
HAL Id: hal-01885900
https://hal.science/hal-01885900

Submitted on 2 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Models of Structures to Structures of Models
Michel Batteux, Tatiana Prosvirnova, Antoine Rauzy

To cite this version:
Michel Batteux, Tatiana Prosvirnova, Antoine Rauzy. From Models of Structures to Structures of
Models. 4th IEEE International Symposium on Systems Engineering, Oct 2018, Rome, Italy. �hal-
01885900�

https://hal.science/hal-01885900
https://hal.archives-ouvertes.fr


From Models of Structures to Structures of Models
Michel Batteux

IRT SystemX
8, avenue de la Vauve

91120 Palaiseau, France
Email: michel.batteux@irt-systemx.fr

Tatiana Prosvirnova
Laboratoire de Genie Industriel

CentraleSupélec, Université Paris-Saclay
8-10, rue Joliot-Curie

91190 Gif-sur-Yvette, France
Email: tatiana.prosvirnova@centralesupelec.fr

Antoine Rauzy
MTP, Norwegian University of

Science and Technology
S. P. Andersens veg 5

7491 Trondheim, Norway
Email: antoine.rauzy@ntnu.no

Abstract—The complexity of industrial systems is steadily
increasing. To face this complexity, the different engineering
disciplines are designing models. These models are complex as
they reflect the complexity of systems under study. Therefore,
they need to be structured.

In this article we study structural constructs of modeling
languages used in systems engineering. We introduce for that
purpose a small domain specific language, the so-called S2ML
for System Structure Modeling Language. We show that a large
class of actual modeling languages can be (re)constructed by
plugging their underlying mathematical framework into S2ML.

Index Terms—Modeling Languages, Model Structure

I. INTRODUCTION

The complexity of industrial systems is steadily increasing.
To face this complexity the different engineering disciplines
have virtualized their contents to a large extent. The design and
operation of any modern system involve dozens if not hundreds
of models [2]. As systems are complex, one cannot expect
models of these systems to be simple. They are complex.
Therefore, they need to be organized and structured. The main
purpose of this article is to study how to structure models.

Designing models has much to do with designing computer
programs. To model, one needs a modeling language; just as
to program, one needs a programming language. According to
[3]: “Algorithms + Data Structures = Programs”. We revisited
this sentence and applied it to models:

“Behaviors + Structures = Models”

Most of modeling languages are actually the combination
of a mathematical framework, e.g. differential equations (as
for Modelica [10]) or Mealy machines (as for Lustre [13]),
and constructs to structure models, e.g. a tree-like hierarchy
of components. The structure of a model is in general close
to the functional or physical architecture of the system it
describes. There is however no such a thing as a one-to-
one correspondence between system and model structures, for
different reasons. On one hand, a model is always a specific
point of view on the system. It aims at capturing a particular
aspect or at evaluating a particular property of that system.
Therefore, it abstracts away irrelevant parts of the system
and is useful only because it does so. On the other hand,
the organization of a model has its own logic that can be
quite different from the architecture of the system. It is clear

that the choice of the right mathematical framework is of
paramount importance to capture this or that physical aspect
of the system, and to do it at the suitable level of abstraction.
Our thesis is that the productivity of the modeling process
stands also in the way models are structured. It is actually
thanks to their structures that models can be versioned and
configured throughout their life cycle and that knowledge can
be capitalized throughout successive projects.

Constructs to structure models derive from those to structure
computer programs. In this article we introduce a small
modeling language, the so-called S2ML for System Structure
Modeling Language, which provides constructs to structure
models. The behavioral part is left unspecified, i.e. just rep-
resented by terms that are left un-interpreted. The particular
syntax of the language has no much importance. What is truly
important is to ensure a one-to-one correspondence between
the concepts and the syntactic constructs of the language. A
large class of actual modeling languages can be (re)constructed
by plugging their behavioral constructs into S2ML, i.e. by
interpreting these terms.

