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ABSTRACT 
This work proposes a Compact Model Synthesis (CMS) for 

Partially Observed Operational Systems (POOS) without using 
the complete knowledge of models. Series of "grey boxes" fed 
with partial observations are built in order to synthesize target 
variables with compact models. The recursive process for real 
time computation is based on Kalman Filters (KF). This 
stochastic approach allows to converge in line toward 
deterministic models with estimated uncertainties and without 
intrusion on the complete model process. Mathematical context 
is described first and illustrated secondly with two examples. 

ACRONYMS 
Compact Model Synthesis (CMS) 
Continuous State Systems (CSS) 
Discrete Linear State Systems (DLSS) 
Discrete Non Linear State Systems (DNLSS) 
Extended Kalman Filters (EKF) 
Finit Element Simulation (FES) 
Kalman Filters (KF) 
Linear Time-Invariant (LTI) 
Ordinary Differential Equations (ODE) 
Operating Modal Analysis (OMA) 
Parametric Grey Boxes (PGB) 
Partially Observed Operational Systems (POOS) 
Reduced Order Models (ROM) 
Series of Elementary Generic Models (SEGM) 
Unscented Kalman Filters (UKF) 

1. INTRODUCTION
Reduced Order Models (ROM) are generally built in 

order to make simulation processes faster.  

These methods are very useful as part of an 
optimization process using a High Fidelity Finite Element 
Model parameterized by design variables or as part of the 
acceleration process of simulations with a high number of 
Degrees Of Freedom. Both objectives are quite different 
insofar as, for optimization, it is interesting to build 
parametric models of small size; while for acceleration, 
design parameters are useless but accuracy is the main 
goal. We focus on the framework of optimization even if 
this paper refers only to the modeling step. 

Numerous methods are available to achieve this goal. 
We can classify the methods of Model Reduction into two 
families: the first ones aims to provide a basis, spanning a 
subspace which belongs to the space of solutions, to link 
the variables of the Full Order Models (FOM) to a smaller 
number of variables; Such methods are often called Ritz 
methods  or "kinematic methods" (KM); The second 
methods aims to identify a meta-model able to provide 
accurate results for selected degrees of freedom of the 
FOM; In the following, we will call this methods 
"Identification Methods" (IM). Sometimes, in an 
optimization framework, both kinds of methods are used: 
the first one to reduce the number of variables, the second 
one to build a parametric reduced order model, see for 
example R. Filomeno et al. [1]. To reduce the complex 
systems constituted with several components, it is rather 
commonplace to reduce each component with KM and to 
make the synthesis of the system, see for example Craig 
[2] or Guyan [2]. The Way to Build Ritz base has been 
widely discussed in the previous work and we can 
consider two methods: modal approaches and optimal 
approaches based on proper orthogonal decomposition, 
see for example Balmès  [4]. The non-linear problems 
involve specific Model Order Reduction Techniques, see 
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for example Kerschen et al. [5]. The final challenge is to 
build ROM parameterized by design variables, see for 
instance Amsallem et al. [6] or Balmès [7]. 

This work purpose is to build ROM based on 
observation of operating systems. "Operating Systems" 
could be models during simulations such as thermal Finite 
Element Models (FEM) [8] or operating experimental 
devices such as jointed structures in free vibration [9] and 
[10] or motion picture of mechanical system. Proposed 
ROM are based on Series  of Elementary Generic Models 
(SEGM) considered as Parametric Grey Boxes (PGB) 
which had to be identified during operating process. A 
priori, the length of SEGM is unknown but the nature of 
PGBs is chosen regarding the observed phenomenon. For 
example, thermic study are described with first order 
Ordinary Differential Equations (ODE) in PGBs whereas 
dynamics are described with second order ODE. 
Operating conditions are often imposed for several 
problems: Operating Modal Analysis (OMA) of 
helicopters or Energy Production Power Supply is 
performed during operating conditions. Survey and 
diagnostic for help to decision in automated manufacturing 
are sometimes carried out in real time in the process. 
Motion picture of mechanical scenario or FEM are 
composed of large number of observable variables. In that 
case, ROMs built in real time allow saving computational 
time and allocated memory. For these reasons KF are 
retained in the recursive parametric identification process 
of PGBs. 

