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ABSTRACT

This work proposes a Compact Model Synthesis (CidiS)
Partially Observed Operational Systems (POOS) withsing
the complete knowledge of models. Series of "greyek" fed
with partial observations are built in order to thasize target
variables with compact models. The recursive predes real
time computation is based on Kalman Filters (KFhisT

stochastic approach allows to converge in line tdwa

deterministic models with estimated uncertaintiad aithout
intrusion on the complete model process. Mathemlationtext
is described first and illustrated secondly witlo xamples.
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Parametric Grey Boxes (PGB)
Partially Observed Operational Systems (POOS)
Reduced Order Models (ROM)
Series of Elementary Generic Models (SEGM)
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1. INTRODUCTION

Reduced Order Models (ROM) are generally built in

order to make simulation processes faster.
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These methods are very useful as part of an
optimization process using a High Fidelity Finiteefiaent
Model parameterized by design variables or as qfattte
acceleration process of simulations with a high Ineinof
Degrees Of Freedom. Both objectives are quite rdiffe
insofar as, for optimization, it is interesting tmild
parametric models of small size; while for accelerg
design parameters are useless but accuracy is #ie m
goal. We focus on the framework of optimization revie
this paper refers only to the modeling step.

Numerous methods are available to achieve this. goal
We can classify the methods of Model Reduction tato
families: the first ones aims to provide a bagmning a
subspace which belongs to the space of solutionbnk
the variables of the Full Order Models (FOM) tonaafier
number of variables; Such methods are often caiigzl
methods or "kinematic methods" (KM); The second
methods aims to identify a meta-model able to mlevi
accurate results for selected degrees of freedortheof
FOM; In the following, we will call this methods
"Identification Methods" (IM). Sometimes, in an
optimization framework, both kinds of methods asedi
the first one to reduce the number of variables,stécond
one to build a parametric reduced order model, feee
example R. Filomeno et al. [1]. To reduce the caxpl
systems constituted with several components, ratler
commonplace to reduce each component with KM and to
make the synthesis of the system, see for examglay C
[2] or Guyan [2]. The Way to Build Ritz base hasibe
widely discussed in the previous work and we can
consider two methods: modal approaches and optimal
approaches based on proper orthogonal decompgsition
see for example Balmeés [4]. The non-linear prollem
involve specific Model Order Reduction Techniqusse



for example Kerschen et al. [5]. The final challerig to
build ROM parameterized by design variables, sae fo
instance Amsallem et al. [6] or Balmeés [7].

This work purpose is to build ROM based on
observation of operating systems. "Operating System
could be models during simulations such as theFirate
Element Models (FEM) [8] or operating experimental
devices such as jointed structures in free vibnai@} and
[10] or mation picture of mechanical system. Praubs
ROM are based on Series of Elementary Generic Mode
(SEGM) considered as Parametric Grey Boxes (PGB)
which had to be identified during operating process
priori, the length of SEGM is unknown but the nataf
PGBs is chosen regarding the observed phenomewon. F
example, thermic study are described with firsteord
Ordinary Differential Equations (ODE) in PGBs whase
dynamics are described with second order ODE.
Operating conditions are often imposed for several
problems: Operating Modal Analysis (OMA) of
helicopters or Energy Production Power Supply is
performed during operating conditions. Survey and
diagnostic for help to decision in automated mactufidng
are sometimes carried out in real time in the psce
Motion picture of mechanical scenario or FEM are
composed of large number of observable variabiethdt
case, ROMs built in real time allow saving compiotzl
time and allocated memory. For these reasons KF are
retained in the recursive parametric identificatppocess
of PGBs.

2. KALMAN FILTERS AND SERIES OF ELEMENTARY

GENERIC MODELS

CMS is performed with the help of three differeimds of

KF [11] regarding the nature of analytical modefs i
PGMs. "Classical' Kalman Filters are convenient for
Discrete Linear State Systems (DLSS), Extended Kalm
Filters (EKF) for Discrete Non Linear State Systems
(DNLSS) and Unscented Kalman Filters (UKF) for
systems described with Continuous State SystemS$)CS
as complex dynamic non linear systems, non autonemo
systems or time dependant holonomic systems.