Our contribution is therefore multiple. First, it studies model
structuring at a conceptual level, i.e. independently of any
concrete modeling formalism. Second, it gives an overview of
structural constructs of modeling languages used in systems
engineering. Third, it introduces S2ML that can be seen as
the skeleton for many particular modeling languages. Finally, it
illustrates the syntax, semantics and pragmatics of the different
constructs of the language rather than to give a formal and
complete definition of these constructs. The reader interested
in a detailed specification can refer to [5].

The remainder of this article is organized as follows. Sec-
tion II presents an example used throughout the article to illus-
trate S2ML constructs. Section III introduces basic elements of
S2ML: blocks, ports and connections, and shows how they can
be interpreted by different system engineering modeling lan-
guages. Section IV gives an overview of structural constructs
and discusses the reuse of modeling components via blocks,
classes and the associated mechanisms. Section V concludes
the article by carrying out a general discussion about model
design process and the role of languages such as S2ML in this
process.



Fig. 1. A simplified reactor coolant system (partial view).

II. ILLUSTRATIVE EXAMPLE

To illustrate S2ML concepts and notions presented through-
out this article, we shall use an illustrative example inspired
from safety engineering. The considered system is a simplified
reactor cooling system. It consists of a reactor whose tempera-
ture and pressure must be maintained within acceptable limits
thanks to a cooling system.

Fig. 1 gives a partial view of the physical architecture of this
system. The main function of this system is to maintain the
temperature of the reactor in a given range [Tmin, Tmax]. The
temperature sensors measure the temperature of the reactor
and provide the value to the controller.

The cooling water comes from a tank and is provided to
the reactor via two different lines: a main one and a backup
one, which can be used in case of failures. These two lines
are composed of three actuators: a pump and two valves.

If the temperature gets lower than Tmin, the controller
commands the closing of the valve “ValveM1”. If it gets
higher than Tmax then the controller commands the opening
of this valve. If the valve “ValveM1” fails to open (or if the
pump “PumpM” is failed), the temperature and the pressure
in the reactor increase. Pressure sensors detect the excessive
pressure and send the value to the controller which switches
to the backup line and commands the opening of the valve
“ValveS1”.

The view is simplified and only partial because it does not
show other classical elements of such systems, for instance,
steam generator or pressurizer. Nevertheless, it is a good view
of a classical system with strong safety requirements to take
into account: the system should be designed so that no single
failure could lead to the loss of the capability to cool the
reactor.

III. BASIC ELEMENTS: BLOCKS, PORTS AND
CONNECTIONS

The block is the basic S2ML modeling unit. A block has
a name and may contain ports and connections (and several

other modeling elements).
The three terms “block”, “port” and “connection” are

borrowed to the SysML terminology [9], although they are
used with a slightly different meaning. In the S2ML context,
a port is something that has a name and that holds some
atomic information. It is similar to variables in programming
languages, but also of modeling languages such as Modelica,
Lustre or AltaRica. A connection is a relation between ports
(we shall come back to this issue later).

A. Graphical Representation
In Fig. 1, ports are represented by black filled squares,

connections by bold lines and blocks are delimited with
light lines and are usually represented by rectangles. For
instance, the rectangle “ValveM1” represents a block with
three ports. Names of ports are not indicated on the figure so
not to overload the graphics. Ports of the block “ValveM1”
are connected to ports of the blocks “Tank”, “Controller”
and “PumpM”. The represented model contains several other
blocks, with some of them containing others (explained later
c.f. Section IV-A).

In Fig. 1, all ports are represented on the border of blocks.
This is by no means mandatory. Ports can be internal to a
block. Fig. 2 shows for instance an internal view of the block
“ValveM1”. The port “state” is internal.

Fig. 2. Internal view of the block “ValveM1”.

B. Textual Representation
Graphical representations, as those of Fig. 1 and Fig. 2, are

excellent communication means. However, they quickly reach



their limit: as soon as the model ceases to be simple, they can
only represent it partially. In other words, the model exists
independently of its graphical representation. Moreover, there
may be several graphical representations of the same concept,
each having its own interest, depending on the context. That
is the reason why S2ML is primarily a textual language. As
previously pointed out, the particular syntax for this language
is not important. What is really important is to ensure a one-
to-one correspondence between the concepts and the syntactic
constructs of the language.

