
HAL Id: hal-01886114
https://hal.science/hal-01886114v1

Submitted on 2 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a Body of Knowledge for Model-Based
Software Engineering

Federico Ciccozzi, Michalis Famelis, Gerti Kappel, Leen Lambers, Sébastien
Mosser, Richard Paige, Alfonso Pierantonio, Arend Rensink, Rick Salay, Gabi

Taentzer, et al.

To cite this version:
Federico Ciccozzi, Michalis Famelis, Gerti Kappel, Leen Lambers, Sébastien Mosser, et al.. Towards
a Body of Knowledge for Model-Based Software Engineering. MODELS ’18 ACM/IEEE 21st Inter-
national Conference on Model Driven Engineering Languages and Systems, Oct 2018, Copenhague,
Denmark. �hal-01886114�

https://hal.science/hal-01886114v1
https://hal.archives-ouvertes.fr

Towards a Body of Knowledge for Model-Based Software
Engineering

Federico Ciccozzi
Mälardalen University
Västerås, Sweden

federico.ciccozzi@mdh.se

Michalis Famelis
Université de Montréal

Montreal, Canada
famelis@iro.umontreal.ca

Gerti Kappel
CDP, TU Wien
Vienna, Austria

gerti@big.tuwien.ac.at

Leen Lambers
Hasso-Plattner-Institut
Potsdam, Germany

Leen.Lambers@hpi.de

Sebastien Mosser
Université Côte d’Azur, CNRS, I3S

Sophia Antipolis, France
mosser@i3s.unice.fr

Richard F. Paige
University of York

York, UK
richard.paige@york.ac.uk

Alfonso Pierantonio
University of L’Aquila

L’Aquila, Italy
alfonso.pierantonio@univaq.it

Arend Rensink
University of Twente

Enschede, The Netherlands
arend.rensink@utwente.nl

Rick Salay
University of Toronto

Toronto, Canada
rsalay@cs.toronto.edu

Gabi Taentzer
Philipps-Universität Marburg

Marburg, Germany
taentzer@informatik.uni-marburg.de

Antonio Vallecillo
Universidad de Málaga

Málaga, Spain
av@lcc.uma.es

Manuel Wimmer
CDL-MINT, TU Wien

Vienna, Austria
wimmer@big.tuwien.ac.at

ABSTRACT
Model-based Software Engineering (MBSE) is now accepted as a
Software Engineering (SE) discipline and is being taught as part of
more general SE curricula. However, an agreed core of concepts,
mechanisms and practices — which constitutes the Body of Knowl-
edge of a discipline — has not been captured anywhere, and is only
partially covered by the SE Body of Knowledge (SWEBOK). With
the goals of characterizing the contents of the MBSE discipline,
promoting a consistent view of it worldwide, clarifying its scope
with regard to other SE disciplines, and defining a foundation for a
curriculum development on MBSE, this paper provides a proposal
for an extension of the contents of SWEBOK with the set of funda-
mental concepts, terms and mechanisms that should constitute the
MBSE Body of Knowledge.

CCS CONCEPTS
• Social and professional topics→ Software engineering ed-
ucation;Model curricula;

KEYWORDS
Model-Based Software Engineering, Body of Knowledge.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MODELS ’18 Companion, October 14–19, 2018, Copenhagen, Denmark
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5965-8/18/10. . . $15.00
https://doi.org/10.1145/3270112.3270121

ACM Reference Format:
Federico Ciccozzi, Michalis Famelis, Gerti Kappel, Leen Lambers, Sebastien
Mosser, Richard F. Paige, Alfonso Pierantonio, Arend Rensink, Rick Salay,
Gabi Taentzer, Antonio Vallecillo, and Manuel Wimmer. 2018. Towards a
Body of Knowledge for Model-Based Software Engineering. In ACM/IEEE
21th International Conference on Model Driven Engineering Languages and
Systems (MODELS ’18 Companion), October 14–19, 2018, Copenhagen, Den-
mark. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3270112.
3270121

1 INTRODUCTION
Model-based Software Engineering (MBSE) is becoming widely
accepted as a software engineering (SE) discipline that promotes
the use of models and model transformations, as the fundamental
elements of all software development processes. As its adoption
grows and it becomes part of more general SE curricula, there is
the need to define an agreed core of the concepts, elements, mecha-
nisms and practices that MBSE encompasses. Such a compendium
corresponds to the concept of “Body of Knowledge” (BoK) used in
many engineering disciplines, and which comprises the complete
set of concepts, terms and activities that make up a professional
domain, being a fundamental part of any profession [19].

Similarly to the objectives of other existing BoKs, the goal of a
BoK for MBSE (hereinafter MBEBOK) would be threefold: (a) to
characterize the contents of the MBSE discipline and to promote a
consistent view of MBSE worldwide; (b) to clarify the scope and
the place of MBSE within SE and with respect to other disciplines
such as computer science and system engineering; and (c) to de-
fine a foundation for curriculum development and for individual
certification and licensing material.

