
HAL Id: hal-01886126
https://hal.science/hal-01886126

Submitted on 2 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

How do we teach Modelling and Model-Driven
Engineering? A survey

Federico Ciccozzi, Michalis Famelis, Gerti Kappel, Leen Lambers, Sébastien
Mosser, Richard F Paige, Alfonso Pierantonio, Arend Rensink, Rick Salay,

Gabi Taentzer, et al.

To cite this version:
Federico Ciccozzi, Michalis Famelis, Gerti Kappel, Leen Lambers, Sébastien Mosser, et al.. How do
we teach Modelling and Model-Driven Engineering? A survey. Educator Symposium at MODELS’18,
Oct 2018, Copenhague, Denmark. �hal-01886126�

https://hal.science/hal-01886126
https://hal.archives-ouvertes.fr

How do we teach Modelling and Model-Driven Engineering? A
survey

Federico Ciccozzi
Mälardalen University
Västerås, Sweden

federico.ciccozzi@mdh.se

Michalis Famelis
Université de Montréal

Montreal, Canada
famelis@iro.umontreal.ca

Gerti Kappel
CDP, TU Wien
Vienna, Austria

gerti@big.tuwien.ac.at

Leen Lambers
Hasso-Plattner-Institut
Potsdam, Germany

Leen.Lambers@hpi.de

Sebastien Mosser
Université Côte d’Azur, CNRS, I3S

Sophia Antipolis, France
mosser@i3s.unice.fr

Richard F. Paige
University of York

York, UK
richard.paige@york.ac.uk

Alfonso Pierantonio
University of L’Aquila

L’Aquila, Italy
alfonso.pierantonio@univaq.it

Arend Rensink
University of Twente

Enschede, The Netherlands
arend.rensink@utwente.nl

Rick Salay
University of Toronto

Toronto, Canada
rsalay@cs.toronto.edu

Gabi Taentzer
Philipps-Universität Marburg

Marburg, Germany
taentzer@informatik.uni-marburg.de

Antonio Vallecillo
Universidad de Málaga

Málaga, Spain
av@lcc.uma.es

Manuel Wimmer
CDL-MINT, TU Wien

Vienna, Austria
wimmer@big.tuwien.ac.at

ABSTRACT
Understanding the experiences of instructors teaching modelling
and model-driven engineering is of great relevance to determining
how MDE courses should be managed in terms of content, assess-
ment, and teaching methods. In this paper, we report the results of
a survey of 47 instructors in this field. Questions address course
content, tools and technologies used, as well as positive and nega-
tive factors affecting learning outcomes. We analyse the results and
summarise key findings with the potential of improving the state of
teaching and learning practices. The survey is a preliminary effort
in giving a structured overview on the state-of-the-practice within
teaching modeling and model-driven engineering (from the point
of view of the instructor).

CCS CONCEPTS
• Social and professional topics→ Software engineering ed-
ucation;Model curricula;

KEYWORDS
Education, modelling, Model-Driven Engineering

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MODELS ’18 Companion, October 14–19, 2018, Copenhagen, Denmark
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5965-8/18/10. . . $15.00
https://doi.org/10.1145/3270112.3270129

ACM Reference Format:
Federico Ciccozzi, Michalis Famelis, Gerti Kappel, Leen Lambers, Sebastien
Mosser, Richard F. Paige, Alfonso Pierantonio, Arend Rensink, Rick Salay,
Gabi Taentzer, Antonio Vallecillo, and Manuel Wimmer. 2018. How do we
teach Modelling and Model-Driven Engineering? A survey. In ACM/IEEE
21th International Conference on Model Driven Engineering Languages and
Systems (MODELS ’18 Companion), October 14–19, 2018, Copenhagen, Den-
mark. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3270112.
3270129

1 INTRODUCTION
The sheer complexity of today’s software has made modelling and
Model-Driven Engineering (MDE) a pervasive discipline in soft-
ware development [7]. While there have been several industry-wide
studies of the application of MDE in practice (see for instance [5, 8]),
little has been done to understand what is the state-of-the-practice
in teaching modelling and MDE. Arguably, understanding the ex-
periences of instructors teaching modelling and MDE is of great
relevance to determine how MDE courses should be managed in
terms of content, assessment, and teaching methods. While con-
veying to students the proper skills and expertise is crucial to let
them pursue careers in software development, this area is also a
key interface between research and teaching [1].

