)p

′

SC(T + U)2p′−1

∣∣∣X = x

]
<∞, (6.25)

and that lim infn→∞ nh
2d > 0.

Then, for any β > 1,

sup
x∈X ,ψ∈F

∣∣∣∣∣ 1

nhd

n∑
i=1

(Wi,n −Wi)ψ(Yi, Zi, Xi)K

(
Xi − x
h

)
ω̂i(νn)

∣∣∣∣∣ = OP

(
nmax(1/p′−1/(2β),0)−1/2

)
.

(6.26)

Proof. Let S(1) ≤ S(2) ≤ ... ≤ S(n) denote the order statistics of Si = Yi + Zi. Observe

that∣∣∣∣∣ 1

nhd

n∑
i=1

(Wi,n −Wi)ψ(Yi, Zi, Xi)K

(
Xi − x
h

)
ω̂i(νn)

∣∣∣∣∣ ≤ supt≤S(n)

∣∣∣ŜC(t)− SC(t)
∣∣∣ · supt≤S(n)

∣∣∣SC(t)

ŜC(t)

∣∣∣
× 1
nhd

∑n
i=1

Wi|Ψ(Yi,Zi,Xi)|K(Xi−xh )
SC(Yi+Zi)

.

First notice that supt≤S(n)
|ŜC(t) − SC(t)| = OP (n−1/2) and supt≤S(n)

SC(t)ŜC(t)−1 =

OP (1) (see (Shorack & Wellner, 2009) when ŜC is the empirical survival function (2.3),

and (Gill, 1983) when ŜC is the Kaplan-Meier estimator (2.4)).

Then, since

E

[
W p′

i Ψ(Yi, Zi, Xi)
p′

SC(Yi + Zi)p
′

]
= E

[
Ψ(Ti, Ui, Xi)

p′

SC(Ti + Ui)2p′−1

]
,

we get from Lemma 6.5 (ii) and Lemma 6.6 (ii) that for β > 1,

sup
x∈X

∣∣∣∣∣ 1

nhd

n∑
i=1

WiΨ(Yi, Zi, Xi)K
(
Xi−x
h

)
SC(Yi + Zi)

∣∣∣∣∣ = OP

(
nmax(1/p′−1/(2β),0)

)
.

This concludes the proof.

6.4 Trimming function

To control the potential erratic behavior of Âi and B̂i close to the border of the unit

square, we introduced some trimming ω̂i(νn). Lemma 6.3 then shows the consistency of

this trimming approach.
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Lemma 6.3 Let F denote a class of functions ψ such that ∀ψ ∈ F , |ψ(y, z, x)| ≤
Ψ(y, z, x). Assume that, for some p > 2,

sup
x∈X

E

[
Ψ(T, U,X)p

SC(T + U)p−1

∣∣∣X = x

]
<∞, (6.27)

with lim infn→∞ nh
d

1−2/p [log n]−1 > 0, and let

ηn := sup
x∈X

E

[
Ψ(T, U,X)p

SC(T + U)p−1
(1− w∗(2νn))

∣∣∣X = x

]
.

Then

sup
x∈X ,ψ∈F

∣∣∣∣∣ 1

nhd

n∑
i=1

WiK

(
Xi − x
h

)
ψ(Yi, Zi, Xi)(1− ŵi(νn)))

∣∣∣∣∣ = OP (ν1−1/p
n +n−1/2h−d/2[log n]1/2η1/p

n ).

Proof.

Let En(M) = {sup1≤i≤n |Âi−Ai|+ |B̂i−Bi| ≤Mεn}. On En(M) and for n large enough,

we have 1− ω̂i(νn) ≤ 1− wi(2νn), with

wi(2νn) = 1min(Ai,Bi,1−Ai,1−Bi)≥2νn . (6.28)

Additionally, defining for a sequence ηn

w∗i (ηn) = 1min(FT (Ti|Xi),FU (Ui|Xi),1−FT (Ti|Xi),1−FU (Ui|Xi))≥ηn , (6.29)

we first note that

E [W p
i Ψ(Yi, Zi, Xi)

p(1− wi(2νn))|Xi = x] = E

[
Ψ(Ti, Ui, Xi)

p

SC(Ti + Ui)p−1
(1− w∗i (2νn))

∣∣∣Xi = x

]
,

(6.30)

so that

sup
x∈X

E [W p
i Ψ(Yi, Zi, Xi)

p(1− wi(2νn))|Xi = x] = O(ηn). (6.31)

