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BIMATRIX EQUILIBRIUM POINTS AND MATHEMATICAL PROGRAMMING*t

Some simple constructive proofs are given of solutions to the matric system Mz-tD = q;z;;:; O;w!!: O;e.ndz"w = O,forvariouskinds ofdataM,q,whlch embrace the quadratic programming problem and the problem of finding equilibrium points of bimatrix games.

The general scheme is, ass uming non-degeneracy, to generate an adjacent extreme point path leading to a solution. The scheme does not require that some functional be reduced.

A. Introduction

In this paper, simple constructive proofs are given of the existence of solutions for certain systems of the form: Mz-w = q; z � 0; w � 0, when such exist.

The quadratic programming problem and the problem of finding equilibrium points for bimatrix games may be posed in the given form, and thus a general algorithm is given for these problems.

The element of proof adapts the techniques used in the constructive proof of the existence of equilibrium points for bima.trix games [START_REF] Howson | Equilibrium Points of Bi-matrix Games[END_REF] to a wider class of problems. The main characteristic of the technique, combining the familiar concepts of non-degeneracy and extreme-point path, is the generation of an adjacent extreme-point path (which is not based upon a successive-approxima tion scheme) which terminates in an equilibrium point, when such exists. In somewhat more geometrical detail, visualizing the convex polyhedron in z-space of points satisfying: Mz � q; z � 0, the path of points generated consists wholly of points for which z"w = (z),(w),; that is, points for which the sum has at most one (non�negative) summan d (z),(w), positive, for fixed s. It is arranged that the path start on an unbounded edge, which thereafter uniquely defines the path to be traversed, and for particu lar kinds of data M and q the path will end in an equilibrium point.

By way of background, the quadratic programming problem (which includes the linear programming problem) in the well-known "Kuhn-Tucker format" takes the above form. Indeed, the majority of published solution techniques may be described in tenns of the formulation. The bimatrix (or non-zero-sum two-person matrix) game may be cast in the given fonn, as may other "quadratic l ike" types of problems (see , for example, those discusse d in [61). The results t Thi.e work was supported by the Air Force Office of Scientific Research Grant No. AF -A.FOSR-339-63.

given below extend somewhat the class of problems for which an adjacent extreme point path scheme will lead to a solution. Also, additional light (Theorem 5 ) is shed on the results of Chames, Cooper, and Thompson [3 ] touching on the boundedness of the constraint sets of linear programming problems. In pSBSing, the results generalize those contained in a report [START_REF] Dantzig | Positive (Semi-definite) Matrices and Mathematical Progrwnm[END_REF] of Dantzig and Cattle, and a similar scheme of Gomory and Balinski developed for the assignment and transportation problems, [START_REF] Ballnbki | A Primal Method for The Assignment and Trans portation Problems[END_REF] . From the computational point of view, it is supposed that adjacent extreme point algorithms are sufficiently well-known, 1 so that details of computation may be omitted .

B. Existence Proofs

We shall consider sets of the form:

(1) Z = { z: M z -w = q; z > 0; w > 0} c Rn ,
where M is a square matrix of order n, and q, z, and ware columns. Rn is the space of columns of numbers with n components. The notation A > 0 for a matrix means that all components are positive; and A > 0 means that all com ponents are non-negative.

We shall use the notation A r to denote the transpose of A. (A)i denotes the ''t.h column of matrix A ; and (a) • denotes the ith component of column a. We shall use the columns e, and e defined by: (e)i = 1, for all i, and (e,)i = 1;

(ei); = 0, for j � i.

Referring to system ( 1), given z , w = M zq serves always to define w. Dej. 1. A point of Z which satisfies:

(2)

z r w = ( z h(w)l + ( z) 2( w) 2

+ • • • + ( z )n(w),. = 0
is called an equil£brium point.

Since z and ware non-negative, (2) is equivalent to:

(3) (z) , (w) , = 0, for 1 � i < n.