Three kinds of bases are proposed For DLSS (KF) and
DNLSS (EKF) : Generalized Fourier Series (GFS) with
harmonic and non harmonic spectral components (iased
second order systems and for moving trackers onngov
targets), exponential bases for first order systeuth as
relaxation phenomenon, plasticity or thermodynaraicg
polynomial bases for ballistics or unexpected non
autonomous systems. The two first kind of series
(sinusoids bases and exponential bases) are detafkr

in this paper.

2.1

2.2.

State Systems

Three kind of state systems are studied in thiepaghe
first one concerns DLSS which could be writen as :
X.u =F.X,+B U, +W_ 1)

)

State variables

State matrix model
Control matrix model
Control variable vector
Process noise
Observation vector
Observation matrix
Observation noise
time increment

S<KINSCwTX

When the discrete system could not be written bsear
system (with invariant matrix) the DNLSS is assurased

xn+1 = cp()(n’Un) +Wn (3)
Z,=H(X,)+V, (4)
with :

¢@ Non linear state function

H Non linear observation function

In the case of linear continuous time systems thm=&ons
are :

X (t) =F.X(t) +BU(t) +w(t) ®)
Z(t)=H.X(t)+DU (t) +v(t) (6)

For non linear systems, CSS is described in a géner
sense as follows :

X (t) = (X (t),U(t)) +w(t)
Z(t) =H(X(t),u(t)) +v() (®)
All these systems are suitable for KF, EKF or UKF.

()

Kalman Filters

The KF and EKF has been widely used over the past
decades in the case of discrete systems. In thizufation
the state variables are extended to the parametedise
PGBs that are to be identified. It allows to conepan
estimation of the PGBs in the case where the sbafie
solution of the problem is already kwown. For ims&, in
the case of oscillating systems, the time evolutisn
pseudo-harmonic (see section 2.3); in the case of
relaxation system, such as thermodynamics systtras,
evolution is pseudo-exponential (see section ZH4je
incrementation of the EKF requires the linearizatd the
estimated evolution which can lead to a strong
approximation in the case of non-smooth non-linear
systems. In order to avoid this linearization psscdulier
and Uhlmann (1997) have developed the "unscented
kalman filter" UKF [13]. In that method, the estitioan of



2.3.

the state variables and their variances are djrectl
incremented thanks to the unscented transform#tian.
This function can be more generally used to eséntia¢
result of applying a given nonlinear transformationa
probability distribution. The two first moments dfie
distribution are simply propagated by applying the
nonlinear function to a set of point referred tosagma
points. Eliminating the need for linearization afgovides
advantages independent of any improvement in etima
quality. One immediate advantage is that the UT loan
applied to identify the parameters of a Non-lin@&E for
which the solution cannot be analytically solved.
Practically, the implementation of the UKF is alsasier
than EKF.

Series of Elementary Generic Models and bases : oscillating
systems

Second order ODEs often leads to oscillating sohgti In
the case of non linear systems oscillating solstiane
amplitude and frequency modulated.

A sinusoid whose amplitude and frequency are maeldla
over time can be described in the complex domaiamas
analytic signal :

x(t) =a(t)exp(ig(t)) )

where a(t) is the instantaneous complex amplitude a
®d(t) is the instantaneous phase. The discrete forn{tpf x
at the time stept,=nAt is x,=x(nAt). The complex
variablex, can be divided into its real and imaginary parts
Xn=X1ntjX2n. A sinusoid that slightly varies over time can
be approximated by :

x, =a, exp(j(27f nat)) (10)

wheref,, is the instantaneous frequency.

