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BIMATRIX EQUILIBRIUM POINTS AND 
MATHEMATICAL PROGRAMMING*t 

C. E. LEMKE 

Rensselaer Polytechnic Institute, Troy, N61D York 

Some simple constructive proofs are given of solutions to the matric system 
Mz- tD = q;z;;:; O;w!!: O;e.ndz"w = O,forvariouskinds ofdataM,q,whlch
embrace the quadratic programming problem and the problem of finding 
equilibrium points of bimatrix games. 

The general scheme is, assuming non-degeneracy, to generate an adjacent 
extreme point path leading to a solution. The scheme does not require that 
some functional be reduced. 

A. Introduction 

In this paper, simple constructive proofs are given of the existence of solutions 
for certain systems of the form: Mz- w = q; z � 0; w � 0, when such exist. 
The quadratic programming problem and the problem of finding equilibrium 
points for bimatrix games may be posed in the given form, and thus a general 
algorithm is given for these problems. 

The element of proof adapts the techniques used in the constructive proof of 
the existence of equilibrium points for bima.trix games [7] to a wider class of 
problems. The main characteristic of the technique, combining the familiar 
concepts of non-degeneracy and extreme-point path, is the generation of an 
adjacent extreme-point path (which is not based upon a successive-approxima
tion scheme) which terminates in an equilibrium point, when such exists. In 
somewhat more geometrical detail, visualizing the convex polyhedron in z-space 
of points satisfying: 

Mz � q; z � 0, 

the path of points generated consists wholly of points for which z"w = (z),(w),; 
that is, points for which the sum has at most one (non�negative) summand 
(z),(w), positive, for fixed s. It is arranged that the path start on an unbounded 
edge, which thereafter uniquely defines the path to be traversed, and for particu
lar kinds of data M and q the path will end in an equilibrium point. 

By way of background, the quadratic programming problem (which includes 
the linear programming problem) in the well-known "Kuhn-Tucker format" 
takes the above form. Indeed, the majority of published solution techniques 
may be described in tenns of the formulation. The bimatrix (or non-zero-sum 
two-person matrix) game may be cast in the given fonn, as may other "quadratic
like" types of problems (see, for example, those discussed in [61). The results 
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given below extend somewhat the class of problems for which an adjacent extreme 
point path scheme will lead to a solution. Also, additional light (Theorem 5) is 
shed on the results of Chames, Cooper, and Thompson [3] touching on the 
boundedness of the constraint sets of linear programming problems. In pSBSing, 
the results generalize those contained in a report [5] of Dantzig and Cattle, and 
a similar scheme of Gomory and Balinski developed for the assignment and 
transportation problems, [1]. 

From the computational point of view, it is supposed that adjacent extreme 
point algorithms are sufficiently well-known, 1 so that details of computation 
may be omitted . 

B. Existence Proofs 

We shall consider sets of the form: 

(1) Z = { z: M z - w = q; z > 0; w > 0} c Rn , 

where M is a square matrix of order n, and q, z, and ware columns. Rn is the 
space of columns of numbers with n components. The notation A > 0 for a 
matrix means that all components are positive; and A > 0 means that all com
ponents are non-negative. 

We shall use the notation A r to denote the transpose of A. (A)i denotes the 
''t.h column of matrix A ; and (a) • denotes the ith component of column a. We 
shall use the columns e, and e defined by: (e)i = 1, for all i, and (e,)i = 1; 
(ei); = 0, for j � i. 

Referring to system ( 1), given z, w = M z - q serves always to define w. 

Dej. 1. A point of Z which satisfies: 

(2) zr
w = (zh(w)l + (z)2(w)2 + · · · + ( z)n(w),. = 0

is called an equil£brium point. 
Since z and ware non-negative, (2) is equivalent to: 

(3) (z),(w), = 0, for 1 � i < n. 

For each i, the pair (z) ; , ( w), is a complementary pair, and each is the complement
of the other. 

We shall summarize the relevant well-known facts concerning Z, and conse
quences of the assumption of non-degeneracy. 

For each z eRn one obtains a unique matrix N(z) obtained from the matrix 
(Mr, I) by deleting, for each i, (Mr ), if and only if (w), � 0, and (I), if and 
only if (z) , � 0. (Possibly N(z) has no columns.) 