In 2004, the IEEE Computer Society published the “Guide to the
Software Engineering Body of Knowledge” (hereinafter SWEBOK),

https://doi.org/10.1145/3270112.3270121
https://doi.org/10.1145/3270112.3270121
https://doi.org/10.1145/3270112.3270121

MODELS ’18 Companion, October 14–19, 2018, Copenhagen, Denmark F. Ciccozzi et al.

which was updated in 2014 [6] and provides a comprehensive and
agreed description of the BoK for SE. It was also adopted by ISO/IEC
as ISO/IEC TR 19759:2005. However, although it embraces the con-
cept of model and modelling in Software Engineering (its Chapter
9 is entirely devoted to that), it does not provide a complete and
detailed catalogue of all the core concepts needed to portray MBSE
and its usage. In particular, currently it does not detail the funda-
mental concepts, techniques, methodologies and tool types that
any MBSE practitioner should be aware of, or the skills required to
master them.

In January 2018, during the discussions that took place as part
of the First Winter Modeling Meeting (WMM’18) in San Vigilio di
Marebbe, Italy, the authors of this paper decided to start working
on the main contents of a Guide to MBEBOK. Instead of starting
from scratch, we decided to analyse and extend the current contents
of the SWEBOK, and in particular its Chapter 9, trying to respect
its structure but complementing it with what we considered the
fundamental concepts and terms for MBSE.

This paper reports the results of those efforts and provides a
proposal for a set of fundamental concepts, terms and mechanisms
that should constitute the MBEBOK.

The paper is structured in 5 sections. After this introduction,
Section 2 discusses what a BoK is, and briefly presents the SWEBOK
and its current coverage of software models. Then, Section 3 identi-
fies the basic MBSE concepts that are not included in the SWEBOK.
Section 4 describes some issues that were identified during the
development of the contents of the MBEBOK, and for which a dis-
cussion within the community would be needed. Finally, Section 5
concludes the paper and outlines some future activities. A final
Annex provides an initial Glossary of MBSE terms, with the key
definitions of the main concepts of the discipline. Such a glossary is
pivotal to achieve the goals of the MBEBOK, being to provide a con-
sistent view of MBSE and a foundation for curriculum development
and individual certification.

2 BACKGROUND
2.1 Bodies of Knowledge
A Body of Knowledge (BoK) is a set of concepts, terminology and
tasks that constitute a professional domain. Often, a BoK is devel-
oped by a professional association (e.g., ACM, IEEE), and captures
the knowledge that is inherent, sometimes tacit, and often explicit
in the interactions and literature that occur in that professional
domain.

The main goals of a BoK on a given discipline are:

• To promote a consistent view of the discipline worldwide;
• To specify the scope of the discipline and to clarify its place
with respect to other related disciplines;

• To characterize the contents and known practices of the
discipline, organizing them in a coherent and comprehensive
manner;

• To provide a foundation for curriculum development and,
when applicable, for individual certification and licensing
material.

A BoK should also provide concrete deliverables:

• A terminology that defines the set of main concepts of the
discipline, as used by their practitioners. It constitutes the
accepted ontology for the specific domain.

• A structured list of the main knowledge areas, skills and
accepted practices of the discipline, covering all the basic
knowledge that any practitioner should posses.

A BoK should always be descriptive, but not prescriptive: inten-
tionally, it should not impose any particular method or tool, or any
specific practice.

With respect to what should be considered as “generally recog-
nized” or as a “good practice” of a discipline, the Project Manage-
ment Body of Knowledge (PMBOK) [20] offers more precise de-
scriptions. First, “generally recognized" means that the knowledge
and practices described are generally applicable to many different
kinds of projects in many situations, and there is consensus about
their value and usefulness. In turn, when we say “Good practice"
it means that there is general agreement that the application of
these skills, tools, and techniques can enhance the chances of suc-
cess over a wide range of projects. It does not mean, however, that
the precise knowledge or practice should always be applied to all
projects; the organization and/or project management team should
be the ultimate responsible for determining what practices are more
appropriate for a given project in a certain situation.

Currently there are a number of BoKs for various software-
related disciplines; some are mature documents with a rigorous
review and revision process (e.g., SWEBOK), whilst others are evolv-
ing (e.g., SLEBOK):

• Software Engineering Body of Knowledge (SWEBOK) [6]
• Systems Engineering Body of Knowledge (SEBOK) [2]
• Data Management Body of Knowledge (DMBOK) [10]
• Enterprise Architecture Body of Knowledge (EABOK) [12]
• Business Analysis Body of Knowledge (BABOK) [13]
• Project Management Body of Knowledge (PMBOK) [20]
• Automation Body of Knowledge (ABOK) [22]
• Software Language Engineering BoK (SLEBOK) [25]

2.2 The Software Engineering BoK (SWEBOK)
In 2004, the IEEE Computer Society established for the first time
a baseline for the body of knowledge for the field of software en-
gineering. It was the outcome of a joint committee with ACM,
whose mission was “to establish the appropriate sets(s) of criteria
and norms for professional practice of software engineering upon
which industrial decisions, professional certification, and educa-
tional curricula can be based."