2. KALMAN FILTERS AND SERIES OF ELEMENTARY
GENERIC MODELS
CMS is performed with the help of three different kinds of 
KF [11] regarding the nature of analytical models in 
PGMs. "Classical" Kalman Filters are convenient for 
Discrete Linear State Systems (DLSS), Extended Kalman 
Filters (EKF) for Discrete Non Linear State Systems 
(DNLSS) and Unscented Kalman Filters (UKF) for 
systems described with Continuous State Systems (CSS) 
as complex dynamic non linear systems, non autonomous 
systems or time dependant holonomic systems. 
Three kinds of bases are proposed For DLSS (KF) and 
DNLSS (EKF) : Generalized Fourier Series (GFS) with 
harmonic and non harmonic spectral components (used for 
second order systems and for moving trackers on moving 
targets), exponential bases for first order systems such as 
relaxation phenomenon, plasticity or thermodynamics and 
polynomial bases for ballistics or unexpected non 
autonomous systems. The two first kind of series 
(sinusoids bases and exponential bases) are detailed later 
in this paper. 

2.1. State Systems 
Three kind of state systems are studied in this paper. The 
first one concerns DLSS which could be writen as : 

1 . .+ = + +n n n n n nX F X B U W (1) 

.= +n n n nZ H X V (2) 

where : 
X State variables 
F State matrix model 
B  Control matrix model 
U Control variable vector 
W Process noise 
Z Observation vector 
H Observation matrix 
V Observation noise 
n time increment 

When the discrete system could not be written as a linear 
system (with invariant matrix) the DNLSS is assumed as : 

( )1 ,+ = Φ +n n n nX X U W (3) 

( )= +n n nZ H X V (4) 

with : 
φ Non linear state function 
H Non linear observation function 

In the case of linear continuous time systems the equations 
are : 

( ) ( ) ( ). . ( )= + +�X t F X t BU t w t  (5) 

( ) ( ) ( ). . ( )= + +Z t H X t DU t v t   (6)

For non linear systems, CSS is described in a general 
sense as follows : 

( ) ( ) ( )( ), ( )= Φ +�X t X t U t w t  (7) 

( ) ( ) ( )( ), ( )= +Z t H X t U t v t   (8)

All these systems are suitable for KF, EKF or UKF. 

2.2. Kalman Filters 
The KF and EKF has been widely used over the past 

decades in the case of discrete systems. In this formulation 
the state variables are extended to the parameters of the 
PGBs that are to be identified. It allows to compute an 
estimation of the PGBs in the case where the shape of the 
solution of the problem is already kwown. For instance, in 
the case of oscillating systems, the time evolution is 
pseudo-harmonic (see section 2.3); in the case of 
relaxation system, such as thermodynamics systems, the 
evolution is pseudo-exponential (see section 2.4). The 
incrementation of the EKF requires the linearization of the 
estimated evolution which can lead to a strong 
approximation in the case of non-smooth non-linear 
systems. In order to avoid this linearization process Julier 
and Uhlmann (1997) have developed the "unscented 
kalman filter" UKF [13]. In that method, the estimation of 
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the state variables and their variances are directly 
incremented thanks to the unscented transformation (UT). 
This function can be more generally used to estimate the 
result of applying a given nonlinear transformation to a 
probability distribution. The two first moments of the 
distribution are simply propagated by applying the 
nonlinear function to a set of point referred to as sigma 
points. Eliminating the need for linearization also provides 
advantages independent of any improvement in estimation 
quality. One immediate advantage is that the UT can be 
applied to identify the parameters of a Non-linear ODE for 
which the solution cannot be analytically solved. 
Practically, the implementation of the UKF is also easier 
than EKF. 

2.3. Series of Elementary Generic Models and bases : oscillating 
systems 
Second order ODEs often leads to oscillating solutions. In 
the case of non linear systems oscillating solutions are 
amplitude and frequency modulated. 
A sinusoid whose amplitude and frequency are modulated 
over time can be described in the complex domain as an 
analytic signal : 

( ) ( ) ( )( )φ=x t a t j texp (9) 

where a(t) is the instantaneous complex amplitude and 
Ф(t) is the instantaneous phase. The discrete form of x(t) 
at the time step tn=n∆t is xn=x(n∆t). The complex 
variable xn can be divided into its real and imaginary parts 
xn=x1,n+jx2,n. A sinusoid that slightly varies over time can 
be approximated by : 

