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Binary morphisms and fractal curves

Alexis Monnerot-Dumaine∗

June 13, 2010

Abstract

The Fibonaccci morphism, the most elementary non-trivial binary morphism, generates the
infinite Fibonacci word Fractal through a simple drawing rule, as described in [12]. We study,
here, families of fractal curves associated with other simple binary morphisms. Among them
the Sierpinsky triangle appears. We establish some properties and calculate their Hausdorff
dimension.

Fig.1:fractal curves generated by simple binary morphisms

1 Definitions

1.1 Morphisms and mirror morphisms

In this paper, we will call ”elementary morphisms”, binary morphisms σ such that, for any let-
ter a, |σ(a)| < 4. This includes the well known Fibonacci morphism and the Thue-Morse morphism.

Let a morphism σ defined, for any letter a, by σ(a) = a1a2a3 . . . an, then its mirror σ is such
that σ(a) = an . . . a3a2a1

A morphism σ is said to be ”composite” if we can find two other morphisms ρ and τ for which,
for any letter a, σ(a) = ρ(τ(a)).
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1.2 The odd-even drawing rule (OEDR)

Let w be a binary word defined in a two letters alphabet 0;1. We define the odd-even drawing rule
iteratively as follows : Take the nth letter of a.
- draw a segment forward
- If the letter is ”0” then :
. turn left if ”n” is even
. turn right if ”n” is odd
and iterate

We will define P(w) be the curve generated from the word w. We define also the instructions
F = ”draw a segment forward”, L = ”draw a segment forward and turn left” and R = ”draw a
segment forward and turn right”.
Then, for example:
- P(0) is generated by the instruction R
- P(1) is generated by the instruction F
- P(10) is generated by the instructions FL

1.3 Curves associated to a morphism

The curves studied here are all the result of repeated iterations of an elementary morphism, start-
ing from the value 0, through the OEDR. Let k be an iteration number and σ a morphism, then we
will consider the words σk(0), and the associated curves P(σk(0)). We will sometimes call these
curves Pk, for short, when the context is sufficiently clear about the morphism concerned.
In this article, we will concentrate also on self-avoiding curves which present interesting proper-
ties of density and self-similarity. Every time we choose the most suitable value for the angle so
that those properties appear more clearly. We will see π/2 and 2π/3 are the most interesting angles.

Let’s take an example of such a curve, with the Thue-Morse word. The Thue-Morse morphism
is defined by t(0) = 01 and t(1) = 10;

The Thue-Morse word TM is the word generated by the the infinite iteration of the Thue-Morse
morphism : TM = 011010010110100110010110... This sequence has been described by Axel Thue
in [17] and [17].

Applying the Odd-Even drawing rule to the Thue-Morse word TM generates a path P(TM)
illustrated in the figure below. The path follows the instructions RFFLFLRFRFFLFLRFFLR-
FRFFL... The pattern unravels in a non-periodic series of turns. It is not self-intersecting. The
general aspect of P(TM) is a straight line, whatever the angle chosen for the turns : π/2 or 2π/3.

Fig.2: Pattern associated to the Thue-Morse word

1.4 Hausdorff dimension of self-similar curves

In this article, we will use a formula for the Hausdorff dimension described in [8] and [11]. If a
given curve displays n distinct self-similarities of ratios rk, and providing the open condition holds,
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then its Hausdorff dimension d is a solution of the equation:

n∑
k=1

rdk = 1(1)

2 The Fibonacci word fractal curve
This curve has been extensively described in [12], the reader should refer to this paper for more

details. We will just list here all the elementary morphisms that can generate this pattern and the
different variants.
The Fibonacci morphism is defined by 0 → 01 and 1 → 0. Iterating this morphism several times
generates the Fibonacci words.
The infinite Fibonacci word starts with : 0100101001001010010100100101001001010010.... It is
the fixed point of the Fibonacci morphism.

It is remarkable that no less than 12 different elementary morphims can generate the Fibonacci
word fractal. This reveals the particular role this curve must have among the ones listed here.
One can observe, that all the mirror morphisms and the various compositions of those morphisms
generate the Fibonacci word fractal. What is more, exchanging the role of 0 and 1 in the rule, also
generates this pattern.

morph 0→ 1→ Comments
F1 01 0 Regular Fibonacci morphism
F2 10 0 mirror of F1

F3 001 01 composite : F3 = F1 ◦ F2

F4 010 01 composite : F4 = F 2
1

F5 010 10 composite : F5 = F 2
2 and mirror of F4

F6 100 10 composite : F6 = F2 ◦ F1 and mirror of F3

Fig.2:2 The Fibonacci word curve, F23 segments

Other morphisms can generate a 45Â◦ extended version of the fractal, where the roles of the ”0”
and the ”1” are exchanged:

morph 0→ 1→ Comments
G1 1 01 Exchanging the role of 0 and 1 in the Fibonacci morphism F1.
G2 1 10 mirror of G1

G3 01 011 composite : G3 = G2 ◦G1

G4 01 101 composite : G4 = G2
2

G5 10 101 composite : G5 = G2
1 and mirror of G4.

G6 10 110 composite : G6 = G1 ◦G2 and mirror of G3

It is important to emphasize on the fact that all those curves, although they differ for a limited
number of iterations, converge to the same fractal pattern at infinity.

