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ABSTRACT 

In structural dynamics, the prediction of damping remains the 

biggest challenge. This paper deals with the energy losses 

caused by micro-slip in a nominally planar interface of a 

structure. This paper proposes an analytical and experimental 

study of flexural vibrations of a clamped-clamped beam with 

innovative position of the interfaces. 

The objective of this test bench is to characterize the global 

rheology of the interface. The proposed model aims to 

characterize this rheology based on local settings of the 

interface. 

First, the test bench is described and the choice of the position 

of the interface is justified. The experimental bench and the 

dynamic behavior of this structure are presented. We propose to 

illustrate the mechanism of energy losses by micro-slip by 

making a comparison between the behavior of a “monolithic” 

beam and a sectioned beam. 

Secondly, a modeling of the interface taking into account the 

surface defect is presented. The energy dissipated by friction in 

the interface is calculated during a loading cycle. This leads to a 

computation of the dissipated energy and thus to a nonlinear 

loss factor.  

Finally, we confront the loss factor calculated analytically and 

the measured one. 

NOMENCLATURE 

Symbol Description Units 
a Radius of circular contact m 

c Radius of the sticking zone m 

df Height of the sphere m 

E
*
 Composite modulus of elasticity N/m² 

G* Inverse composite shear modulus m²/N 

h Height difference between the two m 

types of spheres 

Kmcis Shear modal stiffness N/m 

Km Modal Stiffness N/m 

N Normal load N 

R Radius of curvature of the sphere m 

T Tangential load N 

Wdiss Energy dissipation J 

Wext External works J 

δ Tangential displacement m 

δilim Limit of partial sliding m 

δn Normal approach m 

ξ Damping % 

η Loss factor % 

µ Coefficient of friction 

ρ Composite radius of curvature m 

υ Displacement m 

ν Poisson’s ratio 

∅  Diameter of the apparent surface m 

1 INTRODUCTION – PRESENTATION OF THE TEST 

BENCH 

The present work starts from the idea of a previous paper 

[1]. Firstly the shape of the beam has been improved in order to 

obtain the greatest damping as possible by increasing the 

dimensions of the interfaces, see Peyret et al. [2]. The final 

design of this new benchmark was presented in Dion et al. [3]. 

The shape has been designed to avoid coupling between the 

normal stresses and the vibration motion even if the interfaces 

have been inaccurately located (Figure 1). 
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Figure 1. View of the benchmark screwed on its Steel Surface 

Plate. Part 1 is a massive part designed to clamp the beam on 

the heavy Steel Surface Plate. Parts 2 are the strain gauges 

glued on both sides of the beam to measure the normal load. 

Part 3 are the piezoelectric patches glued on both sides of the 

beam to excite the first vibration mode. Part 4 is a quick clamp 

used to apply the normal load before the tests. Part 5 is the 

Bruel & Kjaer 4517 miniature accelerometer. 

Piezoelectric transducers have been glued in order to excite the 

first vibration mode; sensors allow to obtain the normal load in 

the interfaces and to measure the transverse motion. An original 

experimental procedure is based on stop-sine excitation. The 

authors justify that their excitation method is more efficient that 

Dirac (shock) or Heaviside (release of a static load) excitations. 

Signal processing tools are proposed to post-process the 

instantaneous damping and frequency of the first mode of the 

structure. Finally this work experimentally demonstrates the 

presence of micro-slip damping, by comparing the vibration 

behavior of a monolithic part and a built-up structure with 

friction-joints (Figure 2). This comparison is the best way to 

determine the “added damping” [4]. 

Figure 2. Evolutions of damping versus the normal load and 

versus the displacement magnitude. Both the monolithic (ref. 

beam) and the cut beam were tested. The latter was tested 

under four normal load levels in the range 100–1000 N 

2 MODELING OF THE INTERFACE: MULTIPLE 

SPHERICAL CONTACT 

When conducting functional surfaces (geometric area) specified 

by the design, it appears, in manufacturing, some geometrical 

defects. These defects are questioning the assumption of a plane 

contact interfaces in a uniform normal stress distribution. 