( )( )π= ∆n n nx a j f tnexp 2 (10) 

where fn is the instantaneous frequency.  
As the parameters fn and an of the sinusoid slightly vary 
over time, they are almost equal between two consecutive 
time steps. Then a transition formulation can be given 
from xn to xn+1: 

( )( ) ( )( )π π+ ≈ ∆ ∆×n n n nx a j f t j f tn1 exp 2 exp 2  (11) 

This approximation is only true if modulations of an and 
fn are slower that the period of the sinusoid. This 
constraint is assumed to be verified. Then a linear 
transition is obtained between the imaginary part x2,. and 
real part x1,. of xn and xn+1 : 

( ) ( )
( ) ( )

π π

π π
+

+

∆ − ∆
=

∆ ∆

    
    

     

n nn n

n nn n

f t f tx x

x xf t f t

1, 1 1,

2, 1 2,

cos 2 sin 2

sin 2 cos 2
(13) 

This formulation choice allows keeping the matrix Fn 
linear and time-independent if the signal is only amplitude 
modulated and not frequency modulated (the frequency fn 
keeps constant). 
The instantaneous amplitude an is  . 

n ,n ,na x x= +2 2
1 2 (14) 

As an and fn should be allowed to vary over time, it is 
proposed here to use the following non linear state space 
formulation : 
Xn+1=Φ(Xn)+Wn    (15) 
where Xn=(x1,n x2,n x3,n)

T and Wn, the process noise. A 
state variable x3,n =2πfn∆t was added to track the 
evolution of the instantaneous frequency fn. The transition 
between two time steps is composed by a sum of two 
parts: the stationary part and the evolutionary part. 
The stationary part links two successive points of a 
stationary sinusoid by Φ(.). Then Φ(.) is assumed as the 
non-linear transition function and is given by Φ(Xn)=FnXn 
: 

where 

( ) ( )
( ) ( )

,n ,n

n ,n ,n

x xcos sin

F x xsin cos

 −
 

=  
 
 

3 3

3 3

0

0

0 0 1

 (16) 

The two first components are related to the complex 
amplitude and are obtained by the previous linear relation. 
The third component x3,n+1=x3,n constrains the frequency 
not to change strongly between two time steps. 
Up to now, the non-stationary behavior of the sinusoid was 
not modeled because it is not possible to express an exact 
equation for this evolution. We suppose that Wn is a 
random variable whose probability law is Gaussian : 
Wn=N(0,Q), where Q is its variance matrix. Then the 
variations of amplitude and frequency are allowed by 
random values of Wn. 
In a first glance, it could seem strange to choose a random 
variable for an effect which is generally deterministic. For 
instance, the variation of frequency excitation of an engine 
is mainly deterministic. Anyway, this state space does not 
need to represent accurately the evolution of a sinusoid on 
a long period, but only step by step. Then on a short time 
scale, a random evolution of an and fn is enough to model 
a non-stationary sinusoid. 
For a signal composed of M observable modulated 
sinusoidal components, the size of the ROM is M and the 
size of the state function is 3M. 
 and 

( )

( ) ( )
( ) ( )

( )( ) ( )( )
( )( ) ( )( )

+ − + −

+ − + −

 −
 
 
 
 
 =  
 −
 
 
 
 
 

�

�

� � �

�

�

�

n n

n n

n n

M n M n

M n M n

x x

x x

F X
x x

x x

3, 3,

3, 3,

3 3 1 , 3 3 1 ,

3 3 1 , 3 3 1 ,

cos sin 0 0 0 0

sin cos 0 0 0 0

0 0 1 0 0 0

0 0 0

0 0 0 cos sin 0

0 0 0 sin cos 0

0 0 0 0 0 1

and  

( )

( )

( )

+ −

+ −

+ −

 
 
 
 
 
 =
 
 
 
 
 
 

�

n

n

n

n

M n

M n

M n

x

x

x

X
x

x

x

1,

2,

3,

1 3 1 ,

2 3 1 ,

3 3 1 ,

(17) 
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This state space formulation is non linear: the state matrix 
Fn(Xn) is varying over time and depends on the frequency 
modulation. 