Second, we have

E [WiΨ(Yi, Zi, Xi)(1− wi(2νn))|Xi = x] = E [Ψ(Ti, Ui, Xi)(1− w∗i (2νn))|Xi = x]

≤ sup
x∈X

E[Ψ(Ti, Ui, Xi)
p|Xi = x]1/p ×

sup
x∈X

E[(1− w∗i (2νn))|Xi = x]1−1/p

with

E[(1− w∗i (2νn))|Xi = x] ≤ 4P (Ti ∈ [0; 2νn[, Ui ∈ [0; 1]|Xi = x)

≤ 8νn.
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We can then apply the Lemma 6.5 (i) to prove that

sup
x∈X ,ψ∈F

∣∣∣∣∣ 1

nhd

n∑
i=1

WiK

(
Xi − x
h

)
Ψ(Yi, Zi, Xi)(1− wi(2νn)))

∣∣∣∣∣ = OP (ν1−1/p
n +n−1/2h−d/2[log n]1/2η1/p

n ).

To conclude, we observe that lim supM→∞ limn→∞ P(En(M)) = 1 from Assumption 8.

6.5 Pseudo-observations

The aim of this section is to show that the pseudo-observations Âi and B̂i can be asymp-

totically replaced by Ai and Bi.

Lemma 6.4 Let M∗
n,h(x, θ) as defined in (6.23). Then under Assumptions 7 and 8, and

the supplementary condition lim infn→∞ nh
2d > 0, we have:

For any β > 1,

sup
x∈X ,θ∈Θ

|Mn,h(x, θ)−M∗
n,h(x, θ)| = OP

(
εnn

max(1/p′′−1/(2β),0)
)
.

Proof. We have, from a Taylor expansion and Assumption 7,

|Mn,h(x, θ)−M∗
n,h(x, θ)| =

1

nhd

n∑
i=1

Wi,nK

(
Xi − x
h

)
(log cθ(Âi, B̂i)− log cθ(Ai, Bi))ŵi(νn)

≤ 1

nhd

n∑
i=1

Wi,nK

(
Xi − x
h

)
r̃1(Ãi)r2(B̃i)|Âi − Ai|ω̂i(νn)

+
1

nhd

n∑
i=1

Wi,nK

(
Xi − x
h

)
r1(Ãi)r̃2(B̃i)|B̂i −Bi|ω̂i(νn),

where for all i = 1, . . . , n, Ãi ∈ [Ai, Âi] (resp. B̃i ∈ [Bi, B̂i]).

To control the two terms in this last expression, the problems arise when Ãi and/or

B̃i are close to 1 or 0. We explain how to study the case Ãi close to 0 since the other ones

are similar. Therefore, we consider the case where both Âi and Ai are less than 1/2.

If Âi ≥ Ai, then r̃1(Ãi) ≤ r̃1(Ai) and r1(Ãi) ≤ r1(Ai) by Assumption 7. To treat the

case Âi ≤ Ai, consider that we are on the event En(M) = {sup1≤i≤n |Âi−Ai|+ |B̂i−Bi| ≤
Mεn}. Then, when ω̂i(νn) = 1 and for n large enough, Âi ≥ Ai/2 (indeed, note that

Ai ≤ νn + Mεn when ω̂i(νn) = 1). Hence, from Âi ≥ Ai/2, r̃1(Ãi) ≤ Cr̃1(Ai) and

r1(Ãi) ≤ Cr1(Ai) for some constant C using the reproducibility property of the u-shaped

functions in Assumption 7.
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Then, on En(M) and for n large enough we have that |Mn,h(x, θ) − M∗
n,h(x, θ)| is

bounded by

T1 :=
C

nhd

n∑
i=1

Wi,nK

(
Xi − x
h

)(
r̃1(Ai)r2(Bi)|Âi − Ai|+ r1(Ai)r̃2(Bi)|B̂i −Bi|

)
.

Moreover, noting that Wi,n ≤ Wi · supt≤S(n)

∣∣∣SC(t)

ŜC(t)

∣∣∣, and that |Âi −Ai| ≤Mεn on En(M),

we have

T1 ≤
CMεn
nhd

· sup
t≤S(n)

∣∣∣∣∣SC(t)

ŜC(t)

∣∣∣∣∣ ·
n∑
i=1

WiK

(
Xi − x
h

)
(r̃1(Ai)r2(Bi) + r1(Ai)r̃2(Bi)) ,

with supt≤S(n)
|SC(t)/ŜC(t)| = OP (1).

