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Abstract

The circum-galactic medium consists in gas orbiting around galaxies, whose faintness prevents any complete and easy detection.
A powerful tool to detect such pattern can be found in using hyperspectral imaging. Nevertheless, detection in hyperspectral
datacubes faces various problems, including well-fitted signal and noise descriptions to ensure further discrimination. A specificity
of astronomical images resides in dealing with faint and very noisy signals. In this paper, we introduce a new constrained generalized
likelihood ratio test adapted to the problem and a compound test to exploit most of the available information. We also investigate
the use of both spatial information and multiple observations on a single scene, to enhance robustness. Numerical experiments on
synthetic data are performed to quantify the gain of the different approaches. Finally, results on real hyperspectral astronomical data
are presented, which may map for the first time observation of the circum-galactic medium around faint and distant galaxies.

Keywords: Hyperspectral Images, Hypothesis Testing, Generalized Likelihood Ratio, Spatial Enhancement, Multiple Observations,
Astronomical Images

1. Introduction

1.1. Problem Formulation
Galaxies evolve by interaction with their environment through

different mechanisms. Their immediate environment, known
as the Circum-Galactic Medium (CGM), is the place to study
these mechanisms. The surrounding neutral gas can be ionized
and then be detectable through the Lyman-alpha emission line.
This emission line is generally strong in young star-forming
galaxies known as Lyman-Alpha Emitters (LAE). However, the
CGM emission is extended, its morphology is unknown and
its brightness is much fainter than the emission of the galaxy
itself. Until recently [1] it has escaped direct detection, but with
the advent of new hyperspectral imagers, it is now possible to
detect the CGM at high redshift, at a time where we expect that
most interaction should take place. Making progress towards an
unbiased and robust detection of the CGM is then of considerable
interest for upcoming astrophysical studies.

We propose in this paper a general unsupervised detection
strategy for faint extended sources in Hyperspectral Images (HSI
or datacube) based on hypothesis testing. This formulation is
widespread and often takes the form of two hypotheses describ-
ing the presence/absence of the signal. A test is then set to
choose between the two alternatives, by the mean of a test statis-
tic thresholding. In the HSI, the tests are applied on spectra, so
that the statistic yields a detection map. One might see the test
as a contrast function: an image well contrasted between signal
and noise implies that the test statistic is more relevant.

Furthermore, astronomical HSI present several peculiarities,
including:

1Corresponding author (email: jb.courbot@unistra.fr).

– They have a non-negligible degree of sparsity, and spectra
mostly consist in emission or absorption lines plus an even-
tual smooth continuum component. This spectral sparsity
is well exploited in the context of restoration [2] and source
separation [3].

– Long exposure times are needed when probing faint, distant
objects. The total exposure time can sum up to several
hours, and generally cannot be obtained at once because of
cosmic rays, saturation or night duration. Therefore, the
observation is actually an average of several observations.
Nevertheless, we also have acess to the individual (stacked)
observations.

Keeping in mind these specificities, we now describe previous
work on detection in HSI.

1.2. Previous Works in HSI Detection

When considering the detection of target spectra in hyperspec-
tral imagery, one can select non-parametric or parametric meth-
ods. The non-parametric methods do not rely on the knowledge
or estimation of the background distribution and its parameter.
Some of these methods are related to order statistics, such as
the FDR control [4][5], which are robust to changes in noise
level but not to outliers. This makes it delicate to choose in the
eventuality of a spatially wide target. Other methods from this
family, specifically designed to handle outliers, rely on extreme
value theory [6]. This kind of method is useful when the noise
distribution is hard to estimate from the observation, and when
the target is seldom encountered in the image. In our applica-
tion, the target is weak, so its impact on the estimation will be
negligible, and since it may cover a significant part of the HSI,
we do not need to resort to extreme value theory.
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Therefore, parametric methods may be better suited to our
problem. They can be classified in two categories: the super-
vised methods, in which the target spectrum is known prior to
detection, and the unsupervised methods, in which it is not. In
the first category, well-known detectors in HSI are the Adaptive
Matched Filter (AMF) [7] and the Adaptive Cosine/Coherence
Estimator (ACE) [8]. Both use the input data to estimate the
background distribution, but rely on a known spectrum to per-
form the detection. Hence, they are well-adapted to look for
known anomalies in a HSI [9]. Besides, they have the Con-
stant False Alarm Rate (CFAR) property: their false alarm rate
does not depend on nuisance parameters [10]. This property is
particularly appealing for practical implementations. Other ap-
proaches include Orthogonal Subspace Projectors [11] in which
background or signal knowledge is exploited to perform projec-
tion prior to signal/background separation, and hybrid detectors
such as [12, 13, 14].