In reality, only the real part x1,n of the analytic signal xn 
can be observed. Unlike the transition phase, the 
observation phase is completely linear 

[ ]= +

= +
n n n

n n n

Z X V

Z x V1,

1 0 0
 (18) 

for one sinusoid and slightly more complex for M 
sinusoids 

[ ]
( )+ −

= +

= + + +

�

�

n n n

n n nM n

Z X V

Z x x V1, 1 3 1

1 0 0 1 0 0
 (19) 

where Vn is a noise observation random process. 

Finally, a nonlinear discrete state space model has been 
derived to model the transition and observation of sinusoid 
components mixed with random processes 

( )
( )

+

+ + +

= Φ +

= +




n n n

n n n

X X W

Z H X V
1

1 1 1

(20) 

where Φ(.) is the nonlinear transition function given by 
Φ(Xn)=F(Xn)Xn and H(.) is the linear observation function 
given by : 
H(Xn+1)=[1 0 0 … 1 0 0]Xn+1.  (21) 

2.4. Series of Elementary Generic Models and bases : non 
oscillating systems 

When the system is compose with first order ODEs or 
assumed as a sum of monotone responses, series of 
negative exponential are used. The continous state 
equation of the elementary generic model with control  is  

( ) ( ) ( )( )0 0expx t x aU t t aUδ= −− − +  (22)

With : 
x0, t0 assumed as initial conditions, a and δ are constant to 
be identified. 

The DLSS of this equations is written as : 

( )1 e e1t t
n n nx x U aδ δ− ∆ − ∆

+ = + − (23) 

With ∆t the time increment. 
The DNLSS of this equations is written as : 

( )1 e e1n nt t
n n n nx x U aδ δ− ∆ − ∆

+ = + − (24) 

The complete SEGM is built as follows for the non linear 
state matrix and control matrix : 

( )
( )

2,

2 3 1 ,

e

e

0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

n

M n

x t

n n

x t

F X
+ −

− ∆

− ∆

 
 
 
 
 

=  
 
 
 
 
  

�

�

� � �

�

�

�

 (25) 

and 

( )

( )

( )( )

2,

2 3 1 ,

3,

3,

e

e

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

n

M n

x t
n

n n

x t

n

x

B X

x + −

− ∆

− ∆

 −
 
 
 
 
 =
 
 −
 
 
 
  

�

�

� � �

�

�

�

 (26) 

The observation equation is the same for oscillating an non 
oscillating systems. and the complete DNLSS is : 

( ) ( )
( )

1

1 1 1

n n n n n

n n n

n nX X X W

Z H X V

F B U+

+ + +

=

= +

+ +



(27) 

3. APPLICATIONS
Two kinds of applications are presented. The first one 
concerns oscillating systems with amplitude and frequency 
modulated signals tracked with EKF for CMS. 
The second study is in the field of thermodynamic and is 
treated with UKF. 

3.1. Oscillating systems and solutions of second order ODEs 
Tracked signals are amplitude and frequency modulated. 
The CMS is performed with SEKF based on SEGM. The 
expected ROM is composed with two EGM. The first 
observed component is around 22 Hz and the second 
around 50 Hz. For each component, the amplitude 
modulation is determined with the instantaneous 
amplitude:    

n ,n ,na x x= +2 2
1 2 (28) 

This amplitude could also be obtained by the complex 
analytic signal composed of the observed signal (real part) 
and its Hilbert transform (imaginary part). 
The frequency modulation is determined by the 
instantaneous frequency : 

 ,n
n

x
f

π∆t
= 3

2
 (29) 

For each tracked signal, spectral amplitudes show the main 
component and lateral modulated bands (Figure 1). 
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Figure 1 : Spectrums of two tracked signals. 
Symmetric lateral bands are due to modulation effects on 
spectrums 

The first tracked signal is frequency and amplitude-
modulated (figure 1 and figure 2). The second tracked 
signal is only amplitude-modulated and not frequency-
modulated. 

Figure 2 : Time-frequency representation of the first 
tracked signal. Magnitude and frequency modulation are 
identified with a good accuracy. (Instantaneous frequency 
is identified with 4 significant digits). 

3.2. Continuous State Systems 

System identification has been based largely on discrete-
time models for a long time in the past, ignoring certain 
merits of the native continuous-time models. 