In this paper, we report the results of a survey of 47 instructors.
Questions address course content, tools and technologies used, and
positive and negative factors affecting learning outcomes. We anal-
yse the results and summarise key findings with the potential for
improving the state of teaching and learning practice. The work is
meant to contribute to the definition of the state-of-the-practice of
teaching modelling and MDE (from the point of view of the instruc-
tor). In particular, it may help in understanding the constructive
alignment [3, 4] between course contents and learning objectives.

https://doi.org/10.1145/3270112.3270129
https://doi.org/10.1145/3270112.3270129
https://doi.org/10.1145/3270112.3270129

MODELS ’18 Companion, October 14–19, 2018, Copenhagen, Denmark F.Ciccozzi et al.

It is worth noting that this is an initial step in giving a structured
overview on the state-of-the-practice. In particular, it has been de-
veloped in combination with the MBEBOK presented in [6], which
proposes a set of fundamental concepts, terms and mechanisms
that should constitute a Model-Based Software Engineering Body
of Knowledge.
Structure of the paper. The paper is structured as follows. In
Sect. 2 the survey is introduced. The next section presents the
results, including general information, content, tools and technolo-
gies, and positive and negative aspects. In Sect. 4 a discussion about
the results is provided. Finally, in Sect. 5 conclusions are drawn.

2 SURVEY
The main goals of this survey are to analyse the current state of
modelling teaching, to better understand the distinctive aspects
that characterise a successful course and what may not work, and
to identify the typical learning outcomes and discuss them with
respect to the needed ones. The survey questions are structured as
follows:
General information. This is used to describe the context for each
course and includes: name, level of students, whether it is elective
or mandatory, the number of times the course has been given,
the course format (e.g., lecture, seminar, etc.), number of credits,
number of students, modes of assessment (exam, assignment, etc.),
and learning outcomes.
Which aspects are predominantly covered? This identifies the
focus of the course, whether it is predominantly about models for
software engineering, language engineering or some other domain.
How models are used. This identifies how models are used as
part of the teaching process – e.g., used for presenting a modelling
method, developed by students in assignments or tests, etc.
What students do with models. This identifies what specific
activities students carry out with models – e.g., creating a statechart
from natural language, verifying system properties, etc.
Tools and technology. This identifies the platforms, technologies,
and tools used during the course.
Positive and negative aspects. This open-ended question elicits
stories about what worked and what didn’t in the course.

3 ANALYSIS OF RESULTS
In this section, the results of each survey question is illustrated and
discussed.
3.1 General information
In most of the cases the course name refers to Model-Driven En-
gineering (or a variants of it) and Software Engineering, however
different names are sometimes used as follows (frequency in paren-
theses):

• Model-Driven Engineering (20), including the variants
– Model-Driven Software Engineering (2)
– Model-Driven Software Development (5)
– Fundamentals of Model-Driven Engineering (1)
– Advanced Design of Software Architectures: Model-
Driven Engineering (1)

– Modelling and Meta-modelling (1)
• Software Engineering (8)

Figure 1: Level of students

Figure 2: Editions

• Formal Methods (5)
• Software Modelling / Design (8)
• Software Architecture (3)
• Object-Oriented Programming / Programming (3)

Courses are delivered at the doctoral, master, and bachelor level as
depicted in Fig. 1. It is worth noting that the majority of them are
provided at the master level.1 About half (52.8%) of the courses are
elective, the rest of themmandatory (47.2%). The average number of
course editions is 9,5 and according to the distribution in Fig. 2 it is
possible to conclude that modelling and Model-Driven Engineering
are well-established topics in Computer Science. In some cases, the
number of editions is very high (up to 30): this is explained by the
same course being given several times per year, i.e., in different
semesters and/or at different levels.