The modeling of the interface by a plane surface can not take 

account the fact that there are energy losses for smallest 

oscillations (Figure 3), this is due to the surface defect. 

η
Displacement (center of the structure)

Experimental

area

Figure 3. Loss factor η (%) vs υ (m) displacement at the 

center of the structure for plane surface. 

To take into account the geometrical defects with contacts on 

several sphere, the contact interface is modeled as follows: 

contact is made with two types of sphere (Figure 4): 

- m spheres "G" ensuring the rigidity of the interface. 

They are the first to come into contact during the 

implementation of the normal load and can not slide 

completely (macro-slip) ; 

- n spheres "P" potentially slide completely. 

Interface load is defined by the normal approach δn of the two 

normal planes constituting the interface. Before loading, the 

difference between heights of spheres is defined by h. The 

spheres are defined by their radius of curvature ρG et ρP. 
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Figure 4. Modeling of the interface. 

The distribution of forces on the interface is defined by:  normal 

load N and tangential load T. The distribution of these forces on 

different spheres constituting the contact by Ni and Ti. 

G P

G P

N mN nN

T mT nT

= +
= +

(1) 

The distribution of the normal load is a function of the normal 

approach δn and is defined, for one spherical contact, by the 

Hertz theory [4]: 
2/3

*

.1 3
.
4

i

n

N

E

ρ
δ

ρ

  =    
(2) 

With 
2 2

1 2

*

1 2

1 11

E EE

υ υ− −
= +

1 2

1 1 1

R Rρ
= + (3) 

Using the forces distribution given on figure 4, the normal load 

on the interface can be expressed by: 

( )
1 3 1 3

2 2 2 2
4
*

3 G n P n
N E m n hρ δ ρ δ

  = + −    
(4) 

Once the normal load is applied, a tangential displacement δ is 

applied between both surfaces of the interface. The assumption 

is that this displacement is the same for each contact. 

Contact area

a

Ni

Pmoy
Pmax

2a

Ti c

Stick zone

Slip zone

Figure 5. Schematic elastic spheres pressed by a constant 

normal force Ni and subjected to an oscillating tangential force 

Ti. 

The Mindlin theory [6-7], gives the displacement from the 

partial slip into the contact surface (defined by c on Figure 5): 

( )2 2

*

3

3

16
i

a cN
G

a

µ
δ

−
= (5) 

with 

* 1 2

1 2

2 2
G

G G

υ υ− −
= +  and 

( )2 1

j

j

j

E
G

υ
=

+
(6) 

From the previous equations, Johnson [8] offers solutions for a 

spherical contact, initially loaded with a constant normal load 

Ni, and subjected to a tangential load Ti oscillating between 

±Tmax with 
max i
T Nµ<  (Figure 6). 
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Figure 6. Loading cycle for one spherical contact. 

Tangential load Ti (N) vs δ displacement in the contact (mm). 
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The surface defined by the cycle gives the dissipated energy for 

a cycle. This energy can be expressed as a function of the 

tangential displacement δ: 

5 3

2 2 2 2
*

* * *

9 16 16 165
1 1 1 1 2

10 63 3 3

i i i i

diss

i i i i

N a a a
W G

a NG NG NG

µ
δ δ δ

µ µ µ

                   = − − − − − −                         

 
(7) 

From the Mindlin theory [6-7] δilim is calculated for one 

tangential load. δilim define a limit value of tangential 

displacement for each type of spherical contact: passage from 

macro-slip phase to total slip phase. 

*

lim

3

16
i

i

i

N
G

a

µ
δ = (9) 

This limit is defined on the loading cycle with macro-slip 

(Figure 7). 
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Figure 7. Loading cycle with macro-slip for one spherical 

contact. Tangential load Ti (N) vs δ displacement in the contact 

(mm). 