For each i, the pair (z ) ; , ( w) , is a complementary pair, and each is the complement of the other. We shall summarize the relevant well-known facts concerning Z, and conse quences of the ass umption of non-degeneracy.

For each z eRn one obtains a unique matrix N(z) obtained from the matrix (Mr, I) by deleting, for each i, (Mr ) , if and only if (w) , � 0, and (I), if and only if ( z ) , � 0. (Possibly N(z) has no columns.) Dej. 2. A point z e R, is an extreme point of Z if and only if z e Z, and rank N(z) = n. A point z lies on an open edge of Z if and only if z e Z and rank N(z) = n-1. Dej. 3. Z is non-degenerate if and only if whenever A is a matrix obtained from (Mr, I) by deleting some (but not all ) columns, and there is a z eR, such that A = N(z) , then the number of columns of A equals its rank.

a For a description of adjacent extreme point algorithms see (2J, pp. 269-348, Vol. I.

Concerning the existence of equilibrium points, it may be shown (see, for example, [START_REF] Howson | Equilibrium Points of Bi-matrix Games[END_REF]) that z may be perturbed to a set z' :::> z' such that z' is non degenerate and in such a way that if z' has an equilibrium point then Z does.

In any case, non-degeneracy will be explicitly assumed where required.

If Z is non-degenerate, the following holds: if z is an extreme point of Z, then N(z) is non-singular, and if z is a point on an open edge of Z, then N(z) has n-1 columns. It further follows that an extreme point is an end-point of exactly n edges of Z. More precisely, if z is an extreme point of Z, and N = N(z), let N, be obtained from N by deleting its ith column. Then the set of points z e Z for which N, = N(z) is a (non-empty) open edge of Z having z as end point. Otherwise put, in terms of the components of w and z, moving from z along an edge of Z exactly one of those n of the 2n variables (z), and (w), which are zero at z is increased from zero (the other n -1 remaining at zero value), and that edge may be associated with that variable.

Finally, if z is an equilibrium point, by ( 3) N ( z) has at least n columns; hence, by non-degeneracy, has just n columns, and hence is an extreme point.

Hence, if Z is non-degenerate it has a finite nwnber of equilibrium points.

An edge of Z having two end-points is bounded. Its two end-points are adjacent extreme points. (If Z is non-degenerate, two extreme points z1 and z2 of Z are adjacent if and only if N(z1) and N(z,) have just n -1 columns in common).

An edge having just one end-point is unbounded, and will be called a ray of Z. Since z � 0 (i) Z cannot contain an entire line, and (ii) if Z is non-empty it has an extreme point.

Dej. 4. A non-empty connected set consisting of a non-empty class of closed

edges of Z such that no three edges of the class intersect is called an adjacent extreme-point path or more briefly an adjacency path.

Thus, an extreme point contained in an adjacency path of Z meets just one or two edges of the path. If such a point meets just one such edge it will be called an end-point of the path. Thus, an adjacency path has 0, 1, or 2 end-points, and contains 0, 1, or 2 rays of Z. It has 0 end-points if and only if it contains either 0 rays (a closed path) or 2 rays; it has 2 end-points if and only if it has 0 rays; and has 1 end-point if and only if it has 1 ray. Dej. 5. For fixed i, the set z, is the set:

Z,={z:zeZ and z T w=(z),(w)i}.

Hence, Z, is the set of points of Z for which (z) ;( w); = 0, for J . � i; and hence the setS of all equilibrium points of Z is contained in the set z, for each i, and is in fact the intersect over i of these sets.

Theorem 1. For fixed s, if Z is non-degenerate, Z, is either empty or is the union of disjoint adjacency paths of Z. The set S of equilibrium points of Z is precisely the set of end-points of the adjacency paths comprising Z,.

Proof. H z e Z,, then (z),(w), = 0; for i � s. Hence N(z) has n or n-1 columns. Hence z is either an extreme point of Z or lies on an open edge of Z.