Dej. 2. A point z e R, is an extreme point of Z if and only if z e Z, and rank 
N(z) = n. A point z lies on an open edge of Z if and only if z e Z and 
rank N(z) = n- 1. 

Dej. 3. Z is non-degenerate if and only if whenever A is a matrix obtained from 
(Mr, I) by deleting some (but not all ) columns, and there is a z eR, such that 
A = N(z), then the number of columns of A equals its rank. 

a For a description of adjacent extreme point algorithms see (2J, pp. 269-348, Vol. I. 
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Concerning the existence of equilibrium points, it may be shown (see, for 
example, [7]) that z may be perturbed to a set z' :::> z' such that z' is non
degenerate and in such a way that if z' has an equilibrium point then Z does. 
In any case, non-degeneracy will be explicitly assumed where required. 

If Z is non-degenerate, the following holds: if z is an extreme point of Z, then 
N(z) is non-singular, and if z is a point on an open edge of Z, then N(z) has 
n- 1 columns. It further follows that an extreme point is an end-point of 
exactly n edges of Z. More precisely, if z is an extreme point of Z, and N = N(z), 
let N, be obtained from N by deleting its ith column. Then the set of points 
z e Z for which N, = N(z) is a (non-empty) open edge of Z having z as end
point. Otherwise put, in terms of the components of w and z, moving from z 
along an edge of Z exactly one of those n of the 2n variables (z), and (w), which
are zero at z is increased from zero (the other n - 1 remaining at zero value), 
and that edge may be associated with that variable. 

Finally, if z is an equilibrium point, by ( 3) N ( z) has at least n columns; 
hence, by non-degeneracy, has just n columns, and hence is an extreme point. 
Hence, if Z is non-degenerate it has a finite nwnber of equilibrium points. 

An edge of Z having two end-points is bounded. Its two end-points are adjacent 
extreme points. (If Z is non-degenerate, two extreme points z1 and z2 of Z are 
adjacent if and only if N(z1) and N(z,) have just n - 1 columns in common). 
An edge having just one end-point is unbounded, and will be called a ray of Z. 
Since z � 0 (i) Z cannot contain an entire line, and (ii) if Z is non-empty it 
has an extreme point. 

Dej. 4. A non-empty connected set consisting of a non-empty class of closed 
edges of Z such that no three edges of the class intersect is called an adjacent 

extreme-point path or more briefly an adjacency path. 
Thus, an extreme point contained in an adjacency path of Z meets just one 

or two edges of the path. If such a point meets just one such edge it will be 
called an end-point of the path. Thus, an adjacency path has 0, 1, or 2 end-points, 
and contains 0, 1, or 2 rays of Z. It has 0 end-points if and only if it contains 
either 0 rays (a closed path) or 2 rays; it has 2 end-points if and only if it has 
0 rays; and has 1 end-point if and only if it has 1 ray. 

Dej. 5. For fixed i, the set z, is the set: 

(4) Z,={z:zeZ and zTw=(z),(w)i}.

Hence, Z, is the set of points of Z for which (z) ;( w); = 0, for J. � i; and hence
the setS of all equilibrium points of Z is contained in the set z, for each i, and 
is in fact the intersect over i of these sets. 

Theorem 1. For fixed s, if Z is non-degenerate, Z, is either empty or is the 
union of disjoint adjacency paths of Z. The set S of equilibrium points of Z is 
precisely the set of end-points of the adjacency paths comprising Z,. 

Proof. H z e Z,, then (z),(w), = 0; for i � s. Hence N(z) has n or n- 1
columns. Hence z is either an extreme point of Z or lies on an open edge of Z. 

H z is on an open edge of Z, then N(z) = N(z) for a.ll points z of that edge, 
and hence the entire edge is contained in Z,. Since at an end-point of such an 
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edge, just one additional variable is made 0, such end-point is also a point of Z,. 
Hence, if z. is non-empty, it contains at least one extreme point of Z. 