In this section, we are interested in the procedure of 
determining directly a continuous-time model of a 
dynamical system from observed data. That means, the 
differential-equation model is valid whatever the 
command nature or sampling data considered.  We will 
consider first linear time-invariant (LTI) continuous 
system. As a simple illustration of this stage, let us 
consider a first-order system described by a CLSS as 
follow: 

{ } [ ]{ } [ ]
{ } [ ] { }

( ) ( ) ( )

( ) ( )

x t F x t B u t

z t C x t

= +

=

�

(30) 

In particular: 

{ } { }

{ } { }

1 1 1

2 22

1 11 12

21 222

( )
( ) ( ) ( )

( )

( )
( ) ( )

( )

x t a b
x t x t u t

a bx t

z t c c
z t x t

c cz t

     
= = +     

    

   
= =   

  

�
�

� (31) 

where X(t) is the state vector, Y(t) the observation vector, 
U(t) the input vector, a1 and a2 invariant parameter 
system, b1 and b2 the parameters that locate the input 
vector to the state vector variables, and c11, c12, c21 and 
c22 the observation parameters. 

The conversion of the Continuous system (30) into a 
recursive discrete system is performed using either EKF 
by means of exponential discretization technique [12], 
(Annex A) or UKF using an implicit numerical integration 
method named Dormand-Prince method [13], [14]. 

The resulting discrete-time Kalman model takes the 
following form: 

1

1 1 1

1,
1

2,

( , , )

( , )

−

− − −

−

  
= =   
   

  = = 
  

k

k k k kk
k

k

kk
k k k

k

x ux
X

z
Z H x

z

φ θ
θθ

θ
(32) 

Where the kφ and kH are nonlinear evolution and observation

functions at time k, the kθ a stationary parameter vector at time
k. 

( ) ( )1 2 1 2
1, 2, 11, 12, 21, 22,

1 2

∆ ∆
    

=     
     

EKF
t a T a T

k k k k k kk k k
k k

b b
X x x e e c c c c

a a
 (33) 

, 1, 2, 1, 2, 1, 2, 11, 12, 21, 22, =  UKF k
t

k k k k k k k k k kX x x a a b b c c c c  (34) 

Numerical results 

This section presents numerical simulation results aiming to 
evaluate the performance of the EKF and UKF methods 
regarding system identification based on data produced 
numerically by the reference model (30). The forcing term, u, is 
a square signal. 

In the reference problem, (30) and (31), the terms [F], [B] and 
[C] are assumed known and {x} is determined through a 
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numerical integration method implemented in Matlab (Ode23; 
Runge-Kutta method).  
In the Figure 3 and 4, we compare the response of the reference 
model (31) at points observation, Z, to the response of the 
identified system model (33), Zk, using Kalman filters, EKF and 
UKF, respectively,to evaluate its accuracy at five different 
times, 2 ,4 ,6 ,8 ,10t s s s s s≈ .

Both EKF and UKF produce a good accuracy with almost 
equivalent convergence speed in that case, e.g. CLSS. 

In the case of continuous non linear system, such as time-
depend parameters a1 and a2, only UKF is appropriate. To 
process it, we use the same model (30) and the UKF algorithm 
is unchanged in comparison with linear case. Here, the 
advantage of UKF as regards the implementation simplicity is 
highlighted with respect to the EKF. This latter methodology 
actually is not extended to the processing of nonlinear 
continuous systems due to the difficulty related to the analytical 
discrete model construction step starting for CNLSS. 
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T

Temperature signal reconstruction at point obs1

EKF,t =  2.0007
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EKF,t =  6.0003
EKF,t =  8.0001
EKF,t =  9.9999
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Figure 3: Comparison of response of reference model 
(black solid curve) to the response of identified system 
model at five times (starting points) using EKF; left, point 
observation 1, and right, point observation 2. 
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Figure 4: Comparison of response of reference model 
(black solid curve) to the response of identified system 
model at five times using UKF; left, point observation 1, 
and right, point observation 2. 

4. CONCLUSION
Kalman Filters have been used successfully for compact 
model synthesis of oscillating and non oscillating systems. 

The proposed method could be performed in line and with 
only few information about the complete model. The main 
challenge today is to work out an automatic method for 
initializing KF with robustness. 
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ANNEX A 

DETAILS OF FIRST ORDER STATE SYSTEM 

The solution of Eq. 22.a on the time interval [tk tk+1] is: 
1
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Supposing u(t) constant over the sampling interval [tk 
tk+1], the discrete state space model is written as follows: 
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