Most of the courses are based on lectures, often in combination
with laboratory activities. In one third of the cases, the course
is delivered without laboratory. Besides lectures and laboratory,
formats include seminars, colloquium, and tutorials, most of the
times in some combination. The overall picture is given in Fig. 3.

The number of students for each course varies considerably.
Almost half (47%) of the courses have up to 30 students, while
the average number of students is 52 as plotted in Fig. 4. This is
explained by the fact that courses given at the bachelor level can
have a large number of students (in one case 300 students). The

1Some courses are given at more than one level, e.g., master and doctoral level.

How do we teach Modelling and Model-Driven Engineering? MODELS ’18 Companion, October 14–19, 2018, Copenhagen, Denmark

Figure 3: Course formats and their combinations

Figure 4: Number of students

Figure 5: ECTS credits

number of credits is given in ECTS2 (European Credit Transfer and
Accumulation System) credits. A full study year normally consists
of 60 credits according to this system. The distribution of credits
among courses is given in Fig. 5, where the x-axis and the y-axis
reports the number of credits and corresponding number of courses,
respectively; a 6-credit course is the most frequent (interval 5.07-
6.43).

Finally, most of the courses perform a student assessment that
strongly focuses on tooling and technologies. Indeed, the survey
shows that:
2http://ec.europa.eu/education/resources/european-credit-transfer-accumulation-system_
en

• 72% of the courses evaluate students by means of project
assignments:
– 84% of which are in combination with other modalities

∗ home assignments
∗ oral and written exams

– 16% use projects only
• 78% by means of projects or home assignments
• 7% by means of oral and/or written exams

These results are presented in Fig. 6, where on the left-hand side
the number of occurrences of all modes is reported, whereas on the
right-hand side only modes comprehending project assignments
are analysed.

The last question in the General Information section of the survey
is about the learning outcomes. However, in order to better position
this relevant aspect, the discussion is deferred to Sect. 3.3 after the
analysis of responses about the topics covered by the course, as
these two pieces of information are highly correlated as they might
influence the constructive alignment (in the sense of Biggs [3]).

3.2 Course contents
The questions about the course contents are among the most signif-
icant ones in the survey. While in the general information section,
the questions are about infrastructural (and unbiased) aspects, such
as the average number of students, and the number of editions, the
content section consists of questions that might convey some bias.
In order to mitigate the problem, before discussing the individual
findings, the questions are presented before the discussion of the
corresponding responses.

Q1. Content / Which aspects are predominantly cov-
ered?
Describe the kind of models covered by the course.

A1. Models for Software Engineering (presentation of existing
modelling languages and approaches for SE)
A2. Models for Language Engineering (incl. modelling lan-
guage design, model transformation & model management)
A3. Models for other domains

Figure 7 summarises the responses to question Q1. In particular,
most of the courses adopt models for Software Engineering (49.1%)
and Language Engineering (41.5%) with a residual part (9.4%) cov-
ering other application domains including robotics, IoT, e-learning,
smart home, automotive and health. It is worth noting that the
answers Q1.A1-2 might convey an epistemic bias as specific fields
are suggested according to the authors’ expertise. However, it is
not difficult to see that the responses of other related questions,
e.g., tools and technologies (see Sect. 3.4), are consistent with the
results here.

Q2. Content / How models are used
Describe how models are used in the teaching process.

A1. As part of presenting a modelling method

http://ec.europa.eu/education/resources/european-credit-transfer-accumulation-system_en
http://ec.europa.eu/education/resources/european-credit-transfer-accumulation-system_en

MODELS ’18 Companion, October 14–19, 2018, Copenhagen, Denmark F.Ciccozzi et al.

(a) All modes of assignment (b) Project assignments

Figure 6: Modes of assessment

Figure 7: How aspects are covered

A2. Models are developed by students during their assign-
ments or exam projects
A3. Other

In accordance with the results about the modes of assessment (see
Sect. 3.1), in most of the courses (91%) "models are developed by
students during their assignment or exam projects" while in more
than the half of the courses (59%) models are used for “presenting
the modelling method”. In most of the cases both options have been
selected.

Q3. Content / What students do with models
Please describe how the students use the models, e.g., i) Create statecharts
from natural language req’s to specify a system ii) Verifying system
properties iii) Create temporal formulas for properties from natural
language, etc.