As the parameters fn and an of the sinusoid sligrdly
over time, they are almost equal between two carisec
time steps. Then a transition formulation can beemi
from X, t0 Xp+1:

x,, =a exp(j(2nf nat))xexp(j(27£4t)) (11)

This approximation is only true if modulations aof and

fn are slower that the period of the sinusoid. This
constraint is assumed to be verified. Then a linear
transition is obtained between the imaginary pastand
real partxy,. of X, andXp+; :

[ij _ cos(27f At)  -sin(2 7, At) (xm J 13
Xone) | sin(2nf At)  cos (27 At) [(Xe,

This formulation choice allows keeping the matrin F
linear and time-independent if the signal is ortypéitude
modulated and not frequency modulated (the frequémc
keeps constant).

The instantaneous amplitude an is .

an = \/ an +X§,n (14)

As an and fn should be allowed to vary over tintds i
proposed here to use the following non linear ssptce
formulation :

Xne1=P(Xn)+Wp, (15)

where X,=(X1n Xon Xan)' and W,, the process noise. A
state variablex;, =2mf,At was added to track the
evolution of the instantaneous frequency fn. Thadition
between two time steps is composed by a sum of two
parts: the stationary part and the evolutionary. par

The stationary part links two successive points aof
stationary sinusoid byp(.). Then®(.) is assumed as the
non-linear transition function and is given ©yX,)=F.X,

cos(Xsn) =sin(xs,) O
where Fo = sin(xs,) cos(xs,) O (16)
0 0 1

The two first components are related to the complex
amplitude and are obtained by the previous linektion.
The third component 3%.:=X3, constrains the frequency
not to change strongly between two time steps.

Up to now, the non-stationary behavior of the sidisvas
not modeled because it is not possible to expnessxact
equation for this evolution. We suppose that W a
random variable whose probability law is Gaussian :
W,=N(0,Q), where Q is its variance matrix. Then the
variations of amplitude and frequency are allowed b
random values of W

In a first glance, it could seem strange to ch@sandom
variable for an effect which is generally deterrsiig. For
instance, the variation of frequency excitatioranfengine

is mainly deterministic. Anyway, this state spacesnot
need to represent accurately the evolution of assid on

a long period, but only step by step. Then on atdimoe
scale, a random evolution of an and fn is enoughddel

a non-stationary sinusoid.

For a signal composed of M observable modulated
sinusoidal components, the size of the ROM is M tued
size of the state function is 3M.

and
[cos(x,,) —sin(x;,) O ... 0 0 o]
sin(x;,)  cos(x,,) 0 ... 0 0 0
0 0 1 0 0 0
E (Xn): : : 0 0 0
0 0 0 ... cos (XM(M o ) -sin (XB,S(M i ) 0
0 0 0 ... sin (X3,3(M71)v" ) cos(xm(M 40 ) 0
o 0 0 ... 0 0 1]
X
and Xon a7
X3,n
X = :

X1+3(M -)n

X2+3(M71)‘n

X3+3(M -1)n
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This state space formulation is non linear: théestaatrix
Fn(Xn) is varying over time and depends on the frequency
modulation.

In reality, only the real part,, of the analytic signak,
can be observed. Unlike the transition phase,
observation phase is completely linear

z, = [1 0 0]X,+V,
Z = X, +V

n 1n n

for one sinusoid and slightly more complex for M
sinusoids

z, =100
Z =

n

the
(18)
1 0 0]X,+V,

Xy, teo X +V,

whereV,, is a noise observation random process.

(19)

1+3(M-1)n

Finally, a nonlinear discrete state space model been
derived to model the transition and observatiosiofisoid
components mixed with random processes

®(X,) +W,

Xn+1

Zn+1 H (Xn+1) +Vn+1
where ®(.) is the nonlinear transition function given by
P(Xn)=F(X)X, andH(.) is the linear observation function
given by :
H(X+1)=[1 00 ... 1 0 0]X+1.

(20)

(21)

3.1.

Series of Elementary Generic Models and bases : non

oscillating systems

When the system is compose with first order ODEs or

assumed as a sum of monotone responses, series of
negative exponential are used. The continous state
equation of the elementary generic model with ainis

x(t) = (X0 —aU)exp(—J(t —to)) +au (22)

With :
Xo, o @assumed as initial conditions,and o are constant to

be identified.