3 The Pell word fractal curve

3.1 The Pell word

We define the Pell morphism P1:
P1(0) = 001
P1(1) = 0
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Starting from w = 0, we get the sequence of what we will call Pell words :
- 001
- 0010010
- 00100100010010001
Iterating to infinity creates the infinite Pell word.
We can show that, for any iteration k, P k

1 (0) = 2P k−1
1 (0)P k−2

1 (0). Every term is the concatena-
tion of twice the previous term and the term before. This recalls the Pell numbers Pn, defined by
Pk = 2Pk−1 +Pk−2 with P0 = 0 and P1 = 1. The Pell words are then defined by analogy with the
Pell numbers, as the Fibonacci words were defined from the Fibonacci numbers.
We can show that the length of a Pell word at iteration k is |sk(0)| = Pk

We note this morphism is composed : let F1 be the Fibonacci morphism 0→ 01 and 1→ 0, and G
the morphism defined by 0→ 0 and 1→ 01. Then it is straightforward to see that, for any letter
a, P1(a) = (GoF1)(a)

The Pell word is a sturmian word. It has n+1 distinct factors of length n.

The mirror morphism P2 : 0→ 100 and 1→ 0, generates a similar pattern.

3.2 The Pell fractal curve

By the odd-even drawing rule, and chosing an angle of 2π/3, the curve Pk shows rather dense
pattern inscribed in an isosceles trapezoid. The self-similarities appear clearly at any scales. We
notice it can be constructed by juxtaposing two copies of Pk−1 and one Pk−2 in different ways:
Pk−1 +Pk−1 +Pk−2 or Pk−1 +Pk−2 +Pk−1, this will be useful to calculate its Hausdorff dimension
(see below).

Fig.2:2 iterations of the Pell word fractal curve

We notice also clearly that the path is non intersecting.

3.3 The Hausdorff dimension of the Pell fractal

We notice that the curve can be built using two self-similarities of ratio a and one similarity of
ratio a2 see figure. The figure suggests immediately that a + a2 = 1, so a = φ = (1 +

√
5)/2, the

golden ratio.

Fig.2:2 Self-similarities
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Since the curves can be built with similarities, we can use the following formula for the Hausdorf

dimension d : 2φd + φ2d = 1, so d equals:

d =
log (1 +

√
2)

log φ
= 1.8315.. (2)

We notice here the presence of both the golden and the silver ratios [19]. We can then write the
remarquable expression:

d =
log
(

2 + 1
2+ 1

2+...

)
log
(

1 + 1
1+ 1

1+...

) (3)

3.4 Variants

The variants shown here, present a different orientation and can be extended. An extended version
is a curve that is larger but has an overall same aspect. We list here, laso, a particular case we
call ”horned version”. Although it shares some characteristics with the original curve the original
curve, it is clearly different.

morph 0→ 1→ Comment

P3 1 011 an extended version tilted 45Â◦

P4 1 110 mirror of P3

P5 010 0 a ”horned” version. Quite different, see figure”
P6 1 101 mirror of P5. a ”horned” version, extended

It is straightforward that, appart from the horned version, all those curves converge to the same
fracal pattern at infinity.

4 The Sierpinski Triangle, Crown and Wave fractals

Those three patterns are regrouped here, in the same section, because they share notable com-
mon properties :
- they all derive from uniform binary morphisms
- each one of them can be created from two different morphisms or their mirrors.
- those morphisms are morphisms of length 3 (for any letter a, |σ(a)| = 3.)
- none of thoses morphisms is composite
- they all share the same Hausdorff dimension.

morphism 0→ 1→ Word Comments
The Sierpinski Triangle
S1 011 010 01101001001101001101 . . . Sierpinski Triangle 1
S2 101 001 00110100100110100110 . . . Sierpinski Triangle 2
S3 110 010 01001011011001011001 . . . Mirror of S1

S4 101 100 10010110110010110010 . . . Mirror of S2

The Crown fractal
C1 010 011 01001101001001101101 . . . Crown fractal 1
C2 001 101 00100110100100110110 . . . Crown fractal 2
C3 010 110 01011001011011001001 . . . mirror of C1

C4 100 101 10110010110110010010 . . . Mirror of C2

The Wave fractal
W1 001 110 00100111000100111011 . . . Wave fractal 1
W2 011 100 01110010010001101110 . . . Wave fractal 2
W3 100 011 01110010010001101110 . . . Mirror of W1

W4 110 001 00100111000100111011 . . . Mirror of W2

4.1 The fractal curves

Appying the odd-even drawing rule, with an angle of 2π/3, the curve Pk shows 3 kinds of patterns
:

5



Fig.2:2 iterations of the Sierpinski fractal curve

Fig.2:2 iterations of the Crown fractal

Fig.2:2 iterations of the Wave fractal

Again, the self-similarities appear at any scales. We notice also clearly that the paths are non
self-intersecting.

4.2 Their Hausdorff dimension

Each pattern, the Sierpinski triangle, the Crown Fractal or the Wave fractal, can be built by com-
bining 3 copies of itself, twice smaller.
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Fig.2:2 Each pattern is made of three copies of itself, twice smaller

Since the curves can be built with similarities, we can use the following formula for the Hausdorf
dimension d : 3(1/2)d = 1. The Hausdorff dimension is then :

d =
log 3

log 2
= 1.5849.. (4)

5 Conclusion

0→
1 01 10 11 001 010 011 100 101 110

12*1→ 0 FF FF P PH P
00 T T
01 FFb TM T FF FF CO
10 FFb TM T FF FF
11
001 Sb S V
010 S S
011 Pb FFb Cb C V
100 CO V S Sb
101 PHb FFb FFb C C
110 Pb FFb V C Cb
111 P
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