In function of the value of δ, two phases can be highlighted: 

- Spheres G and P did not slip totally: phase called 

"generalized partial slip" (GPS); 

- Spheres G remain in partial slip and spheres P slip totally: 

phase called "pseudo-partial slip" (PPS). 

The distribution of the tangential load, is function of the normal 

approach δn: 

For the phase of generalized-partial slip (GPS) 
3 3

2 2

* *

16 16
1 1 1 1

3 3

G P

G P

G P

a a
T m N n N

N G N G
µ δ µ δ

µ µ

   
             = − − + − −               
      

(9) 

For the phase of pseudo-partial slip (PPS) 
3

2

*

16
1 1

3

G

G P

G

a
T m N n N

N G
µ δ µ

µ

 
   = − − +    
  

(10) 

The loading cycle of the multiple spherical contacts are 

plotted on figure 8. 
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Figure 8. Tangential load Ti (N) vs diplacement δ (m) 

Comparing the shape of the cycle to that given by a single 

spherical contact (Figure 7) shows a new behavior during the 

loading especially when the spheres "P" begin to slip 

completely. 

3 CHARACTERIZATION OF THE JOINT SURFACES OF 

THE TEST BENCH 

To obtain the real contact surfaces of the interfaces some 3D 

measurements of these surfaces were made. 

On each surface, a million points were measured. After filtering 

and re-sampling, we obtain a mesh of points on the surface of 

1200x800 dots. 

The contact being made on the more external spheres of the 

material, and so as to define a cloud of points defining possible 

areas of contact, it was chosen to retain only the "higher" points 

(10% of the set of points). 
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Figure 9 shows that the surfaces are composed of several 

spherical zones on which contact will be established. 

Contact surfaces

Mapping heights and locations of the spheres of the two curved surfaces in contact

b (mm) b (mm)

h
 (

m
m

)

h
 (

m
m

)

Figure 9. Measures three-dimensional surfaces of a test-

bench interfaces (measurements in mm). 

To determine the influence of defects of forms on the 

damping, the interface is modeled. 

We model the spheres of the surfaces as follows: 

df

R

∅∅∅ ∅

∅∅∅ ∅ /2

∅∅∅ ∅

df

Figure 10. Geometric modeling of the sphere (left) - 

Identification of the parameters of the sphere on the 

measurement (right). 

With R: radius of curvature of the sphere, df: height of the 

sphere and ∅  the diameter of the apparent surface of the sphere. 

The radius R is then calculated using the following expression: 
2

2

4

2

df

R
df

 ∅  +   
=

(11) 

Two types of sphere are identified in accordance with the 

model: 

Spheres Number df (m) ∅  (m) R(m) 

G n = 5 1,70E-06 1,80E-02 2,38E+01 

P m = 18 1,20E-06 1,60E-02 2,67E+01 

h = 2.4E-07 m 

Table 1 : Model parameters 

These two types of spheres exist on each surface. During the 

normal loading of the interface and considering the position of 

each sphere, it is considered that the spheres come in contact 

with a surface considered flat. The spheres G are the first and 

most compressed, they ensure the rigidity of the interface. The 

spheres P are slightly compressed. 

4 LOSS FACTOR 

The equation defining the energy dissipated by one spherical 

contact (9) and (10), are used to define the energy dissipated by 

the multiple spherical contact: 

For the phase of generalized partial slip (GPS) 

( ) ( ) ( )

( ) ( ) ( )

2 5 32
* 2 2

2 5 3

2 2

*

9 5
1 1 1 1 2 ...