The S2ML code for the block “ValveM1” is described in
Fig. 3. It declares a block with four ports and two connections.
The first connection is anonymous whereas the second is
named. Blocks, ports and connections can carry information
via lists of attributes. An attribute is a pair (name, value),
where value is a string.

block valveM1
port state (type="open/close", init="open");
port input, output, command;
connection [input, state, output];
connection action[command, state];

end

Fig. 3. S2ML code for the block “ValveM1”.

C. Interpretation

In S2ML, ports and connections are interpreted by them-
selves, i.e. a connection has no other meaning than “there
is a relation between these ports”. In other words, S2ML
is a purely syntactic language. A language that would use
S2ML as a structuring paradigm would redefine the syntax
of ports and connections and more importantly would assign
them a semantics. For instance, a S2ML version of Modelica
would define connections as differential equations. A S2ML
version of Petri nets (see e.g. [17] for an introduction) would
define ports as places and connections as transitions. A S2ML
version of AltaRica [20] would define ports as variables
and events, and connections as transitions and assertions. As
an illustration, Table I summarizes how different modeling
languages can interprete blocks, ports and connections.

IV. MODELS OF STRUCTURES

In this section we give an overview of stuctural constructs
of modeling languages used in systems engineering and show
how these constructs can be represented in S2ML.

A. Composition

The simpliest structuring relation is the composition: a
system composes a component means that the component “is-
part-of” the system.

Fig. 1 shows a hierarchical description: the block “Reactor-
CoolantSystem” is composed of the blocks “Reactor”, “Con-
troller”, “MainLine” and “BackupLine”. The block “Main-
Line” contains the blocks “Tank”, “ValveM1”, “PumpM” and
“ValveM2”.

Many modeling languages implement composition. For ex-
ample, it is the case of SysML [9], AADL [8], Modelica [10]
and all the versions of AltaRica [1], [20].

In S2ML, to compose a block in another block, it is
sufficient to declare the former inside the latter.

The declaration of the block “ReactorCoolantSystem” could
be as presented Fig. 4: the block “ReactorCoolantSystem”
composes the blocks as well as the connections.

block ReactorCoolantSystem
block Reactor

// body of the block Reactor
end
block Controller

// body of the block Controller
end
block MainLine

// body of the block MainLine
end
block BackupLine

// body of the block BackupLine
end
connection [Reactor.TemperatureSensors.output,

Controller.input1];
connection [MainLine.ValveM2.output,

Reactor.Vessel.CoolingCoil.input1];
connection [BackupLine.ValveS2.output,

Reactor.Vessel.CoolingCoil.input2];
connection [Controller.command1,

MainLine.ValveM1.command];
connection [Controller.command1, MainLine.PumpM.command];
connection [Controller.command1,

MainLine.ValveM2.command];
// Same connections between the controller and

components of the BackupLine
end

Fig. 4. S2ML code for composition.

The port “p” of block “B” is referred to as “B.p” as in most
of the object-oriented languages (it is prefixed by the name of
its parent).

In S2ML, it is possible to refer to a port (and more generally
any modeling element) of a block nested at any hierarchical
level, therefore “crossing the wall” of composing blocks. As
connections represent any relations, there is actually no reason
to limit the reference mechanism as if ports were physical
interfaces. Note finally that each block is a name space: the
blocks “ValveM1” and “PumpM” can both declare a port
“input”.

B. Component reuse via classes
S2ML blocks are prototypes, in the sense of object and

prototype oriented programming languages ([4], [18]). A block
has normally a unique occurrence. There are cases however
where the system under study embeds several identical com-
ponents. In our illustrative example, pumps “PumpM” and
“PumpS” may be identical. It would be of course possible
to duplicate the code of the two pumps, but this would be
both error prone and confusing. A first solution to address
this problem is to create a class for pumps and to instantiate
it twice in the model.