We then apply Lemma 6.5 (ii) and Lemma 6.6 (ii) (using Assumption 7) to obtain that

for any β > 1,

1

nhd
sup
x∈X

∣∣∣∣∣
n∑
i=1

WiK

(
Xi − x
h

)
(r̃1(Ai)r2(Bi) + r1(Ai)r̃2(Bi))

∣∣∣∣∣ = OP (nmax(1/p′′−1/(2β),0)),

so that T1 = OP

(
εnn

max(1/p′′−1/(2β),0)
)
.

This concludes the proof since we have lim supM→∞ limn→∞ P(En(M)) = 1 from As-

sumption 8.

6.6 Uniform rate of convergence of the stochastic term

In this section, we use a result from (Einmahl & Mason, 2005) to obtain uniform rates of

convergence for our estimator. Lemma 6.5 below is a direct consequence of Proposition 1

in (Einmahl & Mason, 2005). Under a condition of moment of order 2α > 2, it provides

uniform asymptotic bounds for sums of i.i.d. variables of the form of Kn(x) (see below

in equation (6.32)). The cases (i) and (ii) in Lemma 6.5 give two bounds for Kn(x)

according to the strength of the assumption we make on the speed of h. The Lemma 6.6

is a corollary of the Lemma 6.5 and gives weaker bounds when we only assume a moment

of order 2α ∈ [1/2; 1].

Lemma 6.5 Let

Kn(x) =
n∑
i=1

Vi,nK

(
Xi − x
h

)
, (6.32)
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for (Vi,n)i=1,...,n a sequence of i.i.d. positive random variables having the same distribution

as a variable Vn.

Let ‖Kn‖X = supx∈X |Kn(x)|. Assume that supx∈X E[V 2α
n |X = x] = O(ηn) for some α > 1

and let η̃n := supx∈X E[Vn|X = x]. We have the two following results:

(i) Assume that lim infn→∞ nh
d

1−1/α [log n]−1 > 0, then

‖Kn‖X = OP (nhdη̃n + n1/2hd/2[log n]1/2η1/(2α)
n ).

(ii) Assume that lim infn→∞ nh
2d > 0, then

‖Kn‖X = OP (nhdη1/(2α)
n ).

Let us observe that the bound in (i) and (ii) is slightly different. Indeed, η̃n ≤ η
1/(2α)
n

but can be significantly smaller in some cases. More precisely, in our use of Lemma 6.5

(where 2α = p, with p > 2), η̃n = O(ν
1−1/p
n ) while η

1/p
n ≥ ν

1/p
n .

Proof.

• Proof of (i):

Let (ε1, ..., εn) denote i.i.d. Rademacher variables, i.e. P(εi = 1) = P(εi = −1) = 1/2,

that are assumed to be independent from the sample (Vi,n, Xi)i=1,...,n.

Let γn = (nηn/ log(n))1/2α and define

Kγn(x) =
n∑
i=1

Vi,n1Vi,n≤γnK

(
Xi − x
h

)
,

∆Kn = sup
x∈X

∣∣∣Kγn(x)− E[Kγn(x)]− Kn(x) + E[Kn(x)]
∣∣∣,

Kn = sup
x∈X

∣∣∣Kγn(x)− E[Kγn(x)]
∣∣∣,

KSn = sup
x∈X

∣∣∣∣∣
n∑
i=1

εi

{
Vi,n1Vi,n≤γnK

(
Xi − x
h

)}∣∣∣∣∣ ,
such that we have

‖Kn‖X ≤ Kn + ∆Kn + E[Kn(x)].

