ON PERIODIC SOWTIONS CLOSE TO RECTILINEAR NORMAL VIBRATION MODES

L. I. !v1ANEVICH and lu. V. MIKHLIN (Dnepropetrovsk) Periodic solutions of essentially nonlinear systems similar to normal vibrations with rectilinear trajectories are investigated. Systems with homogeneous poten tials are assumed to be the generating systems. Normal vibration modes of some nonlinear conservative systems with a finite number• of degrees of freedom, which are an extension of normal vibrations of linear systems have been studied in several papers in recent years [START_REF] Rose N Be R G | On the ge ometrization of normal vibrations of nonlinear systems[END_REF][START_REF] Mane Vi C H | Group-invariant solutions of the problem of normal vibrations[END_REF]. Rectilinear trajectories in configura tion space correspond to the known exact solutions of the normal vibration prob lems. These solutions can be used as genetators in determining the periodic motions of systems similar to those studied. The existence of solutions close to linear normal vibrations has been proved in the Liapunov works [START_REF] Li A Punov | Collected Works[END_REF][START_REF]Some Prob !ems of the Theory of Nonl. inear Vibrations[END_REF] for a broad class of quasi-linear systems. Qualitative questions of the theory of nor mal vibrations with curvilinear trajectories, as well as an approximate construc tion of normal vibrations in several particular cases, have been considered in [START_REF] Roscnberg | NonsimilarnnrmalmodevibrationsofnLlll-1 i near systc Ill ' having tl[END_REF][START_REF] Rose N Be R G | On the existence of normal mode vibra tions of non linear systems[END_REF][START_REF] Coo K E | Perturhations of normal mode vibrations[END_REF].

1. Let us consider a conservative system described by the differential equc.tions

(s=1,2, ... ,n) ( 1 . 1)
where fs are odd analytic functions of x 1, x 2, .. . , Xn in a closed domain of configura tion space. Keeping only terms of the least, rth power in x 1 , x2 , x" in (1.1) , we obtain the generating homogeneous system associated with (1.1) . The normal mode vibrations of a homogeneous system are determined by the relationships x 8 0 = C sXn (s= 1,2, ... , n-1), where tbt" constants C8 are found from the algebraic equatwns , C11_1, 1) (s = 1, 2, .... n -1) ( 1 . 2)

C .• /�{l (C1, C
Here and henceforth, JK), f�r) are components of lowest order in x1, J:2, • •• , Xn in the expansions of the functions fm fs• Without limiting the generality, let us assume that a system of coordinates in which C 8 = 0, has been selected, which means that also X8 0 = 0 (s = 1,2, ... , n -1). Let us introduce the notation Xn = x, in = i in this coordinate system. In order to construct periodic solutions of (1.1) close to the normal vibrations of a homogeneous system, let us initially determine the trajectories of the desired periodic solutions X8 = X8 (x) (s = 1,2, ... , n -1). The equations to determine the trajectories can be written as follows:

[ n-1 dx. )2]_1 a2x 2 [h-F (x, x1 (x), x2 (;r) , . .. , x "-1 (:r)] 1 + .� ( d x ' dx� • + d.'C 1=1 f (x, x1 ( 
x), ... , Xn_1 (x)) crf-==is (. r , x1 (x), . .. , x,._1 (x))

(1 .:3) (s=1,2 . . .. ,n �-1 )

1
where h is a constant energy, and F is the potential of the system (1.1 ). Let us take the solution of (1. 3) in the form of the series 00

Xs = � Xsk (x) k=O (s = 1, 2, . .. , n-1)
(1.4)

In the zero�th approximation x 8 0 = 0 . As in rectilinear normal trajectories, the tra jectory (1. 4) should satisfy the boundary conditions a) X8 (0) = 0 (s = 1, 2, ... , n -1) b) On the maximum isoenergetic surface

F (X, x1 (X), x2 (X), ... , Xn_1 (X)) = h
orthogonality conditions for the trajectories to this surface must be satisfied dx 1 -d • I (X, X1 (X), ... , Xn-1 (X))= Is (X, X1 (X), . .. , Xn-l (X))

X x=X

(1.5)

(1.6)
where X is the amplitude value of the variable x. After X8 (x) has been determined, the problem reduces to integrating the equation

x" = f (x, x1 (x), x2 (x), ... , Xn-1 (x))

(1.7)

The proof of the existence and the construction of a unique periodic solution are carried out under the following constraints on the system (1.1):

1) The determinants are �m =f= 0 (1 . 8)

I M � �"' = 6/m (m -1) 2 1 (\ 0 -i-'i • 'O) + 6/mj < r > (1, 0, ... , 0) -0;j (1, 0, ... , 0)
where 6/ are the Kronecker deltas, m = 1 ,2, ...