H z is an extreme point of Z, then either (Case I) (z),(w), = 0, or (Case 11) 
(z),(w), > 0. In Case I z is an equilibrium point. In this case, for each i, precisely 
one of the pair (z).:, (w).: is equal to 0. Hence, that edge along which, from z, 
the zero member of the pair (z),, (w). is increased from 0, is the one and only 
edge from z contained in Z, . In Case 11, for just one value of i, say i = r � 8, 

N(z) contains as columns both (MT)r and (l)r ; that is: tOr = Zr = 0. An edge 
of Z (with end-point z) along which just one of these variables is increased from 
0 is contained in z . . The two such edges are the only edges of Z with end-point 
z contained in Z, . 

It remains to point out that an extreme point z in z. lies on one and only one 
adjacency path of Z of points of Z • .

If an extreme point z in z. is incident with just one edge of points of Z,, that 
edge is either a ray (in which case it constitutes the desired adjacency path), or 
is not. If not the other end-point is either an equilibrium point (in which case 
the edge constitutes the desired path) or is not. If not, there is just one other 
edge of points of Z, along which one may continue. Continuing in this manner 
the process terminates either in a ray, or at an equilibrium point, yielding the 
desired path. 

If an extreme point z in Z, is incident with two edges of points of Z,, selecting 
one of these edges to start, a path is described as in the preceding paragraph, 
except that the path may return to z, in which case it terminates. If not, a 
similar portion of the desired adjacency path is swept out starting from the 
other edge coincident with i, and the two portions constitute the desired path. 
This concludes the proof. 

Existence of E([Uilibrium Poinu 

The technique which furnished a constructive proof of the existence of equilib
rium points of non-zero sum matrix games [7] will be adapted, in what follows, 
to certain other types of sets Z. A main result is contained in Theorem 4. 

In the case of the game example, the resultant Z was clearly non-empty. An 
example similar to this case will illustrate the technique there applied. In other 
cases, one needs to take account of the possibility that Z is empty. We shall use 
the more obvious half of the following well-known result (see, for example, [2]): 

Lemma 2. Z is empty if and only if there exists a u � 0 satisfying:

(5) MTu � 0; and uTq > 0. 

We shall also use the following property of the sets Z, , which is an immediate 
corollary of Theorem 1 : 

Theorem 2. Let Z be non-degenerate and have the property that for some s, 
Z, contains precisely one ray of Z. Then Z has an odd number of equilibrium 
points. 

Proof. Label as Eo the single ray of Z,. The adjacency path of Z of points of 
z. which contains Eo must terminate in an equilibrium point.
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If an adjacency path contained in z. does not contain Eo it is either a closed 
path (containing no equilibrium points) or has two end-points (which are dis
tinct equilibrium points). This concludes the proof. 

AB an example, similar to the game case: 
Corollary. Let Z be non-degenerate. If q = e, and M> 0, then Z has an odd 

number of equilibrium points. 
Proof. For fixed s, we need merely point out that z. contains only one ray of 

Z. Consider the non-negative orlhant of points satisfying z � 0. Z is obtained 
from it by intersecting it with n half-spaces of the form aTz > 1, where a > 0 
represents any row of M > 0. The hyperplane aT z = 1 therefore cuts each co
ordinate axis, and points of the form: 

(6) z = kei' k > 0, 

are in Z for k large enough, and in fact, for some k0 > 0, points ( 6) are in Z 
for k � ko , and not in Z for k < ko . The ray of points for which k � k0 lies in 
z, (for each i) and not in Z 1 for j � i. Since that part of Z satisfying aTz = 1 
is bounded these are the only rays, and in particular, for fixed s, z. ha.s one and 
only one ray, completing the proof. 

Regarding the number of equilibrium points, there is a general class for which, 
if Z is non-degenerate, an equilibrium point is unique. 

Theorem 3. If Z is non-degenerate and M satisfies z�'Mz > 0 (that is, if M is 
non-negative definite) there is at most one equilibriwn point. 

Proof. Let z1 and Z2 be equilibrium points. Set w, = Mz, - q, so that w,�'z, = 0, 
fori = 1, 2. Then: 

(7) 0::5 (z,- zl)TM(Zt- Zt) = (%2- Zt)T(tl11- W1) = -(ZtTWl + ZtTW2). 