The DLSS of this equations is written as :

X g =x e ™+ Una(l— e ™ ) (23)

With At the time increment.
The DNLSS of this equations is written as :

_ -5, At _ 4N
X =X, e " +U a, (1 e )

(24)

The complete SEGM is built as follows for the narvear

state matrix and control matrix :

_efxz.,.m 0 0 -
0 10 0 R
0o 0 o 0 ol (25
F(X0)= 0 o
0 00 ~Xa43(m-1)n 0 0
0 00 0 1o
L0 00 0 0 1]
and (%, (1-¢7%) 0 0 . o 0 01(26)
0 00 . o -
0 00 ° 00
B,(X,)= : . ¢ 00
0 00 .. xln(l_efxzq(M,],,m) o o
0 00 .. o oo
0 00 .. o 00

The observation equation is the same for oéciljm’n non
oscillating systems. and the complete DNLSS is :

Fn (Xn)+Bn (Xn)Un +Wn

H(X,) +V,, @0

—
N X
S =]
i3
11 11

APPLICATIONS

Two kinds of applications are presented. The fose
concerns oscillating systems with amplitude anduesncy
modulated signals tracked with EKF for CMS.

The second study is in the field of thermodynanmd &
treated with UKF.

Oscillating systems and solutions of second order ODEs

Tracked signals are amplitude and frequency moeldlat
The CMS is performed with SEKF based on SEGM. The
expected ROM is composed with two EGM. The first
observed component is around 22 Hz and the second
around 50 Hz. For each component, the amplitude

modulation is determined with the instantaneous
amplitude:
8y =\[Xin X35 (28)

This amplitude could also be obtained by the comple
analytic signal composed of the observed signal (vart)
and its Hilbert transform (imaginary part).

The frequency modulation is determined by the
instantaneous frequency :
X3n
=2 29
" 2mAt (29)

For each tracked signal, spectral amplitudes shewrain
component and lateral modulated bands (Figure 1).
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—— First tracked signal
Second tracked signal

PRI L L £ L
[ 10 20 30 40 50 70 80 90 100
Frequency (Hz)

Figure 1 : Spectrums of two tracked signals.
Symmetric lateral bands are due to modulation &ffea
spectrums

The first tracked signal is frequency and amplitude
modulated (figure 1 and figure 2). The second tdck
signal is only amplitude-modulated and not freqyenc
modulated.

AR

Figure 2 : Time-frequency representation of the first
tracked signal. Magnitude and frequency modulation are
identified with a good accuracy. (Instantaneous frequency
isidentified with 4 significant digits).

Continuous State Systems

System identification has been based largely oorelis-
time models for a long time in the past, ignoriregtain
merits of the native continuous-time models.

In this section, we are interested in the procedofre
determining directly a continuous-time model of a
dynamical system from observed data. That mears, th
differential-equation model is valid whatever the
command nature or sampling data considered. We wil
consider first linear time-invariant (LTI) continue
system. As a simple illustration of this stage, let
consider a first-order system described by a CLSS a
follow:

{x@®} =[F){x®} +[B]u(t)
{2t} =[c]{xt}

In particular:

X b
[ o o
— Zl(t) - Cll 012
{2t} "{zz(t)} {cn } X

C22
where X(t) is the state vector, Y(t) the observatector,
U(t) the input vector, al and a2 invariant paramete
system, bl and b2 the parameters that locate ihat in
vector to the state vector variables, and c11, c22,and
c22 the observation parameters.

(30)

The conversion of the Continuous system (30) into a
recursive discrete system is performed using eiEi€F

by means of exponential discretization techniqug],[1
(Annex A) or UKF using an implicit numerical integion
method named Dormand-Prince method [13], [14].