When the target spectra are unknown, it is necessary to resort
to unsupervised techniques. The most used as a benchmark in
automatic HSI source detection is the Reed-Xiaoli (RX) algo-
rithm [15] and improvements (e.g. [16]). This method measures
how anomalous a spectrum is, given a background and its es-
timated covariance matrix. More recent work in unsupervised
detection also includes projection pursuit (PP) [17, 18]. The aim
of such a method is to project data onto a 1D space in order
to optimize some criterion, e.g. the outliers-sensitive kurtosis.
In [19], the authors also propose a Spatio-Spectral Gaussian
Random Field (SS-GRF) modeling for noise. This method also
behaves as an anomaly detector, since the signal structure is
unconstrained. Other methods from the unsupervised family
aim at building a reference from the observation alone. These
methods [20, 21, 22] use machine learning techniques to learn
the signal target under various constraints (e.g. with sparsity).
However, when targeting for emission lines in astronomical im-
ages, one can assume there exists a general description of the
target line (e.g. Gaussian) that can be used as prior within the
detection method.

Relatively to the previously cited works, we address the prob-
lem of source detection, with partial knowledge of the target to
detect. The hypothesis testing framework appears well suited to
properly describe what is unknown and what is known. One of
the most common hypothesis testing formulation for detection
in HSI is the Generalized Likelihood Ratio (GLR) [23]. It uses
a re-formulation of Neyman-Pearson’s optimal Likelihood Ratio
test [24], replacing the signal and noise knowledge by Maximum
Likelihood (ML) estimates. This test does not present direct
optimality or CFAR properties, but appears to perform well in
numerous cases (see [25] for a study of GLR properties). Im-
provements were recently made on the GLR formulation, either
with sparse constraints [26] to have a better signal characteriza-
tion or with priors on signal distribution [27].

Among previous studies, a few instances [19, 28] consider
spatial relationships between spectra. Other work on this topic
includes local summation methods [29], Hidden Markov Ran-
dom Field modeling [30], cluster modeling [31] and marked
point processes [32].

1.3. Article Outline
Throughout this paper, we make use of assumptions related

to astronomical HSI analysis. First, the sources spectra present
few non-zero coefficients, modeling an emission line. Spatially,
their spectra vanish from their center, meaning that a few central
spectra are bright whereas the others are faint. Furthermore, the
spectra in the bright and faint regions remain similar, because
they physically share some amount of gas. To summarize: we
seek at locating spectrally-located, spatially-extended, consistent
sources in an HSI.

Assumptions concerning the instrument are also necessary. In
particular, the instrument Point Spread Function (PSF) should
not be neglected with respect to pixel size. Note that the PSF is
assumed separable into a spatial Field Spread Function (FSF)
and a spectral Line Spread Function (LSF). Moreover, several
observations of the same scene, as well as their average, are
available. Finally, the noise distribution is assumed multivariate
Gaussian in this average, which is correct given the MUSE
instrument’s behavior (see e.g. [33]).

The main contributions of our work are the following:
– We propose a two-step detection strategy, to perform first

a bright source detection and then a faint source detection.
The first step adresses the unsupervised dectection of the
brighter source. Then, given the resulting bright detection
map, the second step performs the detection of similar,
fainter spectra in the remaining of the HSI.

– We introduce a new constrained GLR test which considers
the similarity with a given spectra. We show that this test
has the CFAR property.

– This test leads to a compound test, considering the simi-
larity with respect to a spectra set. This test is used as the
second step of the proposed detection strategy. We show
that its false alarm rate has an upper bound, which remains
independent from noise level.

– The models are also extended to make use of the spatial
relationship between spectra, within a local neighborhood.

– The use of multiple observations of a single scene is also
investigated to exploit most available information. Experi-
ments show this way does not provide noticeable improve-
ments (Section 3.2).