10 6

5
... 1 1 1 1 2

6

16

3

G

diss G G G

G

P

P P P

P

i

i

i

N
W G m A A A

a

N
n A A A
a

a
avec A

NG

µ
δ δ δ

δ δ δ

µ

      = − − − − − −        
     + − − − − − −       

=

(12) 

For the phase of pseudo- partial slip (PPS) 

( ) ( ) ( ) }
2 5 32

* 2 2

*

9 5
1 1 1 1 2

10 6

16

3

G

diss G G G P

G

i

i

i

N
W G m A A A n N

a

a
avec A

NG

µ
δ δ δ µ δ

µ

      = − − − − − − +        

=

(13) 

The energy dissipated is plotted on figure 11. 
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Figure 11. Energy dissipated Wdiss (J) vs diplacement δ (m) 
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Taking into account the external force applied on the 

structure to obtain the dynamic behavior, it is possible to define 

the loss factor of the structure: 

2
diss

ext

W

W
η

π
= (14) 

The energy dissipated by the load cycle Wdiss is defined by 

sections (equations (12) and (13)) depending on the value of the 

tangential displacement δ and δilim (equation (8)) 

The work of external forces Wext can be expressed in terms of 

displacement at the center of the beam υ: 

21
.

2ext m
W K υ= (15) 

with Km = 2.81 10
7
 N/m : the modal stiffness of the structure. 

This gives the work of external forces applied to the structure: 

2

max1
.

2ext m

mcis

T
W K

K

  =    
(16) 

with Kmcis = 3.23 10
7
 N/m : the shear modal stiffness of the 

structure. 

We can plot the loss factor evolution of the structure for a 

normal pre-load of 460 N on the interface (Figure 12). The 

transition from GPS to PPS leads a drastic change in the 

evolution of the loss factor. 
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Figure 12. Loss factor η (%) vs υ (m) diplacement at the 

center of the structure for one multiple spherical contact 

surface. 

To compare the experimental results with the results provided 

by the model, we need to isolate the contribution of interfaces 

studied of the contribution of the other sources of damping. For 

this part the experimental results were linearized by parts. 
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Figure 13. Linearized experimental damping ξ (%) vs υ (m). 

The curves in Figure 13 show the evolution of the damping of 

the monolithic structure (ref. beam) and of the assembled 

structure in the case of a normal load of 1000 N and 200 N. The 

two structures, assembly and monolithic, have the same 

geometry and the same boundary conditions, it is thus possible 

to consider two distinct sources of damping. We distinguish the 

dissipation induced by the interfaces fd2 of the dissipation 

provided by all the others sources fd1 (clamps, intrinsic damping 

of the material ...): 

1 2
( , ) ( , )

d d
mx kx f x x f x x+ = +ɺɺ ɺ ɺ  (17) 

The dissipated energy can be written as: 

( )1 2
( , ) ( , )

diss d d
W f x x f x x dx= +∫ ɺ ɺ� (18) 

Both energies are separable by subtraction. It is considered that 

Wd1 can be identified by a test on the monolithic beam and that 

Wd2 can be calculated by subtracting the damping rate of the 

monolithic beam to those of the beam assembled. Thus the 

contribution of the two interfaces is isolated in the damping of 

the structure (Figure 14). 
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Figure 14. Loss factor η (%) vs υ (m) diplacement at the 

center of the structure for multiple spherical contact surface. 

We can compare these experimental results with those given by 

the model (Figure 15). We note that we reached the same levels 

of damping, although this level is reached experimentally for 

more smallest oscillations. This difference is probably due to 

the choice of a contact model at two types of spheres of 

different heights. Indeed this model does not take into account 

the progressivity of the spheres height in the interfaces and the 
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fact that probably some irregularity of the surface outcrop the 

contact and dissipate some energy from smallest amplitudes of 

vibration. 
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5 CONCLUSION 

Unlike a modeling that takes into account the interface as a 

plan geometrically perfect [1], taking into account the surface 

defects it is possible to model the presence of damping in the 

interfaces as soon the smaller amplitudes of vibration. 

A model that takes into account surface defects was 

developed to more accurately model the evolution of the 

damping as a function of the amplitude of the deformations. 

This new approach is a multi-spherical modeling of the 

interfaces, based on the behavior of the spherical contact 

developed by Hertz and Mindlin. 

This modeling allows us to compare the loss factor found 

experimentally 
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