The resulting discrete-time Kalman model takes the
following form:

_ Xk _ @(Xk—l’uk—l’ Q-l)
o {gk } ) {6’“ }

=H, (%, 6.1)

(32)
Zok

k . . .
Where '[he(d< and H" are nonlinear evolution and observation

functions at time k, théd* a stationary parameter vector at time

k.

a a b,) (b 33
Xew, = | Xy Xo (e T )k (e 24T )k [aijk (az]k Ciak Crok Cark C22,k:| (33)
Xoes = |:X1,k Xox Qg By b:Lk bZ,k Cy1x Ciax Cork Coox ] (34)

Numerical results

This section presents numerical simulation resalteing to
evaluate the performance of the EKF and UKF methods
regarding system identification based on data predu
numerically by the reference model (30). The fogdiarm, u, is

a square signal.

In the reference problem, (30) and (31), the te@hs[B] and
[C] are assumed known and {x} is determined through



numerical integration method implemented in Mat{@lde23;
Runge-Kutta method).

In the Figure 3 and 4, we compare the responseeofeference
model (31) at points observation, Z, to the respoat the
identified system model (33),Zusing Kalman filters, EKF and
UKF, respectively,to evaluate its accuracy at five diffaren
timest = 2s,4s5,65,% ,16.

Both EKF and UKF produce a good accuracy with atmos

equivalent convergence speed in that case, e.gSCLS

In the case of continuous non linear system, sighime-
depend parameters @nd @, only UKF is appropriate. To
process it, we use the same model (30) and the &lgdrithm
is unchanged in comparison with linear case. Hehe
advantage of UKF as regards the implementation Igiitypis
highlighted with respect to the EKF. This latter thaelology
actually is not extended to the processing of meali
continuous systems due to the difficulty relatedht® analytical
discrete model construction step starting for CNLSS

Temperature signal reconstruction at point obs1 Temperature signal reconstruction at point obs2
12 15

—— EKF,t= 2.0007
EKF,t= 4.0005

—— EKF,t= 2.0007
EKF,t= 4.0005

10
EKF,t= 6.0003 EKF,t= 6.0003
f| — EKF,t= 8.0001

——EKF,t= 8.0001 AN
8 —EKFt= 9.9999 10 —EKFt= 9.9999
- 6 - AY

L
0 0
0 5000 10000 15000 0 5000 10000 15000
Time (s) Time (s)

Figure 3: Comparison of response of reference model
(black solid curve) to the response of identified system
model at five times (starting points) using EKF; left, point
observation 1, and right, point observation 2.

Temperature signal reconstruction at point obs1 Temperature signal reconstruction at point obs2
12 14

—— UKF,t = 2.0007 — UKF,t = 2.0007
UKF,t = 4.0005 12 UKF,t= 4.0005

10
| UKF,t= 6.0003 | UKF,t= 6.0003
\ ——UKFt= 8.0001 10 ) — ukF= 80001
2 W —— UKFt= 9.9909 / ! W ¥ | —— UKF.t= 9.9999

8
’\,&{’\\ / 8 frri

\

0 5000 10000 15000 0 5000 10000 15000
Time (s) Time (s)

Figure 4: Comparison of response of reference model
(black solid curve) to the response of identified system
model at five times using UKF; left, point observation 1,
and right, point observation 2.

4. CONCLUSION
Kalman Filters have been used successfully for @mnp
model synthesis of oscillating and non oscillatiygtems.

The proposed method could be performed in lineveitid
only few information about the complete model. Tinain
challenge today is to work out an automatic metfard
initializing KF with robustness.
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ANNEX A Where

- M1 ( ealAT _ 1)
~ e a,
F= ealAT !

& (eazAT _ 1)

DETAILS OF FIRST ORDER STATE SYSTEM

(uo k!
1

The solution of Eq. 22.a on the time interval k1] is:
XKt = ykgFAT :k+1eF(tk+1—r)Bu(T)dT é [CH ClZ:|
Supposing u(t) cor:stant over the sampling intefal Cy Cy
tk+1], the discrete state space model is writtefobews:

X = Fx* +BU* | -

Zk+l = CXk+1

— aFAT
e

Yeaa T 5
B= J' et IBdT= jeFT Bdt;C=C

t, 0