The SWEBOKwas developed as an international collective effort,
in order to achieve the goal of providing a consistent worldwide
view of software engineering. The committee appointed two chief
editors, several co-editors to support them, and editors for each of
the Knowledge Areas. All chapters were openly reviewed, in an
editing process that engaged approximately 150 reviewers from
33 countries. Professional and scientific societies, as well as public
agencies from all over the world involved in software engineering
were contacted, made aware of this project, and invited to partici-
pate in the review process too. Presentations on the project were
made at various international venues. The 2004 edition was revised

Towards a Body of Knowledge for Model-Based Software Eng. MODELS ’18 Companion, October 14–19, 2018, Copenhagen, Denmark

Figure 1: Breakdown of Topics for the Software Engineering
Models and Methods KA in SWEBOK (from [6]).

in 2014, using the same edition process, giving birth in 2014 to the
current version (v3) of the SWEBOK [6].

It should be noted that the SWEBOK provides a “Guide to the
Software Engineering BoK", but it does not aim at describing the
entire body of knowledge for software engineering. Instead, the
SWEBOK serves as a guide to the existing BoK that has been devel-
oped since the start of the discipline.1

SWEBOK V3.0 defines 15 Knowledge Areas (KA), plus an Ap-
pendix that lists the IEEE and ISO/IEC International Standards
supporting the SWEBOK.

One complete Knowledge Area (Chapter 9) of the SWEBOK is
dedicated to Software Engineering Models and Methods. As stated
in the SWEBOK, “software engineering models and methods im-
pose structure on software engineering with the goal of making
that activity systematic, repeatable, and ultimately more success-
oriented. Using models provides an approach to problem solving,
a notation, and procedures for model construction and analysis.
Methods provide an approach to the systematic specification, de-
sign, construction, test, and verification of the end-item software
and associated work products.”

Figure 1 shows the breakdown of topics for the SE Models and
Methods Knowledge Area (Chapter 9). We list them below:

• Modeling: discusses the general practice of modeling, and
presents:
– The basic modeling concepts and principles

1It is generally agreed that Software Engineering as a distinct discipline originated in
the NATO conference of the same name, held in Germany in 1968 to discuss, for the
first time, the software crisis.

– Properties (completeness, consistency correctness) and
expression of models (as typed and attributed element rep-
resenting entities and associations representing relation-
ships among them, using graphical or textual notations)

– Syntax, Semantics and Pragmatics of models
– Preconditions, postconditions and invariants as specifica-
tion mechanisms

• Type of models: briefly discusses models and aggregation
of submodels and provides some general characteristics of
model types commonly found in the software engineering
practice, including:
– Information models (aka conceptual models)
– Behaviour models (state machines, control-flow models,
dataflow models)

– Structure models (e.g., UML class, component, object, de-
ployment, and packaging diagrams)

• Analysis of models: presents some of the common analysis
techniques used in modeling to verify:
– Completeness
– Consistency
– Correctness
– Traceability
– Interaction analysis

• Software Engineering Methods: presents a brief summary
of commonly used software engineering methods, including
heuristic methods, formal methods, prototyping, and agile
methods. This part is more general, and aimed to apply to
any SE discipline, not only to MBSE.

By looking at them, we see that the coverage of MBSE concepts
and mechanisms is rather appropriate, but some essential concepts
of MBSE — such as model transformations, executable models,
or code generation, for instance — which should be part of the
education of any MBSE practitioner, are not contemplated in the
SWEBOK.

Furthermore, although the SWEBOK provides definitions for
some MBSE concepts, not all of them are precisely defined, and
even in some cases the SWEBOK definitions miss some important
features and characteristics of the defined concepts that have been
later identified by the modeling community. In this respect, provid-
ing precise definitions for all the main MBSE terms is another goal
of this proposal.

Apart from the SWEBOK topics mentioned above, the SWEBOK
lists in its Annex B the International Standards related to the Soft-
ware Engineering Models and Methods KA. There are three groups
of standards, depending on their scope.

First it lists the standards about modeling notations:

• IEEE Std. 1320.1-1998 Standard for Functional Modeling Lan-
guage – Syntax and Semantics for IDEF0

• IEEE Std. 1320.2-1998 Standard for Conceptual Modeling
Language – Syntax and Semantics for IDEF1X97 (IDEFobject)

• ISO/IEC 19501:2005 Information Technology – Open Dis-
tributed Processing – Unified Modeling Language (UML)
Version 1.4.2

• ISO/IEC 19505:2012 [two parts] Information Technology
– Object Management Group Unified Modeling Language
(OMG UML)

MODELS ’18 Companion, October 14–19, 2018, Copenhagen, Denmark F. Ciccozzi et al.

• ISO/IEC 19506:2012 Information Technology – Object Man-
agement Group Architecture-Driven Modernization (ADM)
– Knowledge Discovery Meta-Model (KDM)

• ISO/IEC 19507:2012 Information Technology – Object Man-
agement Group Object Constraint Language (OCL)

A second group of standards is related to tools:
• IEEE Std. 14102-2010 StandardAdoption of ISO/ IEC 14102:2008
Information Technology – Guideline for the Evaluation and
Selection of CASE Tools

• IEEE Std. 14471-2010Guide –Adoption of ISO/IECTR 14471:2007
Information Technology – Software Engineering – Guide-
lines for the Adoption of CASE Tools

• IEEE Std. 1175.1-2002 Guide for CASE Tool Interconnections
– Classification and Description

• IEEE Std. 1175.2-2006 Recommended Practice for CASE Tool
Interconnection – Characterization of Interconnections

• IEEE Std. 1175.3-2004 Standard for CASE Tool Interconnec-
tions – Reference Model for Specifying Software Behavior

• IEEE Std. 1175.4-2008 Standard for CASE Tool Interconnec-
tions – Reference Model for Specifying System Behavior

The third group of standards included in the SWEBOK for the
SE Models and Methods KA is related to the environments of the
systems:

• ISO/IEC/IEEE 26515:2012 Systems and Software Engineering
– Developing User Documentation in an Agile Environment

• ISO/IEC 15940:2006 Information Technology – Software En-
gineering Environment Services

Finally, there is one standard common to all SWEBOKKnowledge
Areas, about terminology.