H z is on an open edge of Z, then N(z) = N(z) for a.ll points z of that edge, and hence the entire edge is contained in Z,. Since at an end-point of such an edge, just one additional variable is made 0, such end-point is also a point of Z,. Hence, if z. is non-empty, it contains at least one extreme point of Z.

H z is an extreme point of Z, then either (Case I) (z),(w), = 0, or (Case 11)

(z),(w), > 0. In Case I z is an equilibrium point. In this case, for each i, precisely one of the pair (z).:, (w).: is equal to 0. Hence, that edge along which, from z, the zero member of the pair (z),, (w). is increased from 0, is the one and only edge from z contained in Z, . In Case 11, for just one value of i, say i = r � 8, N(z) contains as columns both (MT)r and (l)r ; that is: tOr = Zr = 0. An edge of Z (with end-point z) along which just one of these variables is increased from 0 is contained in z . . The two such edges are the only edges of Z with end-point z contained in Z, .

It remains to point out that an extreme point z in z. lies on one and only one adjacency path of Z of points of Z •.

If an extreme point z in z. is incident with just one edge of points of Z,, that edge is either a ray (in which case it constitutes the desired adjacency path), or is not. If not the other end-point is either an equilibrium point (in which case the edge constitutes the desired path) or is not. If not, there is just one other edge of points of Z, along which one may continue. Continuing in this manner the process terminates either in a ray, or at an equilibrium point, yielding the desired path.

If an extreme point z in Z, is incident with two edges of points of Z,, selecting one of these edges to start, a path is described as in the preceding paragraph, except that the path may return to z, in which case it terminates. If not, a similar portion of the desired adjacency path is swept out starting from the other edge coincident with i, and the two portions constitute the desired path. This concludes the proof.

Existence of E([Uilibrium Poinu

The technique which furnished a constructive proof of the existence of equilib rium points of non-zero sum matrix games [START_REF] Howson | Equilibrium Points of Bi-matrix Games[END_REF] will be adapted, in what follows, to certain other types of sets Z. A main result is contained in Theorem 4.

In the case of the game example, the resultant Z was clearly non-empty. An example similar to this case will illustrate the technique there applied. In other cases, one needs to take account of the possibility that Z is empty. We shall use the more obvious half of the following well-known result (see, for example, [START_REF] Charneb | Management Models and Industrial[END_REF]):

Lemma 2. Z is empty if and only if there exists a u � 0 satisfying:

(5)
MTu � 0; and uTq > 0.

We shall also use the following property of the sets Z, , which is an immediate corollary of Theorem 1 : Theorem 2. Let Z be non-degenerate and have the property that for some s, Z, contains precisely one ray of Z. Then Z has an odd number of equilibrium points.

Proof. Label as Eo the single ray of Z,. The adjacency path of Z of points of z. which contains Eo must terminate in an equilibrium point.

If an adjacency path contained in z. does not contain Eo it is either a closed path (containing no equilibrium points) or has two end-points (which are dis tinct equilibrium points). This concludes the proof.

AB an example, similar to the game case:

Corollary. Let Z be non-degenerate. If q = e, and M> 0, then Z has an odd number of equilibrium points.

Proof. For fixed s, we need merely point out that z. contains only one ray of Z. Consider the non-negative orlhant of points satisfying z � 0. Z is obtained from it by intersecting it with n half-spaces of the form a T z > 1, where a > 0 represents any row of M > 0. The hyperplane aT z = 1 therefore cuts each co ordinate axis, and points of the form:

(6) z = kei' k > 0,
are in Z for k large enough, and in fact, for some k0 > 0, points ( 6) are in Z

for k � ko , and not in Z for k < ko . The ray of points for which k � k0 lies in z, (for each i) and not in Z 1 for j � i. Since that part of Z satisfying aTz = 1 is bounded these are the only rays, and in particular, for fixed s, z. ha.s one and only one ray, completing the proof.

Regarding the number of equilibrium points, there is a general class for which, if Z is non-degenerate, an equilibrium point is unique. Theorem 3. If Z is non-degenerate and M satisfies z�'Mz > 0 (that is, if M is non-negative definite) there is at most one equilibriwn point.