We first deal with the term ∆Kn. Following the same idea as in the proof of Lemma 1 in

(Einmahl & Mason, 2000), we have

|Kγn(x)− E[Kγn(x)]− Kn(x)− E[Kn(x)]| =

∣∣∣∣ n∑
i=1

Vi,n1Vi,n>γnK

(
Xi − x
h

)

+ nE

[
Vn1Vn>γnK

(
X − x
h

)] ∣∣∣∣
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with

E

[
sup
x∈X

∣∣∣∣ n∑
i=1

Vi,n1Vi,n>γnK

(
Xi − x
h

) ∣∣∣∣
]
≤ n‖K‖∞ sup

x∈X
E[Vn1Vn>γn|X = x]

≤ n‖K‖∞ sup
x∈X

(
E[V 2α

n |X = x]1/(2α)P (Vn > γn|X = x)1−1/(2α)
)

≤ n‖K‖∞ηnγ1−2α
n

≤ ‖K‖∞η1/(2α)
n n1/(2α)[log(n)]1−1/(2α)

where we used Markov’s inequality on line three. Using similar arguments, we can show

that nE
[
Vn1Vn>γnK

(
X−x
h

)]
= O(η

1/(2α)
n hdn1/(2α)[log(n)]1−1/(2α)).

Thanks to the assumptions, we have n1/(2α)[log(n)]1−1/(2α) = O(n1/2hd/2[log(n)]1/2), so

that

∆Kn = O(n1/2hd/2[log(n)]1/2η1/(2α)
n ) (6.33)

Then, we look for a bound to control the term Kn. From Lemma 2.3.6 in (Van Der Vaart

& Wellner, 1996), we have

E[Kn] ≤ 2E[KSn ].

A bound for E[KSn ] is obtained from Proposition 1 in (Einmahl & Mason, 2005). We

apply this proposition to the random vector (Vn, X) and to the class of functions Gn =

{(v, u) → v1|v|≤γnK((u − x)/h), x ∈ X}. In particular, Lemma 22 in (Nolan & Pollard,

1987) ensures that the proper bound holds for the covering number of the class Gn. We

then get

E[KSn ] = O
(
n1/2hd/2[log n]1/2η1/(2α)

n

)
,

so that

Kn = O
(
n1/2hd/2[log n]1/2η1/(2α)

n

)
. (6.34)

Finally the term E[Kn(x)] is controlled thanks to the inequality

E[Kn(x)] = O(nhdη̃n), (6.35)

The result is then the consequence of the inequalities (6.33), (6.34) and (6.35).

• Proof of (ii):

The principle is the same as in the proof of (i). Taking γn = nhdη
1/(2α)
n , we get that

∆Kn = O(nhdη1/(2α)
n ).
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On the other hand the Corollary 4 from (Einmahl & Mason, 2005) is used (with β =

n1/2hdη
1/2α)
n and U = nhdη

1/(2α)
n ) instead of Proposition 1 to show that

Kn = O
(
nhdη1/(2α)

n

)
.

Finally, notice that η̃n ≤ η
1/(2α)
n , so that E[Kn(x)] = O(nhdη

1/(2α)
n ).

Lemma 6.6 (Corollary of Lemma 6.5) Let ‖Kn‖X , ηn, η̃n and α as defined in Lemma

6.5, but now assume that α ∈ [1/2; 1]. Also, let β > 1. We have the two following results:

(i) Assume that lim infn→∞ nh
d

1−1/β [log n]−1 > 0, then

‖Kn‖X = OP

(
[nhdη̃n + n1/2hd/2[log n]1/2η1/(2β)

n ]× n
1−α/β

2α

)
.

(ii) Assume that lim infn→∞ nh
2d > 0, then

‖Kn‖X = OP

(
[nhdη1/(2α)

n ]× n
1−α/β

2α

)
.

Proof. We have

|Kn(x)| ≤
{

sup
1≤i≤n

V
1−α/β
i,n

}
×

∣∣∣∣∣
n∑
i=1

V
α/β
i,n K

(
Xi − x
h

)∣∣∣∣∣ . (6.36)

Let δ = 2α/(1 − α/β). Since E[V
(1−α/β)δ
i,n ] < ∞, sup1≤i≤n V

(1−α/β)
i,n = OP (n1/δ) (see e.g.

the example following Lemma 2.2.1 in (Van Der Vaart & Wellner, 1996)).

Thanks to the Lemma 6.5, the bound for the second term in (6.36) is OP (nhdη̃n +

n1/2hd/2[log n]1/2η
1/(2β)
n ) for the case (i) and OP (nhdη

1/(2β)
n ) for the case (ii).

6.7 Proof of Theorem 3.2

For the sake of simplicity, we assume in this section that θ ∈ R. The multidimensional

case can be studied similarly, component by component, as we did in Section 6.1.