• ISO/IEC/IEEE 24765:2010 Systems and Software Engineering
– Vocabulary

The inclusion of references to standards in the MBEBOK is some-
thing that will be discussed later in Section 4.

2.3 The Software Language Engineering BoK
(SLEBOK)

The field of Software Language Engineering (SLE) has emerged to
connect and integrate different research disciplines such as com-
piler construction, reverse engineering, software transformation,
model-driven engineering, and ontologies, in order to identify the
principles and practices of engineering software languages — i.e., ar-
tificial languages that may ultimately be implemented on a machine.
SLEBOK is an ongoing initiative to capture a Body of Knowledge on
SLE. ADagstuhl seminar [9] was held to capture a preliminary set of
artefacts, definitions, methods, best practices, open challenges, etc.
The intent was for these to be consolidated in the SLEBOK, which
is currently evolving. Whilst SWEBOK and several other BoKs have
a mature process for their continued evolution and development,
SLEBOK does not yet have such a process. However, SLEBOK is
noteworthy in that it is very open, and via its Git repository, anyone
can contribute to the revision process.

MBE principles and techniques can be used for Software Lan-
guage Engineering (e.g., metamodels can be used to define the
abstract syntax of software languages). As such, there are relation-
ships between SLEBOK and MBEBOK. These relationships are still

evolving, due to the relative immaturity of both BoKs, but we can
make some key observations:

• SLEBOK defines notions of model and metamodel which
are not incompatible with MBEBOK, though MBEBOK’s
definitions are more elaborated.

• SLEBOK does mention the notion of static semantics, but
does not elaborate on language semantics, whereasMBEBOK
explicitly captures semantics as a key concept.

• SLEBOK and MBEBOK treat abstract and concrete syntax
differently; whilst these are first-class concepts in MBEBOK,
their notions are distributed across multiple concepts in
SLEBOK.

3 TOPICS FOR A BOK ON MODEL-BASED
SOFTWARE ENGINEERING

The following list of topics contain those that we consider highly
relevant for the MBEBOK, since they must be part of the knowledge
that any MBSE practitioner should posses. The list below is in
no particular order and the structure is indicative. Topics marked
with an ampersand (&) indicate that they are already covered in
the SWEBOK. Topics marked with a hash (#) indicate that they
are partially covered in the SWEBOK, or simply mentioned. The
numbers accompanying the marks show the SWEBOK section in
which these topics are described.

• Model Foundations
– Syntax

∗ Abstract vs. concrete syntax
∗ Textual vs. visual models

– Semantics
∗ Structural (#2.2)
∗ Behavioral (discrete vs. continuous) (#2.3)
∗ Informational (&2.1)

– Purpose/intent
∗ Modeling principles (&1.1)
∗ Exemplar purposes: such as Metamodeling or model
transformation definition

• Multiview Modeling
• Model Quality
– Completeness (&3.1)
– Consistency (&3.2)
– Correctness (&3.3)
– Comprehensibility
– Confinement (= fitness for purpose)
– Changeability

• Modeling Languages
– Language definition

∗ Metamodels
∗ Grammars
∗ Semantics (by e.g. Abstract State Machines or model
transformations)

– Types of modeling languages
∗ General purpose (GPL): UML+OCL, SysML
∗ Domain-specific (DSL): UML Profiles, Language Work-
benches, ADLs, ...

• Model Maintenance and Evolution
– Versioning

Towards a Body of Knowledge for Model-Based Software Eng. MODELS ’18 Companion, October 14–19, 2018, Copenhagen, Denmark

– Migration
• Model Visualization
– Physics of notations
– Layout
– Animation

• Model Execution
– Model simulation (#3.5)

∗ Model co-simulation (simulation of a hybrid model)
– Execution strategies (sequential vs. parallel)
– Model debugging and testing

• Model Transformations
– Model transformation languages

∗ Syntax
∗ Semantics

– Model transformation types [16]
∗ Text-to-Model, Model-to-Model, Model-to-Text
∗ Exogenous vs. endogenous
∗ In-place vs. out-place
∗ Horizontal vs. vertical
∗ Uni-directional vs. bidirectional
∗ Syntactical vs. semantic
∗ Transformation paradigm (declarative vs. operational)

– Model transformation applications
∗ Model translation (synthesis, code generation, reverse
engineering, migration, optimization, refactoring, re-
finement, adaptation) [15]

∗ Model merge
∗ Model differencing
∗ Model weaving
∗ Model synchronization (#3.4)
∗ Model interpretation (incl. execution)