What students do with models depends on the response to ques-
tion Q1, i.e., whether the course refers to modelling in Software
Engineering, Language Engineering, or another domain.
Software Engineering. Models are used for early design, com-
munication, and documentation. They are typically created from
requirements, including natural language scenarios. Both structural
(e.g., class) diagrams and behavioural (e.g., state or sequence) dia-
grams are created and code is generated from models. OCL is often

used for operation contracts or for expressing integrity constraints
and invariants. Use case models (including semi-structured specifi-
cations) and executable statecharts (either simulated or generated)
may be also employed.
Language Engineering. Students typically learn how to develop
a modelling ecosystem consisting of

– metamodels, instances of such metamodels, model-to-model
transformations, and model-to-text transformations (code
generation); and,

– textual and diagrammatic editors.
The developed notations are mostly domain-specific, but class
diagram- and activity diagram-like languages are also considered.
When considered, requirements are in natural language. Some cor-
rectness of design models w.r.t. requirement models may be also
requested. Finally, in few cases models are also obtained by reverse
engineering code.
Other domains. Models are expressed mostly using (extended)
UML, ADL or sometimes a DSL. In case mathematical expressions
are needed, such as constraints, annotations are added. Require-
ments are mapped into problems to solve; these include quality
problems and their solutions, and commonality or variability anal-
ysis. Domains can generally be categorised as application domains
(depending on the assignment), quality domains (such as techniques
for fault-tolerance, security), math (optimisation, etc.), computer
science (to be able to map the synthesised models to the realisation
platform), etc.

3.3 Learning outcomes
The information collected about learning outcomes has been anal-
ysed according to the following dimensions:

– Knowledge and understanding,
– Skills and abilities,
– Judgement and approach

The answers were not always consistently structured and often
were given in an informal style. However, a certain regularity
emerged especially concerning Software and Language Engineer-
ing. Not enough accurate answers were given concerning the other

How do we teach Modelling and Model-Driven Engineering? MODELS ’18 Companion, October 14–19, 2018, Copenhagen, Denmark

domains; however, some fragmentary information is reported at
the end of this section.
Knowledge and understanding
Software Engineering:

– describe how models can be used for design and analysis of
a software system;

– describe how models can be used for specifying the be-
haviour of a software system;

– summarise how models can be used for documenting soft-
ware systems;

– illustrate how models can fit into a software process consist-
ing of analysis, design and implementation.

Language Engineering:
– explain the principles and the underlying concepts: model,

metamodel, constraints, transformation, semantics, abstract
and concrete syntax;

– explain the architecture of contemporary modelling frame-
works;

– explain how domain specific modelling languages can be
realised within a contemporary modelling framework;

– explain the basic concepts and techniques underlying the
automated generation of (diagrammatic and textual) editors
and environments.

Skills and abilities
Software Engineering:

– create software analysis models;
– create software design models;
– explain the functionality of a systemwith the help of analysis
and design models;

– write reports with the help of software models;
– translate software models into executable code.

Language Engineering:
– construct domain specific languages, e.g., specify metamod-
els including syntax and semantics;

– define syntactic constraints using a constraint language;
– realise metamodels within a modelling framework;
– construct model editors within a modelling framework;
– create model validators within a modelling framework;
– specify model transformations and realise them within a
modelling framework;

– apply the domain specific modelling approach to a case.

Judgement and approach
Software Engineering:

– judge how well software models relate to their real-life coun-
terparts;

– identify which software models are appropriate for mod-
elling a system;

– critically assess the quality of software models.

Language Engineering:
– select appropriate modelling technologies for a modelling
tooling problem at hand;

– assess the applicability and limitations of model-driven en-
gineering and tools to develop of software;

– judge the practical application of modelling and model man-
agement in realistic scenarios;

– discuss and document the construction and validation of
models and extensions of supporting software tools.