By Proposition 6.1, we already have that θ̂h(x) − θ∗h(x) tends uniformly to zero. To

obtain the convergence rate, the key result consists in controlling the deviations of the

process

Zh(x, θ) =
Mn,h(x, θ)−Mn,h(x, θ

∗
h(x))−M (c)

f (x, θ) +M
(c)
f (x, θ∗h(x))

|θ − θ∗h(x)|
.

Indeed, by definition of θ̂h(x) and θ∗h(x),

Mn,h(x, θ̂h(x))−Mn,h(x, θ
∗
h(x)) ≥ 0,
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and

M
(c)
f (x, θ∗h(x))−M (c)

f (x, θ̂h(x)) ≥ 0.

Therefore,

0 ≤
M

(c)
f (x, θ∗h(x))−M (c)

f (x, θ̂h(x))

|θ̂h(x)− θ∗h(x)|
≤ Zh(x, θ̂h(x)).

Moreover, by a second order Taylor expansion,

M
(c)
f (x, θ̂h(x))−M (c)

f (x, θ∗h(x)) =
(θ̂h(x)− θ∗h(x))2

2
∇2
θM

(c)
f (x, θ̃h(x)),

where θ̃h(x) belongs to the interval [θ̂h(x), θ∗h(x)]. Due to Assumption 5 and to the consis-

tency of θ̂h(x) shown in Proposition 6.1, |∇2
θM

(c)
f (x, θ̃h(x))| ≥ c′0 > 0 for h small enough

and n sufficiently large. The result of Theorem 3.2 then follows from Proposition 6.7

below.

Proposition 6.7 Let β > 1. Then under Assumptions 6 to 8,

sup
x,θ
|Zh(x, θ)| = OP (n−1/2h−d/2[log n]1/2 + ν1−1/p

n + εnn
max(1/p′′−1/(2β),0)

+ nmax(1/p′−1/(2β),0)−1/2).

Proof of Proposition 6.7. With M∗
n,h defined in (6.23), decompose

Zh(x, θ) = Z∗h(x, θ) + Z(c)
h (x, θ),

where

Z∗h(x, θ) =
Mn,h(x, θ)−Mn,h(x, θ

∗
h(x))−M∗

n,h(x, θ) +M∗
n,h(x, θ

∗
h(x))

|θ − θ∗h(x)|
,

Z(c)
h (x, θ) =

M∗
n,h(x, θ)−M∗

n,h(x, θ
∗
h(x))−M (c)

f (x, θ) +M
(c)
f (x, θ∗h(x))

|θ − θ∗h(x)|
.

Z∗h corresponds to the replacement of (Ai, Bi) by pseudo-observations (Âi, B̂i), while Z(c)
h

comes from the difference between the criterion when the margins are known and its

expectation. These two terms are studied separately in Lemma 6.8 and Lemma 6.9.

6.7.1 Auxiliary Lemmas

Lemma 6.8 Under Assumptions 7 and 8, and assuming that lim infn→∞ nh
2d > 0, we

have for any β > 1,

sup
x,θ
|Z∗h(x, θ)| = OP

(
εnn

max(1/p′′−1/(2β),0)
)
.
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Proof. From a first order Taylor expansion, we get

|φ(a, b, θ)−φ(a, b, θ∗h(x))−φ(â, b̂, θ)+φ(â, b̂, θ∗h(x))| ≤ |φ̇(a, b, θ̃h(x))−φ̇(â, b̂, θ̃h(x))|·|θ−θ∗h(x)|,

for some θ̃h(x) between θ and θ∗h(x).

Next, from another Taylor expansion we have :

|φ̇(a, b, θ̃h(x))− φ̇(â, b̂, θ̃h(x))| ≤ |∂aφ̇(ã, b̃, θ̃h(x))| · |â− a|+ |∂bφ̇(ã, b̃, θ̃h(x))| · |b̂− b|,

with, ã ∈ [a, â] and b̃ ∈ [b, b̂]. Hence, we can use Assumption 7 to show that

|Z∗h(x, θ)| ≤ 1

nhd

n∑
i=1

Wi,nK

(
Xi − x
h

){
r̃1(Ãi)r2(B̃i)|Âi − Ai|+ r1(Ãi)r̃2(B̃i)|B̂i −Bi|

}
,

with Ãi ∈ [Ai, Âi] (resp. B̃i ∈ [Bi, B̂i]).

In order to obtain the desired result, we need to control terms of the same form as in the

proof of Lemma 6.4. We then use similar arguments.