• Analysis
– Structural model analysis

∗ Invariant checking (#1.4)
∗ Instance generation
∗ Metrics calculation
∗ Smells detection

– Behavioural model analysis
∗ Pre-postcondition checking (#1.4)
∗ Simulation (#3.5)
∗ Reachability analysis
∗ Temporal model checking
∗ Performance

– Model transformation analysis
∗ Correctness (of transformed models, in syntax and se-
mantics)

∗ Completeness
∗ Functional behaviour (termination, confluence)
∗ Performance

4 ISSUES FOR DISCUSSION
This section identifies some issues that were discussed during the
preparations of the contents of the MBEBOK, but for which no clear
decision was reached. We think that they are sufficiently important
to be discussed within the MBSE community, and in this sense the

MODELS Educators Symposium provides an excellent forum where
they can be debated.

4.1 Integration with the SWEBOK
Section 3 above has listed the main concepts that a MBEBOK should
contain, in order to extend the current contents of the SWEBOK.
However, there are several alternatives for implementing such an
extension.

In the first place, we could try to respect the current SWEBOK
structure and contents, just adding some paragraphs to the existing
text, and some new subsections if needed. This kind of conservative
approach to the extension was our original aim, but it somehow
forces an unnatural structure in the contents of the chapter for the
new concepts.

A second option would be to replace some complete sections
of Chapter 9, providing a more natural and cohesive structure of
the concepts. However, this would mean rewriting most parts of
the chapter, something which would end up being really disruptive
with respect to the current version of SWEBOK.

We even discussed the possibility, as the third alternative, of
creating a complete BoK, separating from SWEBOK. This is the
approach followed by, e.g., the SLEBOK. This option would have the
main advantage of creating a dedicated BoK that would perfectly
fit with our discipline, including not only the modeling concepts
but also specializing other aspects such as design or testing. As
weak points, being an Engineering discipline we would be forced
to repeat many portions of the SWEBOK, since our intersection
is by no means small (ranging from foundations to economic and
professional issues, to mention just two extreme topics).

4.2 Integration with the SLEBOK
How to design, develop andmaintainmodeling languages could also
be considered as very important for any MBSE practitioner. In fact,
a number of topics listed in Section 3 already cover several aspects
related to Software Language Engineering that apply to modeling
languages. Although in theory the SLEBOK should address most of
these topics, by looking at its current contents it does not seem to
cover some MBSE topics adequately. Simple topics such as syntax
and semantics are not covered in their generality, or at least with
not enough level of detail for our purposes.

Similarly to what we are proposing here with the SWEBOK,
the relationship between the MBEBOK and the SLEBOK should
be clarified, stating the scopes of both BoKs, identifying their in-
tersecting concepts and mechanisms, and making sure they are
treated consistently in both Guides. This is not a trivial issue, given
the current status of the SLEBOK and its lack of a stable version.
However, the fact that the SLEBOK is still under development can
also be an advantage: now that we have identified the topics that
should be part of the MBEBOK, it would be a matter of defining
an integration strategy that permit complementing the contents of
both BoKs in a successful manner.

4.3 Further topics to be considered
In addition to the topics listed in Section 3, during the internal
discussions carried out among the authors of this paper, some
further topics that could also be of interest for the MBEBOK were

MODELS ’18 Companion, October 14–19, 2018, Copenhagen, Denmark F. Ciccozzi et al.

identified. It is still to be decided whether they should be part of
the MBEBOK or not. Again, we wanted to raise these issues in this
section, so that they can be easily identified and discussed within
the MBSE community.

The initial list of topics that we think that would require some
discussion are the following:

4.3.1 Application domains. Models are currently used with a
significant level of success in different research and industrial set-
tings, where the application of Model-Based Software Engineering
practices can provide interesting benefits. Automotive and Cyber-
Physical Systems are examples of these application domains. Al-
though a description on how models are used in these domains
would be beneficial for any MBSE practitioner, and should be part
of their background, it was not clear whether they need to be in-
corporated into the MBEBOK or not.

4.3.2 Advanced topics. In addition to the topics listed in Sec-
tion 3, some further topics were also considered for inclusion in
the MBEBOK, including:

• Megamodels
• Models@run.time
• Multilevel modeling

Should these, as well as other emerging concepts (e.g., streaming
models or partial models) and techniques (e.g., incremental or non-
deterministic model transformations) be included in the MBEBOK?
Where should the line be drawn? In this respect, drawing a line is
also a matter of abstraction. What are the general topics? Which
ones are too specific?

4.3.3 International Standards. The references to modeling stan-
dards in the SWEBOK (and hence in the MBEBOK) were questioned.
Some of the standards currently listed in the SWEBOK do not seem
to be relevant or widely used any more by the modeling commu-
nity (in particular, most of the tool-related standards). Other ref-
erences and documented practices are however highly recognized
and widely adopted (e.g. those from the Eclipse Foundation, acting
as de-facto standards. Should they be included in the MBEBOK,
too? The problem with MBSE-related standards is that they may
evolve too rapidly, which is an argument for their exclusion (like
for MBSE tools, which for that reason we chose to omit — see Sec-
tion 4.4). For example, the SWEBOK mentions the initial versions
of UML (1.4, 2.0), now completely superseded. On the other hand,
not including any international standard would probably send a
wrong message to industry — specially because MBSE practitioners
do use standards and do care about interoperability and reusability
of the artefacts of the discipline.