Moreover, further elements emerged. More in detail, meta-
modelling techniques and process, domain-specific modelling, and
UML profiling are widely used in language engineering courses;
whereas UML is used in software engineering courses (e.g. software
architecture, software design, and object-oriented design). In addi-
tion, executable UML models are used when reactive systems are
considered; some courses combine modelling with agile software
development; also models are used for test case generation. Cat-
egorical methods are used for formally characterising the typical
model-driven concepts.

3.4 Tools and technology
There are different flavours of MDE and educators have a difficult
choice to select the right variant for their course [1]. Options in-
clude picking an industrial strength modelling tool, using a tool
specifically designed for educational use, or simply ignoring tools
altogether in favour of pencil and paper. The choice is often highly
dependent on the context, e.g., tools currently used by the instruc-
tor in active projects, already available expertise in her research
group, availability of a repository of model or language exemplars,
and so on. As a result of these factors, making a decision about the
tools to be adopted is not easy and risk-free. Thus, analysing how
tools and technologies are employed in teaching and to let students
develop their assignments is of central significance for anyone in-
terested in assessing the teaching method. Arguably, a contributory
factor limiting the use of modelling is the technological cognitive
distance due to idiosyncratic aspects and limited maturity of exist-
ing tools, besides the lack of appropriate educational resources and
pedagogical techniques that introduce models in the classroom.

In our survey, instructors have been asked to provide a descrip-
tion of the platforms and tools adopted in their course by means of
an open question, as follows

Q4. Which tools are used?
Describe the platforms, technologies, and tools used during the course.

The outcome is illustrated in Fig. 8 where for each tool the frequency
is reported. For the sake of readability, the diagram reports only
those tools with frequency higher than two, whereas the remaining
tools and techniques are (in parenthesis the frequency):

– USE, GEMOC Studio, PlantUML, Ecore, Alloy, Epsilon, Em-
fatic, EGL, ETL, Ruby/RubyTL, Henshin (2);

– MetaDepth, CDO, Neo4EMF, Palladio, StarUML, Umple,
mCRL2, TopCased, SDMLib, IntelliJ, UML, JET, QVTr,
Graph Transformation, DPF, ATOMPM, MoDisco, Cucum-
ber, ANTLR, Sismic, EMF Validation Framework, OclinEcore,
GEF, Graphiti, MDEForge, EMFCompare, Gliffy, Argo IML,
Eclipse JDT, DSLTrans, Eclipse UML Tools, MetaDONE (1).

The tools in the figure are classified according to platform: light
green denotes EMF-based tools, gray denotes tools that can be used
with EMF artefacts, for instance because they provide some form

MODELS ’18 Companion, October 14–19, 2018, Copenhagen, Denmark F.Ciccozzi et al.

Figure 8: Modelling tools

Figure 9: Model Transformation Languages

of interoperability; and finally in dark green are reported tools
whose platform is distinguished from EMF. Interestingly, most of
the tools are based on EMF, an open source platform that, despite
the well-known difficulties in maintaining the needed components
and plug-ins in a consistent state, is very popular among students.
However, in contrast with other open source tools, e.g., MPS, EMF
is community-based and part of the overall Eclipse project, that has
surely provided traction to its adoption. As a rule, proprietary tools,
like MetaEdit+, are less used.

3.4.1 Model Transformation Languages. If we restrict our atten-
tion to model transformation only, then the usage of corresponding
languages is given in Fig. 9. Surprisingly, while well-known lan-
guages such as ATL3, QVT4, and ETL5 are widely adopted, the
second-most used means for teaching transformations are general-
purpose languages. This can be (partly) explained by the need of
3https://www.eclipse.org/atl/
4https://www.omg.org/spec/QVT/
5https://www.eclipse.org/epsilon/doc/etl/

transforming software models into analysis models in software
engineering-based courses. In fact, most of the time the analysis
notations, e.g., queuing networks, are not formalised by means of
metamodels and therefore adopting a general-purpose language is
among the options.