Proof. Let z1 and Z2 be equilibrium points. Set w, = Mz,q, so that w,�'z, = 0, fori = 1, 2. Then:

(7) 0::5 (z,-zl)TM(Zt-Zt) = (%2-Zt)T(tl11-W1) = -(ZtTWl + ZtTW2).

Since all variables are non-negative, this implies:

(8)

Since z, is an equilibrium point, by non-degeneracy each pair (z1 , w1) and

(Zt, Wt) has precisely n zero components. Now the pair (zt + Zt , W t + w2) has at least n positive components. But (8) implies: (zt + z2)�'(w1 + WJ) = 0.

Hence the pair has at most n positive components. Hence, precisely n positive components. Hence the pairs (z1 , Wt) and (z2, w2) have the same components positive. Hence N(z1) = N(z,). Hence Z t = z2, completing the proof.

To attack a wider class of problems, consider the following device.

Let? = (�) where Zo is a scalar variable. Define the set:

(9) z* = {z*: Mz + zoe-w = q; w, z > 0; Zo � 0} c R,.+l.

Define the set:

(10) Z0* = {z* in Z*: z�'w = 0}.

Note that z• is non-empty. In fact, the set Eo* of points satisfying:

point z *. Then ZoWo = 0. If the path were to end in Wo = 0 (hence in Zo > 0), the choice of k would ensure that the equilibrium point lies on a ray of z*. We seek (Theorem 4) conditions on M which will ensure that if this occurs it must be that Z is empty. We shall therefore, from now on, disregard the artificial con• straint (12) and examine the possibility of rays of z* other than Eo* contained in Zo* (i. e., satisfying zrw = 0). Any ray of z* is a set of points satisfying (15), ( 16), and (17), where now z* is an extreme point of z*. we have:

(18) Mu + uoe -v = 0.
Now, if zo = 0, then z is already an equilibrium point of Z. If 2o > 0, then uTq > 0. In this case, a u has been found satisfying the conditions of Lemma 1, and Z is empty. This concludes the proof.

It may be observed that it has not been shown that the conditions (i) and (ii) on M ensure that Eo* is the only ray of z* contained in Z0 * (as in the case of the game example). But the conditions do ensure that, starting from the ray Eo*; one terminates an adjacency path in Zo = 0; that is, in an equilibrium point of Z. This latter statement embodies the suggested computational scheme.

C. Discussion

With regard to Theorem 4, we note that the case for which M satisfies zTMz � 0 for all z, most recently considered by Dantzig and Cottle, is included.

To show that this condition implies (ii) of the statement of Theorem 4, we need only observe that zTMz = !zT(M + MT)z; that M+ MT is therefore symmetric and non-negative definite; and hence that zT(M + MT)z = 0 implies (M + MT)z = 0. We have extended this result to, for example, the case for which M > 0, which evidently satisfies (i) and (ii) of Theorem 4. The hi-matrix game case does not satisfy ( ii) of the theorem.

Rega.rding the computational aspects, we have implied a computational scheme by the specification of a definite adjacency path, and have given no consideration to the question of how this might duplicate previous results. We shall compare our formulation briefly with that of Dantzig and Cottle [START_REF] Dantzig | Positive (Semi-definite) Matrices and Mathematical Progrwnm[END_REF], which we take the liberty of describing in our terms. Our constraints read:

Mz + zoe -w = q; Let w ' = w -�-Dantzig and Cottle apply themselves to the form:

Mz-w' = q; and w ' > -ZQe,

where Zo is taken fixed and Zo > ma.x, ( q) i • tD � 0.

Starting with z = 0 and w' = -q, they proceed to describe an adjacency path retaining z � 0 and w'T z = 0, and aim at success ively reducing the number of negative components of w ' to zero.