A class is a separate “on-the-shelf” block (with possibly
a full hierarchy of blocks underneath) that can be reused
in models via the instantiation mechanism. The code of the
reactor coolant system could be as depicted in Fig. 5. This
code is equivalent to the one that would declare two identical
blocks for pumps “PumpM” and “PumpS”.



TABLE I
BASIC STRUCTURAL CONSTRUCTS

Concept Blocks Ports Connections
AADL Components (system, abstract, thread,

device, etc.)
Features, etc. Connections

SysML Blocks Ports Connections
Modelica Classes, Models, Blocks Constants, Variables, Parameters Equations

Lustre Functional blocks Variables Instructions
AltaRica Nodes Variables, Events Transitions, Synchronizations, Asser-

tions
AltaRica 3.0 Blocks, Classes Variables, Parameters, Observers,

Events
Transitions, Assertions

Petri Nets - Places Transitions

class Pump
port state, input, output, command;
connection [state, command];
connection [input, output, state];

end

block ReactorCoolantSystem
block MainLine

block ValveM1
// body of the block valveM1

end
block ValveM2

// body of the block valveM2
end
Pump PumpM;
connection [ValveM1.output, PumpM.input];
connection [PumpM.output, ValveM2.input];
// remainder of the block MainLine

end
// remainder of the block ReactorCoolantSystem

end

Fig. 5. S2ML code for class declaration and instantiation.

C. Component reuse via cloning

In addition to the class/instance mechanism to reuse compo-
nents, S2ML provides another way to automatically duplicate
code (a part of a model). It is called cloning. For instance, the
code for the block “Reactor” could be as follows.

block Reactor
block TemperatureSensors

// body of the TemperatureSensors
end
clones TemperatureSensors as PressureSensors;
// remainder of the body of Reactor

end

In the above code, the block “Reactor” defines a block
named “TemperatureSensors” and clones it to get the block
“PressureSensors”. In this example, both blocks are local to
the model and thus do not require any genericity.

The cloning directive is extremely powerful in conjunction
with aggregation (discussed later). The S2ML specification
document [5] provides a graphical representation for cloning.

D. Inheritance

In some cases it is necessary to modify or extend the char-
acteristics of a modeling component/class without changing
its nature. In these cases, composition is not really suitable
because we would like to be able to substitute the modified/ex-
tended component for any occurrence of the original one.

It can be achieved using the inheritance mechanism. Inher-
itance describes a “is-a” relation between modeling units.

As an illustration, consider the valves of our illustrative
example. The actual implementation for these valves could
derive from an abstract description of what is the interface of a
modeling component for a valve. This inheritance mechanism
makes it possible to build step wisely the model.

As any object-oriented language, S2ML provides a construct
to implement the inheritance mechanism: the “extends” direc-
tive. The code to model the valves of our illustrative example
could thus be as follows.

class ValveInterface
port input, output, command;

end

class Valve
extends ValveInterface;
port state;
connection [state, command];
connection [input, output, state];

end

In the context of modeling languages, inheritance can be
seen as a particular type of composition, where no prefix is
added to the composed/inherited class or block. S2ML allows
multiple inheritance, with all the usual warnings about it.

Object-oriented languages, such as AADL, SysML, Model-
ica and the new version of AltaRica, AltaRica 3.0, implement
the inheritance mechanism.

E. Aggregation

We have seen that composition describes a “is-part-of”
relation. This relation assumes that a component cannot belong
to two different super-components (parents). There are cases
however where the same component is used in several places
or to contribute to different functions of the system. This kind
of “uses” relations can be described by means of aggregation.

As an illustration, Fig. 1 shows a physical breakdown
of the system: it is made of four sub-systems and some
connections; these sub-systems are further decomposed, and
so on. This structural breakdown is correct, although it mixes
physical and functional descriptions. It is probably not the
only decomposition of the system that would be used. The
two lines for instance are more functional groupings than
physical groupings. The first is the main and the second is
the backup. Usually for such parts, failures occur on actuators
(pumps or valves). The tank can be assumed as a passive
component. Thus, only one tank exists and is shared by the two
lines. Therefore, we need to be able to describe hierarchical



breakdowns with branches sharing components. This is the
very purpose of the notion of aggregation. The S2ML construct
for aggregation is the “embeds-as” directive.