On the set En(M) = {sup1≤i≤n |Âi−Ai|+|B̂i−Bi| ≤Mεn}, which satisfies lim supM→∞ limn→∞ P (En(M)) =

1 from Assumption 8, we have for some constants C > 0,

|Z∗h(x, θ)| ≤ CMεn sup
t≤S(n)

∣∣∣∣∣SC(t)

ŜC(t)

∣∣∣∣∣· 1

nhd

n∑
i=1

WiK

(
Xi − x
h

)
{r̃1(Ai)r2(Bi) + r1(Ai)r̃2(Bi)}ωi(νn−Mεn),

with supt≤S(n)
|SC(t)/ŜC(t)| = OP (1).

Next, let β > 1. From Lemma 6.5 (ii) and Lemma 6.6 (ii), we get

1

nhd
sup
x∈X

∣∣∣∣∣
n∑
i=1

WiK

(
Xi − x
h

)
(r̃1(Ai)r2(Bi) + r1(Ai)r̃2(Bi))

∣∣∣∣∣ = OP (nmax(1/p′′−1/(2β),0)),

(6.37)

so that

sup
x∈X ,θ∈Θ

|Z∗h(x, θ)| = OP

(
εnn

max(1/p′′−1/(2β),0)
)

Lemma 6.9 Let β > 1. Under Assumptions 6 and 8,

sup
x,θ
|Z(c)

h (x, θ)| = OP (n−1/2h−d/2[log n]1/2 + ν1−1/p
n + nmax(1/p′−1/(2β),0)−1/2).
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Proof. Let

φθ,θ′(y, z, x) =
log cθ(FT (y|x), FU(z|x))− log cθ′(FT (y|x), FU(z|x))

(θ − θ′)
.

Let A denote the class which contains all the functions φθ,θ′ . We have

φθ,θ′(y, z, x) ≤ Ψ(y, z, x) := R(FT (y|x), FU(z|x)),

where we used Assumption 6.

Let

Ln(x, h, θ) =
1

nhd

n∑
i=1

WiK

(
Xi − x
h

)
φθ,θ∗h(x)(Yi, Zi, Xi),

and let β > 1. It follows from Lemma 6.2 and Lemma 6.3 that

M∗
n,h(x, θ)−M∗

n,h(x, θ
∗
h(x))

(θ − θ∗h(x))
= Ln(x, h, θ) +OP

(
n−1/2h−d/2[log n]1/2 + ν1−1/p

n + nmax(1/p′−1/(2β),0)−1/2
)
,

where the OP−rate is uniform in x and θ.

On the other hand,

sup
x,θ

∣∣∣∣∣Ln(x, h, θ)−
M

(c)
f (x, θ)−M (c)

f (x, θ∗h(x))

θ − θ∗h(x)

∣∣∣∣∣ = OP (n−1/2h−d/2[log n]1/2).

This result is obtained using Theorem 4 in (Einmahl & Mason, 2005). LetAδ = {(y, z, c, x)→
1y+z≤c a(y, z, x)SC(y + z)−1 : a ∈ A}, and Ψδ(T, U, C,X) = 1T+U≤CΨ(T, U,X)SC(T +

U)−1. The conditions in Theorem 4 in (Einmahl & Mason, 2005) hold if we check that

N(ε,Aδ,Ψδ) ≤ ∆ε−α, (6.38)

for some α > 0 and ∆ > 0, and if

E

[{
δΨ(Y, Z,X)

SC(Y + Z)

}p]
<∞, (6.39)

for some p > 2. Condition (6.39) is easy to check, since

E

[{
δΨ(Y, Z,X)

SC(Y + Z)

}p]
= E

[
Ψ(T, U,X)p

SC(T + U)p−1

]
which is finite from (3.10) in Assumption 6.

To check (6.38), observe that

φθ1,θ2(y, z, x)− φθ3,θ4(y, z, x) = φ̇(FT (y|x), FU(z|x), θ̃)− φ̇(FT (y|x), FU(z|x), θ̄),
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for θ̃ between θ1 and θ2, and θ̄ between θ3 and θ4. Then we get, from a Taylor expansion,

φθ1,θ2(y, z, x)− φθ3,θ4(y, z, x) = φ̈(FT (y|x), FU(z|x), θ∗)(θ̃ − θ̄),

for θ∗ between θ̃ and θ̄. From Assumption 5, we deduce that the class A satisfies (6.38)

thanks to Lemma 19.31 of (van der Vaart, 1998).
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