3.4.2 Concrete syntax. The tools adopted for defining concrete
syntaxes and the related editors are almost equally divided in textual
(58,8%) and diagrammatic (41,2%), although instructors have a pref-
erence for textual notations. As illustrated in the chart in Fig. 10,
Xtext6 is the most used tool, followed by another textual tool7.
Then, the visual tools GMF8, Sirius9, and Eugenia10 follow with
the same percentage among them. While the situation for Xtext is
pretty evident, as this represents one of the most well-documented
projects (see e.g. [2]) for textual notations, the landscape of tools
for diagrammatic syntaxes is less evident. We expect that in the
next few years Sirius will emerge and that the reason why GMF is
still relatively diffused is due to its legacy and to the difficulty in
keeping technologies up to date.

3.5 Positive and Negative aspects
We included an open question at the end of the survey asking for
both positive and negative aspects or experiences with respect to
each course, as an open question.

Q5. Positive and negative aspects
Can you report on what worked and what didn’t work in your course?

6https://www.eclipse.org/Xtext/
7https://github.com/DevBoost/EMFText, at the time of writing the official website
http://www.emftext.org is unreachable.
8https://www.eclipse.org/gmf-tooling/
9https://www.eclipse.org/sirius/
10https://www.eclipse.org/epsilon/doc/eugenia/

https://www.eclipse.org/atl/
https://www.omg.org/spec/QVT/
https://www.eclipse.org/epsilon/doc/etl/
https://www.eclipse.org/Xtext/
https://github.com/DevBoost/EMFText
http://www.emftext.org
https://www.eclipse.org/gmf-tooling/
https://www.eclipse.org/sirius/
https://www.eclipse.org/epsilon/doc/eugenia/

How do we teach Modelling and Model-Driven Engineering? MODELS ’18 Companion, October 14–19, 2018, Copenhagen, Denmark

Figure 10: Concrete Syntax

From the gathered responses, we extracted positive and negative
aspects. Then we looked for common themes occurring in each of
the two categories. For the positive aspects, we came up with six
common themes P1-P6, as depicted in Table 1. Among them, the
most common positive aspect appears the effectiveness of using
project-oriented and hands-on instead of classroom-based learning.
One of the respondents states that “[..] The project phase is a huge
success once students understand that they are building tools for
software developers (may it be general purpose or domain specific)
[..]”.

For the negative aspects we identified four common themes N1-
N4, as described in Table 2. Among them, the most common issue
is related to tools, being either too immature or complex to use. In
this matter, one of the respondents states “[..] Tools are an issue and
it is not easy for students to detach models (and modelling) from what
they are used to, code (and programming) [..]”. Another one says “[..]
Tooling is not mature enough, students often got stuck, documentation
is bad, [..]”. This probably does not come as a big surprise, since
there has been recently a general feeling in the community about
the necessity to put a dedicated effort towards the conception of
educational modelling tools (see e.g. Papyrus for Education11).

A question that arose when looking at the results is whether we
could detect any relationship across positive and negative themes.
We focused then on two types of relationship. The first one is “posi-
tive theme helps solve problem expressed by negative theme”. This
relationship is evident for P3,P6→N2 and P2,P4,P5→N3. In the first
one for instance, focusing on very simple examples to explain theo-
retical aspects of modelling and gradually increasing the level of
notions’ complexity (P3) together with reflecting on existing mod-
elling artefacts (P6) can help mitigating the difficulty of students in
understanding the notion and importance of abstraction (N2). The
second type of relationship is “negative theme hampers realisation
of positive theme”. This occurs with N1→P1,P2,P5 and N4→P1,P6.
In the first case, immature or too complex tools (N1) hinder project-
oriented and hands-on lectures/courses (P1) as well as first-hand
experience with modelling benefits, such as code generation (P2)
and model execution (P5). We cross-analysed the extracted data and
found out that these relationships are basically confirmed by the
survey responses. More specifically, there are only a few cases (at
most 4 out 47 responses) in which P2,P4,P5→N3, N1→P1,P2,P5 and
11https://wiki.eclipse.org/Papyrus_for_Education

Positive
theme

Number
of
occur-
rences

Description

P1 13 Project-oriented or hands-on is more
effective than classroom-based learning

P2 7 Code generation helps learning process
and students see direct benefit

P3 5 Starting simple with both examples and
theory and progressively getting more
complex helps to overcome learning dif-
ficulties.