– Then, we present numerical experiments on the methods
with the help of simulated HSI. This allows us to assess
method improvements and to compare with others meth-
ods [15, 19] through Receiver Operating Characteristic
(ROC) curve analysis.

– Results on real astronomical data from the MUSE integral
field unit [34] are finally presented. They could provide
for the first time a statistical mapping of the CGM orbiting
around galaxies.

This paper is an extension of prior works reported in [35]. The
improvements consist in rephrasing the proposed tests within a
constrained GLR framework, exhibiting properties of the tests,
considering stacked observations, extending experimental vali-
dations, and comparing with an alternative version and with the
SS-GRF method from [19].

The paper outline is the following. The proposed models are
reported in Section 2. Then, numerical experiments and results
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Table 1: Detection tests summary. Letters in quote denote the subscripts of the
tests and corresponding thresholds. “3”,“7”, “–” label wheter the corresponding
models are used, not used or not applicable.
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T Bcs 2.2.2 7 7 3 3

T Bncs 2.3.1 3 7 3 3

T Bnocs 2.3.2 3 3 3 3

are given in Section 3, as well as comparison with state-of-the art
method. The application on real MUSE data is finally presented
in Section 4, with results on distant, faint galaxies and their
environment.

2. Models

In this section, we present the models for source detection.
As stated in the introduction, the process is split into two steps,
detecting first a bright source (Section 2.1) and then its faint
counterpart (Section 2.2). Then, in Section 2.3 the models are en-
riched by considering spatial features and multiple observations.
An error analysis is finally presented in Section 2.4, investigating
type I error (false alarm rate) analytical properties.

Throughout this paper, we deal with various forms of GLR
tests. Most of them will have a constraint, such as the sparsity-
enforcing GLR(1D)

1s proposed in [28]. For brevity we note T as
being any GLR test with catalog constraint (see below). Sev-
eral test variations are investigated, including or not spatial and
observation-wise features, similarity constraint and compound
testing. Table 1 summarizes the test variations, names and corre-
sponding paper section. Each test requires a threshold, which
will be denoted ξ, with the subscript corresponding to the test
name.

We consider an HSI containing the source of interest, denoted
(ys)s∈S, S being the HSI spectra set. For brevity, the distri-
bution of the random variable Ys, whose realization is ys, is
noted p(ys); and likewise for the other variables of interest. The
spectral hypothesis allows us to use a catalog C, containing J
columns c j. In practice, they will be Gaussian lines, represent-
ing potential Lyman-alpha lines convolved by the LSF. In this
paper, B denotes the bright spectra set, and we have s ∈ S for
any spectra, b ∈ B for the detected bright spectra (in the first
step), f ∈ F =S \ B for the remaining spectra (proceed at the
second step). Finally, estimations are denoted with a “ˆ” over
the variable of interest.

2.1. Bright Source Detection
This step aims at detecting the bright source. The hypotheses

to test are the following ∀ s ∈ S:∣∣∣∣∣∣ H0 : ys = εs;
H1 : ys = xs + εs.

(1)

The additive noise ε on the spectral axis is a realization of a
random variable following a multivariate zero-mean normal
distribution of covariance matrix Σ, noted N(0,Σ). We assume
that the spectral content xs of the bright source can be described
with a line c j from C and a multiplicative factor αs.

As xs is unknown, it is necessary to resort to a GLR test. We
use the constrained GLR test from [28], which yields:

T (ys) =

max
c j,αs

p(ys | c j, αs,H1)

p(ys|H0)

H1

≷
H0

ξ. (2)

Under the multivariate normal noise hypothesis, T reduces in:

T (ys) = max
j,αs

exp
(
−
α2

s

2
c>j Σ

−1c j + αsc>j Σ
−1ys

)
= max

j
exp

− α̂2
s, j

2
c>j Σ

−1c j + α̂sc>j Σ
−1ys

 ;
(3)

where α̂s is the ML estimate of αs:

α̂s = arg max
αs

p(ys |αs, c j,H1) =
c>j Σ

−1ys

c>j Σ−1c j
. (4)

Then, the test expression from Equation (2) reduces to:

(c>̂ Σ
−1ys)2

c>̂ Σ−1c ̂

H1

≷
H0

2ln(ξ); (5)

where:
̂ = arg max

j
p(ys | α̂s, c j,H1). (6)

Furthermore, the analytical form (5) makes it possible to express
the false alarm rate thanks to the chi-square distribution with
one degree of freedom.