In conclusion, we may observe the following result:

Theorem 5. Let Z be non-empty and non-degenerate, and let M be non negative definite. Then Z has at least n rays. Proof. By Theorem 2, Z has a unique equilibrium point. Hence that point is the intersect of the sets z, . For fixed i, that adjacency path of the set z, which contains the equilibrium point must end in a ray belonging to Z, and not to Z 1 for j � i. Since this holds for each i, there are at least n rays.

As an example of Theorem 5, consider the case of linear programming. The matrix A of order m by r is given. Then Z is the set of points • = C) satisfy• mg:

A:e �a;

x � 0, and -A!' y � -b; y � 0.

The 888 ertion of the theorem is that when both of these sets are non-empty, then the number of rays, each of which is a ray either of one set or of the other, is at least m + r. In particular, if one of the sets, say Ax ;;;: :: a; x ;;;: :: 0, is bounded, then the dual set AT y S b; y ;;;: :: 0 has at least m + r rays. This extends the results of Clark 14] and of Charm�, Cooper and Thompson.2

If it is next supposed that the ray is in Z0 *, then ( i + Ou) r ( w + Ov) = 0. Since all quantities are non•negative, this is equivalent to:

(11) z = 0• , zo > Max, (q), ; and w = zoeq, is a ray of z* which is further contained in Zo *.

To apply Theorem 2, we shall add a single constraint. Let z** be the set of points of z* satisfying:

where k is taken large enough so that any extreme point of z* satisfies eTz < k (that is, Wo > 0). The equality constraints for z** in block form become:

(13 )

; where w * = (w);

-e 0 -k Wo so that z** has the form [START_REF] Ballnbki | A Primal Method for The Assignment and Trans portation Problems[END_REF]. Let Zci* be the set of points of Zo * which are con tained in z**. Letting wo play the role of complement of Zo , we are concerned with equilibrium points of z**. z�• is then the set of points of z** satisfying:

If it is ass umed that z* is non-degenerate, the choice of k ensures that z•• is non-degenerate. It may be remarked that if z* is non-degenerate, then Z is, and that if z is non-degenerate, z* may be perturbed so that z* is non-degenerate.

From the computational point of view, the constraint ( 12) is artificial and unnecessary.

Note that Eo* is still a ray of z**. The additional constraint (12) ensures that it is the only ray of z** contained in Z�*. To see this, we proceed as follows:

Points on any ray of z* or of z** will have the form:

(15) z* = t + ()u*• for() ;::: : 0• where t = (�)

and where z* is an extreme point of z* or of z** (whichever is being discussed) ; u* ;e 0; and 8 and Uo are scalar quantities. Setting w = Mz + Zoeq; and v = Mu+ u.oe, we may write:

(16)

M(z + Ou) + (Zo + lhlo)e-(w + 9v) = q.

The conditions f + lhl > 0; fo + 9uo > 0; and w + 8v ;::: : 0 for all 8 � 0 require that:

Then, if the ray is a ray of z**, the condition that eTz < k requires that u = 0. Then u * ;t. 0 requires that Uo > 0. Hence, for ()large enough, one must have that w = w + 8v > 0. Then the condition ZTW = Z T W = 0 for zt * requires that z = 0, and hence that the ray is Eo •.

Hence:

Lemma 2. z•• has an equilibrium point.

Proof. z** satisfies the requirements of Theorem 2.

Next, consider the path of points of Zri, * which terminates in an equilibrium

There are two cases: Case I: u = 0 and Case II: u r6-0. If u = 0, then Uo > 0. As before, we may conclude that the ray is Eo*. Hence, (Case II) we shall suppose that u r! 0. We may then take u so that e"u = 1. Then ( 18) and (19) yield: Lemma 3. A ray of z* contained in Zo * which is not the ray Eo* satisfies:

(20)

We next place conditions on M: Theorem 4. Let Z be non-degenerate. Let M have the property that if u � 0, then:

implies that:

Then, if Z is non-empty, it has an equilibrium point.

Proof. We need only show that, with the conditions of the theorem, the co nditions (20) imply that Z is empty, unless io = 0.

By (i) and ( 20