The code describing the “Reactor Coolant System” could
be as follows.

block ReactorCoolantSystem
block Tank
// body of the block Tank
end
block MainLine

embeds main.Tank as tank;
// remainder of the block MainLine

end
block BackupLine

embeds main.Tank as tank;
// remainder of the block BackupLine

end
// remainder of the block ReactorCoolantSystem

end

In the code above, the block “ReactorCoolantSystem” de-
fines a block “Tank”, which is then aggregated by the blocks
“MainLine” and “BackupLine”.

The aggregation mechanism is extremely powerful. It makes
it possible to embed into the same model different views,
including functional and physical views. It can also be used
to share universal objects (e.g. physical constants) in a clean
way.

Very few modeling languages implement aggregation. For
instance, it is the case of SysML, where aggregation relation
between blocks is represented as a white filled diamond.
The new version of AltaRica, AltaRica 3.0, also implements
aggregation by means of the “embeds-as” directive.

F. Blocks/Prototypes versus Classes

As we have seen earlier, S2ML provides two types of con-
tainers: blocks, which are prototypes in the sense of prototype-
oriented programming, and classes (see e.g. [4] and [18] for
discussions about these paradigms). Classes are well suited for
“on-the-shelf”, generic, stabilized knowledge. Prototypes are
well suited for the “on-going” work.

The C-K theory of Hatchuel and Weill (see e.g. [14])
formalizes this idea in the context of engineering design. Their
dialectic applies to the model engineering as well: the model
(made of blocks/prototypes) is the space C of concepts, i.e. a
sandbox in which new knowledge is maturing. Classes are the
space K of stabilized knowledge.

The class/instance mechanism is without any doubt interest-
ing to define “on-the-shelf”, re-useable modeling components
such as those for valves or pumps in our illustrative example.
The fantastic richness of modeling languages such as Modelica
or Matlab/Simulink stands for a great part in the wide choices
of dedicated libraries.

However, when authoring a model (graphically or not), we
may want to modify the code for the cooling coil while editing
the entire model. With a pure object-oriented language, this is
not possible. Classes are flat: one cannot modify a class via
its instance, even if this instance is unique. We may call that
the “a box in a box in a box” issue.

Moreover, what can be re-used depends on the level of ab-
straction of the model. On the one hand, models designed with
simulation languages such as Modelica or Matlab/Simulink,

stand at physical component level. For these models, re-use
means mainly re-use of modeling components. On the other
hand, models standing at system level, typically designed with
modeling languages such as SysML or AltaRica [20] shows a
rather different picture. At system level, each model is unique.
Re-use can be however obtained by cloning and adjusting
models. In other words, there are prototypical systems/models,
in the sense of [15], but no generic system model from which
other system/model could be derived just by setting some
parameters. What can be re-used is thus modeling patterns
(in the sense of design patterns [11]) rather than modeling
components.

The above discussion explains why S2ML provides both
prototypes and classes. The comparison between classes and
blocks is summarized in Table II.

G. Unfolding and Flattening

Any S2ML model is semantically equivalent to an unfolded
one, i.e. a model made of a hierarchy of nested/aggregated
blocks, connections and ports. In the unfolded model all
the instantiated/inherited classes and “clones” directives are
transformed into blocks and all the references/paths to model
elements are resolved according to the rewriting rules, the so-
called unfolding rules.

Any hierarchical S2ML model is also semantically equiva-
lent to a flat one, i.e. a model made of a unique block with
ports and connections. As in languages such as Modelica,
Lustre or AltaRica, this flat model is obtained by applying
recursively rewriting rules, the so-called flattening rules. These
rules “remove the walls” of containers (blocks and instances
of classes). In the S2ML specification document, they are
formally defined in a Structural Operational Semantics style
(see e.g. [19]).

H. Summary

As we have seen in this section, prototypes, classes, compo-
sition (“is-part-of” relation), inheritance (“is-a” relation) and
aggregation (“uses” relation) are the fundamental concepts
of model structuring. They originate from mechanisms to
structure programs.