This test has been shown to be more efficient than the classical
GLR in the case of sparse signals [28]. It will be extended to
consider richer information (spatial features, stacked observa-
tions) in Section 2.3. The test from Equation (2) is applied on
all s ∈ S and the H1 decision region forms the spectra set B.
This set will be used as a reference for the extended faint source
detection step in the next section.

2.2. Extended Faint Source Detection
From now on, we consider the set B fixed. This step aims

at detecting the extended faint source in the remaining data
F =S \ B. The faint spectra are assumed to be similar to the
bright ones. First, a new constrained GLR test is introduced in
Section 2.2.1, accounting for the similarity between bright and
faint spectra. Then, a compound test is proposed in Section 2.2.2,
so that most of the available information is exploited.
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2.2.1. Similarity Constrained GLR Test
Let yb and y f be two observed spectra, respectively bright

(b ∈ B) and faint ( f ∈ F ). The model assumes, underH1, that
the fixed xb and the unknown x f are described by one catalog
line, up to a multiplicative factor β f ,b ∈ R+. The two hypotheses
for testing a faint y f are:∣∣∣∣∣∣ H0 : y f = ε f ;

H1 : y f = x f + ε f = β f ,bxb + ε f = β f ,bαbc j + ε f ;
(7)

where ε f is a realization of zero-mean multivariate normal noise
distribution, with covariance matrix Σ. Let x̂b = α̂bc ̂ be the
fixed ML estimation of xb, where α̂b and ̂ are computed with
Eqs. (4) and (6) respectively.

Definition 2.1. Given the reference x̂b, the GLR test with simi-
larity constraint, T x̂b

s , is defined as:

T x̂b
s (y f ) =

max
x f

p(y f | x f ,H1)

p(y f | H0)

=

max
β f ,b

p(y f | β f ,bx̂b,H1)

p(y f | H0)

=
p(y f | β̂ f ,bx̂b,H1)

p(y f | H0)
;

(8)

where β̂ f ,b, is the ML estimate of β f ,b.

The ML estimate of β f ,b yields:

β̂ f ,b = arg max
β f ,b

p(y f | β f ,b, x̂b,H1) =
x̂>b Σ

−1y f

x̂>b Σ−1x̂b
. (9)

Then, T x̂b
s can be rewritten with the ML estimate from Equa-

tion (9). Denoting x̂ f = β̂ f ,bx̂b, the logarithm of T x̂b
s is written

as:

ln[T x̂b
s (y f )] = x̂>f Σ

−1y f −
1
2

x̂>f Σ
−1x̂ f

= β̂ f ,bx̂>b Σ
−1y f −

β̂2
f ,b

2
x̂>b Σ

−1x̂b

=
1
2

(x̂>b Σ
−1y f )2

x̂>b Σ−1x̂b
.

(10)

Therefore, the test results in:

T x̂b
s (y f )

H1

≷
H0

ξs ⇔
(x̂>b Σ

−1y f )2

x̂>b Σ−1x̂b

H1

≷
H0

2ln(ξs). (11)

This expression allows us to obtain PFA(T x̂b
s ) in Section 2.4;

proving that this test has the CFAR property.
Let us mention that this model and the associated test were

inspired by the “LR-MPβ” test from [26]. The difference are:
– only the first step of the Matching Pursuit from the LR-

MPβ is used. This avoids setting an input target correlation
threshold;

– we test any pair (b, f ) of pixels, not only the contiguous
ones;

– we do not draw the same conclusions as [26] on the PFA
test statistic (see Section 2.4).

2.2.2. Compound Similarity Constrained GLR Test
So far, the proposed test addresses a spectrum y f , f ∈ F given

a fixed spectrum yb. Given the set B, one can use for yb a spec-
trum from the sample, or its averaged spectrum 1/|B|

∑
b∈B yb.

However, using this average under-uses the available informa-
tion and may lower its statistical variety. We propose therefore
to use this test given each yb, i.e. using the whole set (yb)b∈B.
To preserve an additive analytical formulation (based on the
test logarithm, see Equation (11)), we use the product of each
individual component.