Since all variables are non-negative, this implies: 

(8) 

Since z, is an equilibrium point, by non-degeneracy each pair (z1 , w1) and 
(Zt, Wt) has precisely n zero components. Now the pair (zt + Zt , Wt + w2) 
has at least n positive components. But (8) implies: (zt + z2)�'(w1 + WJ) = 0. 
Hence the pair has at most n positive components. Hence, precisely n positive 
components. Hence the pairs (z1 , Wt) and (z2, w2) have the same components 
positive. Hence N(z1) = N(z,). Hence Zt = z2, completing the proof. 

To attack a wider class of problems, consider the following device. 

Let? = (�) where Zo is a scalar variable. Define the set:

(9) z* = {z*: Mz + zoe- w = q; w, z > 0; Zo � 0} c R,.+l. 

Define the set: 

(10) Z0* = {z* in Z*: z�'w = 0}. 

Note that z• is non-empty. In fact, the set Eo* of points satisfying: 
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(11) z = 0· , zo > Max, (q), ; and w = zoe - q, 

is a ray of z* which is further contained in Zo *. 
To apply Theorem 2, we shall add a single constraint. Let z** be the set of 

points of z* satisfying: 

(12) -eTz- Wo = -k; Wo � 0, 

where k is taken large enough so that any extreme point of z* satisfies eTz < k 
(that is, Wo > 0). The equality constraints for z** in block form become: 

(13) ( M 
T 

e) z* - w* = ( q ) ; where w* = (w); -e 0 -k Wo 

so that z** has the form ( 1). Let Zci* be the set of points of Zo * which are con
tained in z**. Letting wo play the role of complement of Zo , we are concerned 
with equilibrium points of z**. z�· is then the set of points of z** satisfying: 

(14) *T * z w = ZoWo.

If it is assumed that z* is non-degenerate, the choice of k ensures that z•• 
is non-degenerate. It may be remarked that if z* is non-degenerate, then Z is, 
and that if z is non-degenerate, z* may be perturbed so that z* is non-degenerate. 

From the computational point of view, the constraint (12) is artificial and 
unnecessary. 

Note that Eo* is still a ray of z**. The additional constraint (12) ensures that 
it is the only ray of z** contained in Z�*. To see this, we proceed as follows: 

Points on any ray of z* or of z** will have the form: 

(15) z* = t + ()u*· for() ;:::: 0· where t = (�) · u* = (u ) · , _ ,  Zo ' Uo '

and where z* is an extreme point of z* or of z** (whichever is being discussed) ; 
u* ;e 0; and 8 and Uo are scalar quantities. Setting w = Mz + Zoe - q; and 
v = Mu+ u.oe, we may write: 

(16) M(z + Ou) + (Zo + lhlo)e- (w + 9v) = q. 

The conditions f + lhl > 0; fo + 9uo > 0; and w + 8v ;:::: 0 for all 8 � 0 
require that: 

( 17) u � 0; Uo > 0; and v � 0. 

Then, if the ray is a ray of z**, the condition that eTz < k requires that u = 0. 
Then u * ;t. 0 requires that Uo > 0. Hence, for ()large enough, one must have that 
w = w + 8v > 0. Then the condition ZTW = ZTW = 0 for zt * requires that
z = 0, and hence that the ray is Eo •. 

Hence: 
Lemma 2. z·· has an equilibrium point. 
Proof. z** satisfies the requirements of Theorem 2. 
Next, consider the path of points of Zri,* which terminates in an equilibrium 
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point z *. Then ZoWo = 0. If the path were to end in Wo = 0 (hence in Zo > 0), the 
choice of k would ensure that the equilibrium point lies on a ray of z*. We seek 
(Theorem 4) conditions on M which will ensure that if this occurs it must be 
that Z is empty. We shall therefore, from now on, disregard the artificial con· 
straint (12) and examine the possibility of rays of z* other than Eo* contained 
in Zo* (i. e., satisfying zrw = 0). 

Any ray of z* is a set of points satisfying (15), (16), and (17), where now z* 
is an extreme point of z*. we have: 

(18) Mu + uoe -v = 0.

If it is next supposed that the ray is in Z0 *, then ( i + Ou) r ( w + Ov) = 0. 
Since all quantities are non·negative, this is equivalent to: 

(19) 
-T- -T T- T 0 zw=zv=uw=uv= .