Table III presents an overview of structural constructs of
some modeling languages used in systems engineering.

V. CONCLUSION

In this article, we introduced the domain specific language
S2ML. S2ML provides a minimal, yet extremely powerful, set
of concepts to describe functional and physical breakdowns
of systems on the one hand, and to structure models on the
other hand. The design of S2ML obeys the rule: “concepts
should come first”. S2ML is an object-oriented language that
embeds some prototype-oriented features as well. The authors
strongly believe that prototype orientation is the most suitable
structuring paradigm for models at system level of abstraction.
As a future work, it would be interesting to see how to embed
S2ML to the Eclipse Modeling Framework [23].



TABLE II
BLOCKS/PROTOTYPES VERSUS CLASSES

Concept Class Block
Definition Generic component Component having a unique

occurrence in the model
Reuse Instantiation and inheritance Cloning and modifying
Usage Multiple instances Unique occurrence

”On-the-shelf” component ”Sandbox”
stored in a library

C-K theory K-space C-space
Operations Composition Composition

Inheritance Inheritance
Aggregation

Cloning

TABLE III
STRUCTURAL CONSTRUCTS OF MODELING LANGUAGES: SUMMARY

Language Prototypes Classes Composition Inheritance Aggregation Cloning
AADL No Yes Yes Yes No No
SysML Yes No Yes Yes Yes No
Modelica No Yes Yes Yes No No
Lustre No Yes Yes No No No
AltaRica DataFlow No Yes Yes No No No
AltaRica 3.0 Yes Yes Yes Yes Yes Yes
S2ML Yes Yes Yes Yes Yes Yes

Developments around S2ML can be useful in two different
ways. First, they can contribute to increase the awareness of
the systems engineering community on the topics of model
structuring. They can inspire system modeling language de-
signers and provide them with conceptual tools to ensure the
convergence of the structuring part of modeling languages.
Second, S2ML can be used directly to support the model
synchronization process, i.e. the process by which one can
ensure that two possibly heterogeneous models are “speaking”
about the same system. Two models, possibly written into two
different languages, cannot in general be compared directly.
The idea is thus to abstract them into a pivot language, e.g.
S2ML, and to compare their abstractions. The development of
a full S2ML modeling and simulation environment, including
libraries of comparators and abstractors for different modeling
languages is, at the time we write these lines, under specifi-
cation.

S2ML is already used as a structuring paradigm for model-
ing formalisms dedicated to safety analyses. The future version
of the Open-PSA model exchange format (see e.g. [7] for the
previous version) relies on S2ML to define the meta-model of
classical modeling formalisms such as Fault Trees, Reliability
Block Diagrams, Event Trees and Markov chains (see e.g. [21]
for an introductory book). In addition, the high-level modeling
language AltaRica 3.0 (see e.g. [20]) makes a full use of
S2ML as a structuring paradigm while Stochastic Guarded
Transition Systems [22] provide the underlying mathematical
framework of the language. As of today, AltaRica 3.0 is
probably the most advanced language to support Model-Based
Safety Assessment, the declension of Model-Based System
Engineering for Reliability, Availability, Maintainability and
Safety (RAMS) studies. At the time we write these lines, both

Open-PSA and AltaRica 3.0 are still under development. How-
ever, both projects are sufficiently mature to draw preliminary
conclusions that show the pertinence of S2ML.

S2ML is a very powerful formalism to describe systems
breakdowns as well as structures of models. Many widely
used modeling languages could be re-casted so to adopt
S2ML as a structuring paradigm. There is however an intrinsic
limitation to S2ML expressive power: S2ML assumes that
the architecture of the system (and/or of the model) does
not change (significantly) throughout the mission time. Sys-
tems with evolving architecture, i.e. systems whose number
of components and interactions between components change
through the mission time, in other words systems of systems
(see e.g. [16]), are much more difficult to model. Extending
S2ML ideas and principles to this kind of systems would be
an extremely important step forward.