P4 3 Models related to familiar needs (e.g.
communication, analysis) are easily
seen as beneficial

P5 2 Executable models boost understanding
of modelling benefits

P6 2 Studying existing modelling artefacts
first helps understanding basic mod-
elling concepts

Table 1: Common positive aspects

Negative
theme

Number
of
occur-
rences

Description

N1 11 Tools are lacking, not mature enough or
too complex to use

N2 10 Students have difficulties with under-
standing abstraction; modelling is con-
ceived to be too different from program-
ming

N3 9.5 Purpose of models is unclear
N4 7 Modelling languages or model trans-

formation languages not precise or not
powerful enough for their intended pur-
pose

Table 2: Common negative aspects

N4→P1,P6 are partially contradicted by the data extracted from
the responses.

4 DISCUSSION AND FUTUREWORK
Threats to validity. Construct validity: The participants of the
survey were instructors, not students. It is therefore important
to notice that we measured more and less successful aspects of a
modelling course from the point of view of an instructor. Internal
validity: In question Q1 the prescribed answers could have led
to misleading results, since some of the modelling courses might
not have a clear focus on either software engineering or language
engineering. As all other questions allowed open answers, we do
not see a similar bias there. In general, the questions in the list are
largely independent of each other, so that the order of the questions
should have no influence on the results. External validity: The list of
questions in the survey was set up by the diverse group of authors

MODELS ’18 Companion, October 14–19, 2018, Copenhagen, Denmark F.Ciccozzi et al.

of this paper, being experienced in teaching modelling and model-
driven engineering courses, as a joint effort. The questionnaire was
tested and refined through a pilot survey. More specifically, we sent
the questionnaire to a pilot set of 10 instructors prior to sending it
to the actual respondents. This group of authors also came up with
a list of 109 invitees to participate in the online survey. All invitees
are knowledgeable in the community for their teaching efforts in
modelling and model-driven engineering. In the end, 47 of these
invitees participated in the survey. We cannot claim completeness
w.r.t. all modelling and model-driven engineering courses being
taught, but we believe to be able to have reached a representative
part with our survey.
Discussion of current results. The landscape of modelling
courses and their formats is very diverse. We could observe a strong
focus on tooling and technologies for student assessment. Project
assignments are typically appropriate to assess learning outcomes
related to skills and abilities. However this raises the question
whether the learning outcomes listed under “knowledge and un-
derstanding” or also “judgement and approach” are taken care of
sufficiently by emphasising this type of assessment. The focus on
tools and technologies might obfuscate the understanding of un-
derlying principles of modelling and model-driven engineering.
Since tools and technologies will continuously change, it seems
important to align them with these principles. An interesting initia-
tive that might help in this direction is the definition of a body of
knowledge for model-based software engineering (MBEBOK) [6].
The list of learning outcomes compiled via this survey seems quite
comprehensive already and is probably a good source of inspiration
for instructors interested in designing a new course. The question
remains how comprehensive this list is; therefore we propose to
compare these results with the topics gathered in the MBEBOK
as soon as it is publicly available. If particular learning outcomes
observed through this survey do not occur in the MBEBOK, this
might be a good starting point for discussion. The other way round,
topics covered by the MBEBOK should be addressed by the learn-
ing outcomes observed in the current modelling course landscape.
Finally, the learning outcomes in our survey relate either to soft-
ware engineering or language engineering. The relevance of this
dichotomy and assuming it in the context of teaching can be an
interesting point for discussion also within such a broader initiative.
Correlating results of different questions. In Sect. 3 we anal-
ysed the results of each question individually; here we consider
correlations between answers of different questions. We found
that 2/3 of modelling courses with a focus on software engineer-
ing were Bachelor level while almost all language engineering
courses were Master level. This makes sense given that the latter
is a more advanced and specialised topic. We then asked whether
negative/positive themes occur more often with software engineer-
ing or language engineering courses. Theme P3 (start simple and
progress gradually) occurred almost exclusively for language en-
gineering and this may be because the abstraction level is higher
than for software engineering. Themes P1 (project-orientation) and
N4 (languages not powerful enough) are twice as prevalent for soft-
ware rather than language engineering while N1 (tools not mature
enough) is twice as prevalent for language rather than software
engineering. Thus, there is a support weakness in both areas but for

software engineering it is with modelling languages while for lan-
guage engineering it is with the tooling. We did not find significant
correlations with other themes.