2) Equilibrium positions are absent on the maximum isoenergetic surface . If r = 1, then the constraint (1. 8) agrees with the condition excluding multiple frequencies in the generating system, which Liapunov took in the investigation of quasi linear systems [START_REF] Roscnberg | NonsimilarnnrmalmodevibrationsofnLlll-1 i near systc Ill ' having tl[END_REF].

2.

Let us turn to the construction of an asymptotic process which will afford the possibility of determining the system trajectory. Let us take the solution of the homo geneous system x80 = 0 as the zero-th approximation.

Let the functions Xsm (.r) (m< k) be defined. We then obtain the following kth approximation equation Here

2 rPx,k [h + /('') (x, 0, ... '0) J + d .c,� j (r) ( 0 0) - ----a;z- r + 1 X dx X, ' • • • ' n-1 ( r ) O k-1 d ' k-1 d "'0/8 (x,O,. ••• ) c . 1 "'� N( l) +"' �N(2) _ L.l ()x. XJ/i I L.l dx" k-l L.l d.c /c-l j=l } l=l l=l [ n-1 &/(r) ] N �1 >-� a:. (x, 0, . . . , 0) xik = 0 ]=1 } ( 2 . 

1)

The sign � is extended over all solutions in positive integers of the equation Hence n-1

� (�ij) + 2 �� j) I p(i) ) - ... •r mt--m --m i=1 m n-1 n-1 q=l j=l i=1 m c<y) =m! [IT Sql (q!) � qr l q=1 N< 1 > = -2F (x, x1 (x), x2 (x), ... , x,._1 (x)} n-1 r (dx j (x))"ll N< 2 > = I (x, x1 (x), x2 (x), ... , Xn-1 (x)) L 1 + � -;;:;-J )=1 . n-1 r ( dx-(.r) )2] N<3> = Is (x, x1 (x), x2 (x), .. . , Xn _1 (x)) ; 1 + � -Jx-j - J=l
The solution {2.1) is sought in the form � ( k ) . Xsk = .::: :.J Asj x1 j=l

(2.

2)

The coefficients A�j> are related by an infinite system of linear recursion relations 2h (r + l + 2) (r l + 1) Ai�+l+ 2 + l (l + 1) r! 1 j<r) (1, 0, ... , 0) A��l 1 + n-1 a •(r) (l + 1) j<r> (1, 0, ... , 0) A����-� ;:. (1, 0, .. . , 0) A)n1 = <Di k l (2.3)

j='l

1
where the function cvlk) depends on the preceding approximations. If conditions (1. 8) are satisfied, then all the coefficients of the series (2. 2) are expressed uniquely in terms of the n -1 quantities AW ( j = 1 ,2, . .. , n -1; p is any fixed integer) .

The boundary conditions (1. 6) corresponding to the k th approximation

n-1 • (r) dx ,k I (rl ( " 0 0) � df, ( X 0 0) • • (X)_;_ -d- . j ./1 .' ' ••• ' --.::: :.J -d -" ' ' . . . ' X;k , x �x �1 � (2.4) k-1 r • 71-1 (r) J � a x ,z j <�)\ <: nl �at. •v o o) . (X) -o
T:o� X =X N ,,_{ x=X-N,, : \" =-X el d x j (A, ' ... ' X;J;

--should be used to determine A )�l • Because of the constraint (1. 8), necessary and suffi cient conditions for the coefficient� A J:':l to he represented uniquely as power series in X from (2. 4), are satisfied.