4.3.4 Application scenarios. In addition to the code generation
and analysis possibilities provided byMBSE, mentioned in Section 3,
there are other scenarios in which principles of MBSE play an
important role. A non-exhaustive list:

• Model mining — the principle of automatically deriving mod-
els from existing repositories and logs; for instance, struc-
tural models [7], feature models [11], database schemas [8]
or process models [1].

• Model learning — the principle of actively deriving models
by well-chosen invocation of functionality; e.g., [21].

• Model-based testing — the principle of automatically deriving
tests from behavioural models; e.g., [24].

• Model-based modernization — the principle of using high-
level models of an existing system to represent it, and later
use model-driven techniques on these models to refactor,
improve, or migrate it to other platforms; see, e.g., [14, 18].

• Model checking — the principle of verifying a system by
systematically exploring its behavioural model; see, e.g., [3].

A description of these application scenarios can help MBSE prac-
titioners understand the scope of the discipline and of its current ap-
plication areas (within the broader Software Engineering field). The
question is whether these (or other) application scenarios should be
included in the MBEBOK or not; and if so, at which level of detail.

4.4 Topics not covered in this proposal
Some topics were by design omitted from this proposal: in particular,
concrete tools and engineering processes. The former were omitted
because they typically evolve too rapidly to be part of a BoK. With
respect to specific MBSE processes, the current coverage of SE
processes in the SWEBOK could be sufficient for our purposes;
otherwise we would need a specialization of the complete SWEBOK,
something that was not the main goal of this initial proposal.

5 CONCLUSIONS AND FUTUREWORK
This paper has presented an initial proposal for an extension of
the contents of SWEBOK with the set of fundamental concepts,
terms and mechanisms that should constitute the MBSE Body of
Knowledge. As such, it aims to characterize the contents and known
practices of the MBSE discipline and, in particular, to assist univer-
sities and other institutions that provide teaching courses on SE to
develop their MBSE curricula.

This proposal is designed to serve as a working document that
can be used to foster the discussions within the MBSE community
about the main contents of the MBEBOK, its relationships with
other BoKs, and about how to extend the current contents of the
SWEBOK with the specific MBSE topics identified here.

Once this proposal is discussed among the members of the mod-
eling community, and completed with their suggestions and rec-
ommendations, we plan to prepare a white paper that could serve
to raise the discussions on a MBEBOK to wider forums and other
communities (SLE, general SE), and eventually lead to a concrete
and agreed proposal for the contents of a MBEBOK.

Acknowledgements. We would like to thank the reviewers for
their valuable comments and suggestions. This paper has been
partially funded by the following research projects and grants:
Spanish Research Project TIN2014-52034-R, by the Austrian Re-
search Promotion Agency (FFG) via the Austrian Competence Cen-
ter for Digital Production (CDP) under the contract number 854187,
by the Austrian Federal Ministry of Science, Research and Econ-
omy and the National Foundation for Research, Technology and
Development, and the Knowledge Foundation (KKS) through the
MOMENTUM project.

Towards a Body of Knowledge for Model-Based Software Eng. MODELS ’18 Companion, October 14–19, 2018, Copenhagen, Denmark

REFERENCES
[1] W.M.P van der Aalst. 2011. Process discovery: An Introduction. In Process Mining.

Springer, Chapter 5, 125–156. https://doi.org/10.1007/978-3-642-19345-3_5
[2] Rick Adcock (Ed.). 2017. Guide to the Systems Engineering Body of Knowledge

(SEBoK), Version 1.9. https://www.sebokwiki.org
[3] C. P. Baier and J. P. Katoen. 2008. Principles of Model Checking. MIT Press.
[4] Jean Bézivin, Frédéric Jouault, and Patrick Valduriez. 2004. On the Need for

Megamodels. In Proceedings of the OOPSLA/GPCE 2004 workshop on Best Prac-
tices for Model-Driven Software Development. https://hal.archives-ouvertes.fr/
hal-01222947

[5] Gordon S. Blair, Nelly Bencomo, and Robert B. France. 2009. Models@run.time.
IEEE Computer 42, 10 (2009), 22–27. https://doi.org/10.1109/MC.2009.326

[6] Pierre Bourque and Richard E. Fairley (Eds.). 2014. Guide to the Software Engi-
neering Body of Knowledge (SWEBOK), Version 3.0. IEEE Computer Society Press.
https://www.computer.org/web/swebok

[7] Hugo Brunelière, Jordi Cabot, Grégoire Dupé, and FrédéricMadiot. 2014. MoDisco:
A model driven reverse engineering framework. Information & Software Technol-
ogy 56, 8 (2014), 1012–1032. https://doi.org/10.1016/j.infsof.2014.04.007

[8] Roger H. L. Chiang, Terence M. Barron, and Veda C. Storey. 1994. Reverse
Engineering of Relational Databases: Extraction of an EER Model from a Rela-
tional Database. Data Knowl. Eng. 12, 2 (1994), 107–142. https://doi.org/10.1016/
0169-023X(94)90011-6