We investigated N1 further to understand how the top tools used
fared. We found that about 30% of courses that used EMF, OCL
or ATL and almost 50% of courses using Xtext, Acceleo or Xtend
identified N1 as an issue. These results seem consistent with the
fact that older tools would be more mature. A surprise was that
62% of courses using Papyrus cited N1.

Finally, we explored other potentially interesting correlations
such as: If the purpose of models is unclear (N3), what did the
students do with the models? Is the number of credits for a course
correlated with the number of students? Do courses have similar
characteristics when they are aiming for similar learning outcomes?,
etc. but were unable to detect significant correlations.
5 CONCLUSIONS
We have analysed and discussed the results obtained by distributing
a survey on the current state of modelling teaching to a number
of instructors. While most of the responses do not expose any sur-
prising aspect, the analysis shows the prevalence of assessment
methods focusing on tooling and technologies. This can be ex-
plained by the great strides made in the development of modelling
tools and techniques over the last few years. However, this has to
be seen in a more general context keeping in mind the constructive
alignment between the course contents and expected learning ob-
jectives. In this respect, the MBEBOK [6] might be a useful tool for
orienting lecturers in the ways of designing a modelling course.

Acknowledgements. We would like to thank the reviewers for
their valuable comments and suggestions. We are also grateful to
all the instructors who responded to our invitation and contributed
to the survey. This paper has been partially funded by the following
research projects and grants: Spanish Research Project TIN2014-
52034-R, by the Austrian Research Promotion Agency (FFG) via
the Austrian Competence Center for Digital Production (CDP) un-
der the contract number 854187, by the Austrian Federal Ministry
of Science, Research and Economy and the National Foundation
for Research, Technology and Development, and the Knowledge
Foundation (KKS) through the MOMENTUM project.
REFERENCES
[1] Seiko Akayama, Birgit Demuth, Timothy C Lethbridge, Marion Scholz, Perdita

Stevens, and Dave R Stikkolorum. 2013. Tool Use in Software Modelling Education..
In Educators Symposium, MoDELS.

[2] Lorenzo Bettini. 2016. Implementing domain-specific languages with Xtext and
Xtend. Packt Publishing Ltd.

[3] John B Biggs. 2011. Teaching for quality learning at university: What the student
does. McGraw-Hill Education (UK).

[4] Birgit Demuth. 2016. Constructive Alignment in Teaching Modeling. In Educators
Symposium, MoDELS.

[5] Davide Di Ruscio, Richard F Paige, and Alfonso Pierantonio. 2014. Guest editorial
to the special issue on success stories in model driven engineering. Science of
Computer Programming 89, PB (2014), 69–70.

[6] Gerti Kappel Leen Lambers Sebastien Mosser Richard F. Paige Alfonso Pierantonio
Arend Rensink Rick Salay Gabi Taenntzer Antonio Vallecillo Federico Ciccozzi,
Michalis Famelis and Manuel Wimmer. 2018. Towards a Body of Knowledge
for Model-Based Software Engineering. In Proceedings of the MODELS Educators
Symposium co-located with the ACM/IEEE 21st International Conference on Model
Driven Engineering Languages and Systems (MODELS 2018), Copenhagen, Denmark,
October 14-19, 2018. CEUR Workshop Proceedings.

[7] D C Schmidt. 2006. Guest Editor’s Introduction: Model-Driven Engineering.
Computer 39, 2 (2006), 25–31.

[8] Jon Whittle, John Hutchinson, and Mark Rouncefield. 2014. The state of practice
in model-driven engineering. IEEE software 31, 3 (2014), 79–85.

	Abstract
	1 Introduction
	2 Survey
	3 Analysis of Results
	3.1 General information
	3.2 Course contents
	3.3 Learning outcomes
	3.4 Tools and technology
	3.5 Positive and Negative aspects

	4 Discussion and future work
	5 Conclusions
	References