Definition 2.2. Given a reference set B and the corresponding
(x̂b)b∈B, the compound similarity constrained GLR test, T Bcs , is
defined as:

T Bcs (y f ) =
∏
b∈B

T x̂b
s (y f ). (12)

With Equation (11), the analytical formulation is:

T Bcs (y f )
H1

≷
H0

ξcs ⇔
∑
b∈B

(x̂>b Σ
−1y f )2

x̂>b Σ−1x̂b

H1

≷
H0

2ln(ξcs). (13)

This analytical expression also allows us to search for PFA(T Bcs ).
We will show in Section 2.4 that an upper bound can indeed be
found on this value.

Let us remark that when performing individual tests T x̂b
s (y f )

in the computation of T Bcs (y f ), the estimates x̂b may differ (in
shape, position or intensity) between locations b. This ensure all
component of an eventually complex bright source are accounted
for.

2.3. Enriching the Models

This section is dedicated to two enrichments of the model
presented so far. First, we consider using spatial features (Sec-
tion 2.3.1), and then we discuss the use of multiple observations
stacking (Section 2.3.2).

2.3.1. Spatial Features
The previous tests only consider the spectral dimension,

whereas the spatial dimension is ignored. We see in this section
that considering the spatial FSF is interesting. Indeed, at low
Signal to Noise Ratio (SNR), the signal of interest may be lost in
a single spectrum, while it does still have a significant presence
if its local neighborhood is considered. This spreading is best de-
scribed by the FSF, which may vary according to the considering
wavelength [36]. We assume that the FSF can be described by
wavelength-dependent parameters, and spatially fades quickly
enough to be windowed within a few pixels. Let us remark that
in the case of MUSE observation, the FSF parameter are always
available (see e.g. [36]).

To take the FSF into account, the data is transformed so that
each site s ∈ S contains jointly the original spectrum and its
neighbor’s spectra within a limited local neighborhoodVs, as
a stacking. The catalog is replicated in a similar way with FSF
weights, yielding:

∀s ∈ S, yN
s = (yv)v∈s∪Vs ; cN

j = Fc j , 1 ≤ j ≤ J; (14)
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where F is the matrix representing the FSF. Noting f =

[ f1, . . . , fK]> the K FSF coefficients, it is written as:

F = [ f1IΛ, . . . , fKIΛ]> = f ⊗ IΛ; (15)

where IΛ is the Λ-dimensional identity matrix, and ⊗ stands for
the Kronecker product.

The tests will involve the estimation of the noise covariance
matrix Σ, which now contains spatio-spectral terms linking an
observed spectrum ys to its neighbors within Vs. We assume
here and in the following that the noise is not spatially correlated,
meaning that the estimation of Σ can be constrained to be block-
diagonal:

Σ =

Σ1 0Λ 0Λ

0Λ

0Λ

0Λ 0Λ ΣK




; (16)

where Σn is the spectral covariance matrix of the n-th spectrum
in the spectra local neighborhood, and 0Λ is the Λ × Λ zero
matrix.

In consequence, we define a bright source detection test using
spatial features, noted Tn, with the test from Equation (2), the
spectra from Equation (14) and the covariance matrix from
Equation (16):

Tn(y f ) = T (yN
f )
H1

≷
H0

ξn. (17)

Note that the GLR(3D)
1s from [28] is a particular case of this test

in the white noise framework, i.e. with Σ = IKΛ.
Similarly, we rephrase the compound similarity GLR test, T Bcs

from Equation (12):

T Bncs(y f ) = T Bcs (yN
f )
H1

≷
H0

ξncs. (18)

Note that this procedure is not equivalent to deconvolve be-
fore testing data. Indeed, such a two-step procedure makes
the statistical properties assessment difficult, because of the in-
duced dependence (see however [5]). Instead, the convolution is
considered within the test.

2.3.2. Multiple Observations
As stated in the introduction, astronomical imaging needs long

exposure times, resulting in multiple observations of the same
field because of sensor saturation effect. Whereas optimal fusion
methods have been developed [37], using averaged observations
as in the previous sections is generally sufficient. However,
information may be lost in the averaging process. Hence, we
propose here to extend the models toward multiple, stacked
observations. Note that we do not expect the signal of interest
to change from one observation to another, and that registration
errors are considered negligible, which is the case with well-
calibrated ground instruments in astronomy. We consider a
simple model, in which the FSF is the same for all observations.