[9] Benoit Combemale, Ralf Lämmel, and Eric VanWyk. 2018. SLEBOK: The Software
Language Engineering Body of Knowledge (Dagstuhl Seminar 17342). Dagstuhl
Reports 7, 8 (2018), 45–54. https://doi.org/10.4230/DagRep.7.8.45

[10] DAMA International (Ed.). 2017. Data Management Body of Knowledge (DMBOK),
2nd edition. https://technicspub.com/dmbok/

[11] Jean-Marc Davril, Edouard Delfosse, Negar Hariri, Mathieu Acher, Jane Cleland-
Huang, and Patrick Heymans. 2013. Feature model extraction from large col-
lections of informal product descriptions. In Joint Meeting European Software
Engineering Conference and ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering (ESEC/FSE), Bertrand Meyer, Luciano Baresi, and Mira Mezini
(Eds.). ACM, 290–300. https://doi.org/10.1145/2491411.2491455

[12] EA community (Ed.). 2015. Enterprise Architecture Body of Knowledge (EABOK).
http://www.eabok.org/

[13] IIBA (Ed.). 2015. Business Analysis Body of Knowledge (BABOK), version 3. Inter-
national Institute of Business Analysis (IIBA). http://www.iiba.org/babok-guide.
aspx

[14] Vitaly Khusidman and William Ulrich. 2007. Architecture-Driven Modernization:
Transforming the Enterprise. OMGDocument admtf/07-12-01. https://www.omg.
org/cgi-bin/doc?admtf/07-12-01.pdf http://www.omgwiki.org/admtf/doku.php.

[15] Levi Lúcio, Moussa Amrani, Juergen Dingel, Leen Lambers, Rick Salay, Gehan
M. K. Selim, Eugene Syriani, and Manuel Wimmer. 2016. Model transformation
intents and their properties. Software and System Modeling 15, 3 (2016), 647–684.

[16] Tom Mens and Pieter Van Gorp. 2006. A Taxonomy of Model Transformation.
Electr. Notes Theor. Comput. Sci. 152 (2006), 125–142. https://doi.org/10.1016/j.
entcs.2005.10.021

[17] Parastoo Mohagheghi, Vegard Dehlen, and Tor Neple. 2009. Definitions and
Approaches to Model Quality in Model-based Software Development - A Review
of Literature. Inf. Softw. Technol. 51, 12 (Dec. 2009), 1646–1669. https://doi.org/
10.1016/j.infsof.2009.04.004

[18] Object Management Group. 2018. OMG Software Modernization standards. https:
//www.omg.org/spec/category/software-modernization/

[19] Gary R. Oliver. 2012. Foundations of the Assumed Business Operations and Strategy
Body of Knowledge (BOSBOK): An Outline of Shareable Knowledge. Darlington
Press.

[20] Project Management Institute (Ed.). 2017. A guide to the Project Manage-
ment Body of Knowledge (PMBOK guide), 6th edition. https://www.pmi.org/
pmbok-guide-standards/foundational/pmbok

[21] Harald Raffelt and Bernhard Steffen. 2006. LearnLib: A Library for Automata
Learning and Experimentation. In Fundamental Approaches to Software Engineer-
ing (FASE) (Lecture Notes in Computer Science), Luciano Baresi and Reiko Heckel
(Eds.), Vol. 3922. Springer, 377–380. https://doi.org/10.1007/11693017_28

[22] Nicholas P. Sands and Ian Verhappen (Eds.). 2018. Automation Body of
Knowledge (ABOK), 3rd edition. The International Society of Automation (ISA).
https://www.isa.org/store/a-guide-to-the-automation-body-of-knowledge,
-third-edition/60891879

[23] Bran Selic. 2003. The Pragmatics of Model-Driven Development. IEEE Software
20, 5 (2003), 19–25. https://doi.org/10.1109/MS.2003.1231146

[24] Mark Utting, Alexander Pretschner, and Bruno Legeard. 2012. A taxonomy of
model-based testing approaches. Softw. Test., Verif. Reliab. 22, 5 (2012), 297–312.
https://doi.org/10.1002/stvr.456

[25] Vadim Zaytsev (Ed.). 2017. Software Language Engineering Body of Knowledge
(SLEBOK). http://slebok.github.io/

ANNEX I: GLOSSARY OF TERMS
This glossary of terms contains the definitions of some of the main
MBSE concepts, which could be useful for providing a consistent
view of MBSE as a discipline, and as part of the foundations for
curriculum development and individual certification of MBSE prac-
titioners. In its current form, it mirrors the ongoing discussion and
it does not claim to be complete. It is part of our future work to
further develop it.

Model: A representation or specification of a system consisting of
(a combination of) components, applications and actors and their
interconnection, from a given point of view, and with a particular
purpose.

Notes:

(1) In the SWEBOK, a model is defined as “an abstraction or
simplification of a software component,” which does not
comprises all essential aspects of a software model.

(2) The purpose of models [23]
– To understand the interesting characteristics of an existing
or desired (complex) system and its environment

– To predict the interesting characteristics of the system by
analysing its model(s)

– To communicate their understanding and design intent
(to others and to oneself!)