Taking account of all the approxi rnations, we obtain the trajectory (1. 4) which depends on the para me ter X. Later, the convergence of the series (2. 2) and (1. 4) in some neigh borhood of the origin will he proved. For a specified energy level of the system, the "amplitude" of the vibrations X can he determined from (1. 5) as an analytic function uf the ener gy h. After the trajectory has been constructed, the solution of (1. 7) can be obtained in quadratures. Since the root of (1. 5) is simple, as follows from the proposition (2), the motion of the conservative system with one degree of freedom (1. 7} is periodic Let us examine the set of coefficients AW(s= 1,2, ... , n-1, j � l). We sup pose that these coefficients are bounded. Then without limiting the generality, it can be assumed that the following inequalities are satisfied : (j � q and q increases without limit) . Let us consider the limit value of aq (3.2)

.

"" {q _ 1 [(q-r) (2q � 2r-1) + (n-1) -t <1>�� 1 I M� ( I X I I aq)11] ) !�� a q= a l !! q+1' [(q-r-1 )(2q-2r-4)+(n-1)+<D�Ii ) /M2(1X II aq)11-1 ] f If the ftmctions .T8m (x) are bounded for m< k , then the infinite product (3. 2) con verges. Making the quantity a1 sufficiently small, we obtain a = limq-ooU q < 1, and the menbers of the series (2. 2) decrease in a geometric progression.

It is also necessary to prove that the coefficients A W ( f � Z} are bounded. It fol lows from (2. 3) that all A�;• > are linear functions of the greatest coefficients A��) (lJ � z, 11 is fixed) in absolute value

11_1 <k> = � A A .; L.J U8; ;11 + v. i=1 ( s=1,2,ooo1n-l)
where u si and vs are bounded quantities. Therefore, (2. 4) connects the analytic func� tions of X and As1 1, and a value X= X0 exists such that quantities A811 are repre� sented by power series in X for IX I < !X 0 I [START_REF]t s[END_REF]. The series (2. 2) converge for these values of X .

Now, let us prove that the coefficients of the series (1.4) decrease in a geometric pro� gression as the number of the approxima,ion k grows. Suppose that the decrease of the coefficients AW with increasing k for j �m, is proved, and

Examining the relations (2. 

N�> < p (b z t-1 R (K < R < oo) (3.4) 
It has been proved earlier that the coefficients A!!{+1 are bounded. Hence, values of the constants b 1 and R can be selected such that the conditions (m+ 1)m!A��+ll<(b , }k-lR, k�l would be satisfied, where b 1 can be made arbitrarily small if R is sufficiently large.

Taking account of ( 3.1), (3. 3), ( 3. 4), we obtain the following inequality from (2. ---q_:m qt 2 (m+ 2) (q + 1) q (2q + 1) + 3 (q + 1)2 00 q= l

The infinite products converge and we obtain the inequality b < 1 by selecting the quantities b 1 sufficiently small. It hence follows that the coefficients A �;;{+1 decrease in a geometric progression as the number of the approximation k increases.

The proof that the quantities A!1l (j m + 2, m + 3, ... ) decrease in a geomet� ric progression is carried out analogously. Finally, it follows from the construction of the asymptotic process that the series (1. 4) converge to the solution of (1. 3). Therefore, upon compliance with the constraints (1) and (2) a unique periodic solution of (1.1)

which possesses the properties of normal vibrations corresponds to each normal solution of the generating homogeneous system. A rectilinear normal vibrations mode of the generating system corresponds to each real solution of ( 4. 2) . In order to construct trajectories of the periodic motions of the system We represent the solution ( 4. 3) in the form (2. 2) by satisfying the boundary conditions (1. 6). In a numerical computation we assume

3 . 1 u 1 2

 311 in the domain F (x) � h • Let us prove the convergence of the series obtained formally. Let us consider first the series (2. 2) by assuming that the boundedness of X8m (x) has been proved for m < k. (The boundedness of X80 (x) = C,x for finite values of x is evident) . Furthermore, let the coefficients of (2. 2) be replaced everywhere by their absolute values, and also replace x by JX J.Since F, /, fs are analytic functions of x, x 1 , x2, ... , Xn-1 , the estimates{ c <Y) j iJYN(i} (X, O, 0 0 • , O) X, O, ... , O ) <B axa.•ax"'' ox"ll -• • • n-1 (0 < B < oo) (3.1)are then valid in the domain of definition of (1.1).