The principle is somewhat simpler than for the spatial fea-
ture, as observations are not weighted (unlike local neighboring
pixels). Stacking observations from the observation set O yields:

∀s ∈ S, yNO
s = (yN

o,s)o∈O; cNO
j = (cN

j )o∈O , 1 ≤ j ≤ J. (19)

Again, the estimation of a covariance matrix on the data from
Equation (19) implies considering observation-related correla-
tions. Whereas the signal is expected to be consistent over
multiple observations, this is not the case for noise. Therefore
we assume there is no inter-observation correlation and con-
strain the Σ estimation to be block-diagonal. This result, as in
Equation (16), in the following covariance matrix:

Ξ =

Σ(o=1) 0KΛ 0KΛ

0KΛ

0KΛ

0KΛ 0KΛ Σ
(o=|O|)




; (20)

where Σ(o=n) is the covariance matrix including spatial and spec-
tral terms from Equation (16), taken for the n-th observation,
and 0KΛ is the KΛ × KΛ zero matrix.

We can extend the formulation for the constrained GLR with
spatial feature Tn (from Equation (17)) towards stacked observa-
tions. Using the spectra from Equation (19) and the covariance
matrix from Equation (20):

Tno(ys) = T (yNO
s )

H1

≷
H0

ξno; (21)

and following the same principle, the extended formulation for
the compound similarity GLR test and spatial features, T Bncs,
yields:

T Bnocs(ys) = T Bcs (yNO
s )

H1

≷
H0

ξnocs. (22)

Note that there is, to our knowledge, no existing model ac-
counting for multiple observations in hyperspectral detection.
This aspect seems indeed specific to the astronomical frame-
work.

2.4. Error Budget

It is generally appealing, but not always feasible, to express
the type I error (PFA) as a function of the test thresholds. In this
section we give two properties concerning the PFA of the tests
T

x̂b
s and T Bcs .

Proposition 2.1. Given the reference x̂b, the GLR test with
similarity constraint, noted T x̂b

s , has the CFAR property: the
false alarm rate only depends of the test threshold.

Proof. A reformulation of Equation (11) yields:

T x̂b
s (y f )

H1

≷
H0

ξs ⇔

 x̂>b Σ
−1y f

‖x̂>b Σ
− 1

2 ‖2

2
H1

≷
H0

2ln(ξs). (23)
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Furthermore:

y f
H0
∼ N(0,Σ)⇒ x̂>b Σ

−1y f
H0
∼ N(0, ‖x̂>b Σ

− 1
2 ‖22)

⇒
x̂>b Σ

−1y f

‖x̂>b Σ
− 1

2 ‖2

H0
∼ N(0, 1)

⇒ 2ln[T x̂b
s (y f )]

H0
∼ χ2

1;

(24)

where χ2
1 denotes a chi-squared distribution with 1 degree of

freedom. Hence, the PFA is given by:

PFA

[
T x̂b

s (y f )
]

= p(T x̂b
s (y f ) > ξs | H0)

= 1 − p(2ln
[
T x̂b

s (y f )
]
< 2ln(ξs) | H0)

= 1 − Φχ2
1

[
2ln(ξs)

]
,

(25)

where Φχ2
1

denotes the Cumulative Density Function (CDF) of a
χ2

1 distribution.

We now aim at generalizing this result to the T Bcs test. Let us
recall that this test is the product of several T x̂b

s , meaning that
their log will sum up.

Proposition 2.2. Given the reference set B and the correspond-
ing (x̂b)b∈B, the compound GLR test with similarity constraint,
noted T Bcs , has an upper-bounded false alarm rate: there is an
upper bound for the false alarm rate, which only depends on the
test threshold.