REFERENCES

[1] A. Arnold, A. Griffault, G. Point and A. Rauzy. The AltaRica language
and its semantics. Fundamenta Informaticae, 34:109–124, 2000.

[2] Benjamin S. Blanchard and Wolter J. Fabrycky. Systems Engineering
and Analysis. Pearson, Upper Saddle River, NJ 07456, USA, 2008

[3] Niklaus Wirth. Algorithms + Data Structures = Programs. Prentice-Hall,
Upper Saddle River, New Jersey 07458, USA, 1976

[4] Mauricio Abadi and Luca Cardelli. A Theory of Objects. Springer-
Verlag, New-York, USA, 1998.

[5] Michel Batteux, Tatiana Prosvirnova, and Antoine Rauzy. System
Structure Modeling Language (S2ML). AltaRica Association, 2015.
archive hal 01234903, version 1.

[6] Ole-Johan Dahl and Kristen Nygaard. Simula: an algol-based simulation
language. Communications of the ACM, 9(9):671–678, September
1966.

[7] Steven Epstein and Antoine Rauzy. Open-PSA Model Exchange format,
version 2.0d, 2008. http://www.open-psa.org.

[8] P. Feiler, D. Gluch, and J. Hudak. The Architecture Analysis & Design
Language (AADL): An Introduction. Carnegie Mellon University. 2006.



[9] Sanford Friedenthal, Alan Moore, and Rick Steiner. A Practical Guide
to SysML: The Systems Modeling Language. Morgan Kaufmann. The
MK/OMG Press, San Francisco, CA 94104, USA, 2011.

[10] Peter Fritzson. Principles of Object-Oriented Modeling and Simulation
with Modelica 2.1. Wiley-IEEE Press, Hoboken, NJ 07030–5774, USA,
2003.

[11] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns : Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley professional computing series. Addison-Wesley,
Boston, MA 02116, USA, October 1994.

[12] Adele Goldberg and David Robson. Smalltalk 80: The Language.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1983.

[13] Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud.
The synchronous dataflow programming language lustre. Proceedings
of the IEEE, 79(9):1305–1320, 1991.

[14] Armand Hatchuel and Benoit Weill. C-k design theory: an advanced
formulation. Research in Engineering Design, 19(4):181–192, 2009.

[15] George Lakoff. Women, Fire, and Dangerous Things: What Categories
Reveal About the Mind. The University of Chicago Press, Chicago,
Illinois, U.S.A, April 1990.

[16] Mark W. Maier. Architecting principles for systems-of-systems. Sys-
tems Engineering, 1(4):267–284, July 1998.

[17] Tadao Murata. Petri Nets: Properties, Analysis and Applications. Pro-
ceedings of the IEEE, 77(4):541–580, April 1989.

[18] James Noble, Antero Taivalsaari, and Ivan Moore. Prototype-Based
Programming: Concepts, Languages and Applications. Springer-Verlag,
Berlin and Heidelberg, Germany, 1999.

[19] Gordon D. Plotkin. The origins of structural operational semantics.
Journal of Logic and Algebraic Programming, 6061:315, 2004.

[20] Tatiana Prosvirnova, Michel Batteux, Pierre-Antoine Brameret, Abra-
ham Cherfi, Thomas Friedlhuber, Jean-Marc Roussel, and Antoine
Rauzy. The AltaRica 3.0 project for model-based safety assessment. In
Proceedings of 4th IFAC Workshop on Dependable Control of Discrete
Systems, DCDS2013, pages 127–132, York, Great Britain, September
2013. International Federation of Automatic Control.

[21] Marvin Rausand and Arnljot Hyland. System Reliability Theory:
Models, Statistical Methods, and Applications, 2nd Edition. Wiley-
Blackwell, Hoboken, New Jersey, USA, January 2004.

[22] Antoine Rauzy. Guarded transition systems: a new states/events formal-
ism for reliability studies. Journal of Risk and Reliability, 222(4):495–
505, 2008.

[23] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.
EMF: Eclipse Modeling Framework (2nd Edition). Addison-Wesley
Professional, Boston, MA 02116, USA, December 2008.