  oo, az where A is an arbitrary, but finite, quantity exceeding the modulus of the greatest coef ficient in absolute value among all the AW. Because of the arbitrariness in selecting A the quantity a1 can be made arbitrarily small. Let M = m a x {A, B }. Taking account of the estimates ( 3.1), we obtain the following inequality from (2. 3): Here I Am11 � al � 1 I A(Ii)l ---=: : IX I sl { l _ 1 [( l -r) (2l-2r -1) + (n -1) + 1Df!i I M2 (I X I I at)1] } al + l= m a x a l , a 1l+1 [( l -r -1)(2l-2r-4) +(n-1)+Ql}K ) IA12(!XIIa/ 1 1 Since a1 + 1 > az, the quantities AW U � l + 1) satisfy the inequality I A < � > < (al+l )HM S] Th I A (li) I < (...: :.s_ )i-1 u t us mtro uce t e constants a l +2, al+3, •• • ana ogous y. en 83 I X I irJ .

  3) and (2. 4) for different k, it can be shown that the ine� qualities are valid, particularly for A;�>. Let K = m a x {P, B }. Using the estimates (3.1) and (3.3) it can be shown that

1 + 1 =

 11 3): m (m+ 1) I A���1 I ------;; (1� ) """---< b l + 1 m (m + 1) I Asm+l l { 2 (m+ 2) (I + 1) ( l + 2) (21 + 3) + 3 ( l + 2)2 } b max b z , b z 2 ( m+ 2 ) l (l + 1) (2 l + 1) + 3 ( l + 1 )2 Let us also introduce the constants b1+2, b 1 +3, ••• • We examine "" b -1" b -bIT [2 ( m+2J(q+1)(q+2)(2q+3l+3( q+2J2 ]
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 414311 which are close to rectilinear normal modes, let us use the first approximation equation in the form (2.1). In the case under consideration we obtain1'1 (x) y;'' + P� (x) y1' + P a (o) !/J + PJ (x) �= 0 (x) = 2 (I + ' l n2fmi C 2) [t + ( !� y (1-C)'+ ( !: y c�] (X• --x4) 1 -( l1 'a lP2 (.r) c.= -_I + T;) (1 -C)3 J ;c3 Pa(x)=f. ' w(��Y(t--c)' �:� ;:� [(�;Yct+(�:Ytc 1)"]} x 2 ?4 (x) = + {-C [I + ( :: r ( l -C)o] + ;:� [ ( �; y C•' + ( �: y (C-1);]} x 5
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X (0) = X= 0.9 x• (0) = 0

In the zero-th approximation we determine two rectilinear normal modes (eo-and anti phase) corresponding to the two real roots of ( 4. 2)

Adding rhe solution of the first approximation equation (4. 3) in the form [START_REF] Mane Vi C H | Group-invariant solutions of the problem of normal vibrations[END_REF][START_REF] Mane Vi C H | Group-invariant solutions of the problem of normal vibrations[END_REF] and the solution of the zero-th approximation, we obtain the following expressions, respectively, for the vibration modes:

.5)

Having available the vibrations mode ( 4. 4) or ( 4. fJ), we can reduce the problem to the integration of a second order nonlinear equation of the form (1. 7). The dimensionless periods of the vibrations for the eo-and antiphasal modes are Tz7.42 and T z 2.54 in the zero-th approximation; taking account of the zero-th and first approximations T z 6. 71 and T z 1. 88. To estimate the accuracy of the asymptotic solution obtained, the system (4.1) was integrated numerically on an electronic digital computer. Variation of the initial conditions permitted extraction of two periodic solutions close to the nor mal vibration modes of the generating homogeneous system. The solutions obtained on the computer are characterized by the following parameters: y I x z 1.349 and y I :rr � -o. 950 for ; = 0, y ' = 0 and the periods of the vibrations are T z 6.0 5 and T z 1.68 , respectively.

A comparison of the asymptotic solutions and the sol.utions computed on the computer shows that taking account of the zero-th and first approximations assures acceptable accuracy of the computation.