– To specify the implementation of the system (models as
blueprints)

(3) Characteristics of useful Engineering Models [23]:
– Purposeful: Constructed to address a specific set of con-
cerns/audience

– Abstract: Emphasize important aspects while removing
irrelevant ones

– Understandable: Expressed in a form that is readily under-
stood by observers

– Accurate: Faithfully represents the modeled system
– Predictive: Can be used to answer questions about the
modeled system

– Cost effective: Should be much cheaper and faster to con-
struct than actual system.

Domain Specific Model: A model written in a domain specific
language.

Domain Specific Language: A language which offers concepts
and notations closer to the domain experts, at an appropriate level
of abstraction, and with a particular purpose.

Model Quality Terms [17]:

• A model is comprehensible if it is understandable by the
intended users, being humans or tools.

• A model is confined if it suits to the modeling purpose and
the type of system. This definition also includes relevant
diagrams at the right abstraction level. A confined model
does not have unnecessary information and is not more
complex or detailed than necessary.

• A model is changeable if it can be evolved rapidly and
continuously

https://doi.org/10.1007/978-3-642-19345-3_5
https://www.sebokwiki.org
https://hal.archives-ouvertes.fr/hal-01222947
https://hal.archives-ouvertes.fr/hal-01222947
https://doi.org/10.1109/MC.2009.326
https://www.computer.org/web/swebok
https://doi.org/10.1016/j.infsof.2014.04.007
https://doi.org/10.1016/0169-023X(94)90011-6
https://doi.org/10.1016/0169-023X(94)90011-6
https://doi.org/10.4230/DagRep.7.8.45
https://technicspub.com/dmbok/
https://doi.org/10.1145/2491411.2491455
http://www.eabok.org/
http://www.iiba.org/babok-guide.aspx
http://www.iiba.org/babok-guide.aspx
https://www.omg.org/cgi-bin/doc?admtf/07-12-01.pdf
https://www.omg.org/cgi-bin/doc?admtf/07-12-01.pdf
http://www.omgwiki.org/admtf/doku.php
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1016/j.infsof.2009.04.004
https://doi.org/10.1016/j.infsof.2009.04.004
https://www.omg.org/spec/category/software-modernization/
https://www.omg.org/spec/category/software-modernization/
https://www.pmi.org/pmbok-guide-standards/foundational/pmbok
https://www.pmi.org/pmbok-guide-standards/foundational/pmbok
https://doi.org/10.1007/11693017_28
https://www.isa.org/store/a-guide-to-the-automation-body-of-knowledge,-third-edition/60891879
https://www.isa.org/store/a-guide-to-the-automation-body-of-knowledge,-third-edition/60891879
https://doi.org/10.1109/MS.2003.1231146
https://doi.org/10.1002/stvr.456
http://slebok.github.io/

MODELS ’18 Companion, October 14–19, 2018, Copenhagen, Denmark F. Ciccozzi et al.

Modeling Language:A specification of a family of models. A lan-
guage definition can take more than one form; in the context of
model-driven engineering, a very common form is through a meta-
model, but another well-known form is a grammar. The family of
(well-formed) models specified as a language is sometimes called
the extension of the language.

Models@Run.time: A causally connected self-representation of
the associated system that emphasizes the structure, behavior, or
goals of the system from a problem space perspective. [5]

Model Transformation: (1) An algorithmic specification (declar-
ative or operational) of the relationship between models. (2) A
model transformation is the automatic generation of one or more
target models from one or more source models, according to a trans-
formation definition [16]. A model transformation can be defined
by an algorithmic specification (declarative or operational) of the
relationship between the source and target models.

Metamodel: A model that specifies the abstract syntax of a model-
ing language, including the language concepts, the relationships
and constraints among them, and the well-formedness rules of the
language.

Megamodel: A model whose elements are modeling languages,
models, metamodels, transformations, etc. [4]

Multi-view Modeling: An approach to modeling systems using
a set of well defined viewpoints, each one expressing a different
concern of the same system, and related by a set of viewpoint
correspondences.

Notes:
(1) This approach enables separation of concerns, since each

viewpoint focuses on one particular aspect of the system
(2) It is also referred to as Multi-paradigm modeling, when the

languages used in each viewpoint are of different nature (e.g.,
discrete and continuous, operational and functional)

Viewpoint (on a system): A form of abstraction achieved using
a selected set of architectural concepts and structuring rules, in
order to focus on particular concerns within a system. Normally a
viewpoint is defined by a metamodel, which defines the concepts
of interest to the viewpoint, their relationships, and their integrity
constraints.

Viewpoint correspondence: A statement that some elements in
the specification of one viewpoint are related to (e.g., describe the
same entities as) elements in a specification of a second viewpoint.

View: A model of a system from a particular viewpoint (i.e., the
model conforms to the metamodel defined for that viewpoint).

	Abstract
	1 Introduction
	2 Background
	2.1 Bodies of Knowledge
	2.2 The Software Engineering BoK (SWEBOK)
	2.3 The Software Language Engineering BoK (SLEBOK)

	3 Topics for a BoK on Model-based Software Engineering
	4 Issues for Discussion
	4.1 Integration with the SWEBOK
	4.2 Integration with the SLEBOK
	4.3 Further topics to be considered
	4.4 Topics not covered in this proposal

	5 Conclusions and Future Work
	References