There are two cases: Case I: u = 0 and Case II: u r6- 0. 
If u = 0, then Uo > 0. As before, we may conclude that the ray is Eo*. 
Hence, (Case II) we shall suppose that u r! 0. We may then take u so that 

e"u = 1. Then (18) and (19) yield: 
Lemma 3. A ray of z* contained in Zo * which is not the ray Eo* satisfies: 

(20) 

We next place conditions on M: 
Theorem 4. Let Z be non-degenerate. Let M have the property that if u � 0,

then: 

(i) 

(ii) 

(21) 

urMu � 0, 

urMu = 0 implies that: 

Mu+ Mru = 0. 

Then, if Z is non-empty, it has an equilibrium point. 
Proof. We need only show that, with the conditions of the theorem, the 

conditions (20) imply that Z is empty, unless io = 0. 
By (i) and (20): 

(22) Uo = urMu = 0. 

Then, by (ii) and (18): 

(23) Mu = v > 0 an d Mru = -Mu � 0. 

Next, by (19): 

(24) 
0 -T -TM = Z V= Z U, 

0 = urw = u"(Mi + zoe- q) = zrMru + io- urq. 

Adding, and using ( 23) : 

(25) zr(Mru +Mu)+ io- urq = io- urq = 0.
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Now, if zo = 0, then z is already an equilibrium point of Z. If 2o > 0, then 
uTq > 0. In this case, a u has been found satisfying the conditions of Lemma 1, 
and Z is empty. This concludes the proof. 

It may be observed that it has not been shown that the conditions (i) and 
(ii) on M ensure that Eo* is the only ray of z* contained in Z0* (as in the case
of the game example). But the conditions do ensure that, starting from the ray 
Eo*; one terminates an adjacency path in Zo = 0; that is, in an equilibrium point 
of Z. This latter statement embodies the suggested computational scheme. 

C. Discussion 

With regard to Theorem 4, we note that the case for which M satisfies 
zTMz � 0 for all z, most recently considered by Dantzig and Cottle, is included. 
To show that this condition implies (ii) of the statement of Theorem 4, we need 
only observe that zTMz = !zT(M + MT)z; that M +  MT is therefore symmetric 
and non-negative definite; and hence that zT(M + MT)z = 0 implies 
(M + MT)z = 0. We have extended this result to, for example, the case for 
which M > 0, which evidently satisfies (i) and (ii) of Theorem 4. The hi-matrix 
game case does not satisfy ( ii) of the theorem. 

Rega.rding the computational aspects, we have implied a computational 
scheme by the specification of a definite adjacency path, and have given no 
consideration to the question of how this might duplicate previous results. We 
shall compare our formulation briefly with that of Dantzig and Cottle [5], which 
we take the liberty of describing in our terms. Our constraints read: 

Mz + zoe - w = q; 

Let w
' = w - �- Dantzig and Cottle apply themselves to the form:

Mz- w' = q; and w
' > -ZQe,

where Zo is taken fixed and Zo > ma.x, ( q) i • 

tD � 0. 

Starting with z = 0 and w' = -q, they proceed to describe an adjacency path 
retaining z � 0 and w'T z = 0, and aim at successively reducing the number of 
negative components of w

' to zero.
In conclusion, we may observe the following result: 
Theorem 5. Let Z be non-empty and non-degenerate, and let M be non

negative definite. Then Z has at least n rays.
Proof. By Theorem 2, Z has a unique equilibrium point. Hence that point is 

the intersect of the sets z, . For fixed i, that adjacency path of the set z, which 
contains the equilibrium point must end in a ray belonging to Z, and not to Z1 
for j � i. Since this holds for each i, there are at least n rays. 

As an example of Theorem 5, consider the case of linear programming. The 

matrix A of order m by r is given. Then Z is the set of points • = C) satisfy·

mg: 

A:e � a; x � 0, and -A!'y � -b; y � 0.
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The 888ertion of the theorem is that when both of these sets are non-empty, 
then the number of rays, each of which is a ray either of one set or of the other, 
is at least m + r. In particular, if one of the sets, say Ax ;;;::: a; x ;;;::: 0, is bounded, 
then the dual set AT y S b; y ;;;::: 0 has at least m + r rays. This extends the 
results of Clark 14] and of Charm�, Cooper and Thompson.2 
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