Proof. Assuming the yb are independent leads, in a similar fash-
ion than in Equations (23) and (25), to a χ2 dependence:

PFA

[
T Bcs (y f )

]
= 1 − Φχ2

|B|

[
2ln(ξcs)

]
, (26)

where |B| stands for pixel number in the bright detection region
B, meaning that the χ2 distribution degrees of freedom is the
number of bright spectra initially detected. However, assuming
independence between the bright spectra is often unrealistic;
in particular when including local spatial neighborhood (see
Equation (14)). Therefore, the degrees of freedom k of the χ2

distribution is at most |B|. Then Equation (26) leads to the
following bounding:

PFA

[
T Bcs (y f )

]
≤ 1 − Φχ2

|B|

[
2ln(ξcs)

]
. (27)

This means that for a given threshold ξcs, a maximum type
I error rate can be estimated. Numerical experiments will be
presented in Section 3.3, supporting these analytical results.

Let us remark that the properties presented in this section
hold when the references (x̂b or (x̂b)b∈B) do not depend on the
observations. The practical application presented in this paper
requires to estimate the references from the observations, but
other applications could benefit from, e.g., extra input data.
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Figure 1: Simulation example with SNR = −3 dB. Left : HSI spectral average.
The ellipse (resp. circle) represents the bright (resp. faint extended) elements.
The corresponding spectra are represented in the right panel (dotted: noiseless,
plain: observed).

3. Numerical Results

In this section, we quantify the method performance. Simu-
lated HSI were developed for this purpose, and are described
in Section 3.1. The method performance is then reported and
analyzed in Section 3.2. The performance is compared with an
ACE variant and with the SS-GRF method from [19]. To our
knowledge, there is no other method aiming at the detection of
spatially wide sources in HSI. Finally, the tests distributions are
estimated and discussed in Section 3.3.

3.1. HSI Simulation

Using astronomical HSI implies that there is no available
ground truth. The validation on real data can be carried out
by experts; however this is difficult when the objects have not
yet been observed. Hence, we have to build synthetic data in
which the object of interest is known, to ensure a proper method
validation. The simulated HSI, spatially consist of a bright ellip-
tical (the galaxy) and a faint circular (the halo) emission, with
intensities vanishing from the center of the object: a truncated
Gaussian is used, setting the brightness to zero outside of the
objects. The two elements have a similar spectral emission,
the circular emission being fainter. The datacube (ys)s∈S has
50 × 50 pixels and 50 spectral bands, and are centered on the
objects. Figure 1 provides insight of a simulated HSI.

A multivariate white Gaussian noise is then added. The SNR
is defined as:

SNR = 10log10

‖xhalo‖
2
2

Tr(Σ)

 ; (28)

where xhalo is the brightest underlying halo spectrum, and Σ
is the noise covariance matrix. This definition is similar to a
peak-SNR, meaning that this SNR is a maximum value with
respect to other spectra.

As stated in Section 2, the catalog is a collection of normed
Gaussian lines. The means range in the cube spectral dimension
(1 to 50), and standard deviations range from 0.1 to 5 spectral
bands (Figure 2a). In the application context, thin emission lines
are searched for. Whereas they may be asymmetric, they are
unknown an may be undetectable at low SNR. Hence, Gaussian
modeling is sufficient in this context.
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Figure 2: Left: instances of six lines of the catalog at a given position. Right:
half spatial FSF with its 1D middle profile.

The FSF is described by a 2D Moffat function [38], which
is more heavy-tailed than a Gaussian and more accurate for
modeling astrophysics instruments’ FSF. It has two wavelength-
dependent parameters, considered as constant in the simulated
HSI: a = 2.0 and b = 2.6 (Figure 2b).

3.2. Performance Evaluation

The results presented in this section are estimated on 100
simulations, with different noise realizations, and the HSI are
spectrally whitened before processing. This ensure that the spec-
tral cross-correlation are negligible, and allows us to consider
the covariance matrix estimate diagonal. Besides, assuming the
signals of interest are weak implies that errors in the covariance
estimation prior to whitening are small. Furthermore, the FSF
is assumed known, resulting e.g. from physical modeling. Note
that the FSF is generally parametrically estimated: this implies
that estimation errors are related to FSF parameters and not FSF
coefficients, ensuring some properties (smoothness, fading to
zero, peak at the center) are always verified. Therefore, the
impact on the error is weak.

Bright Source Detection. The results from Figure 3 bring a
clear illustration that expanding a local neighborhood enhances
the detection at low SNR: the difference between detection prob-
abilities ranges from 23% (−20 dB) to 75% (−10 dB) of the
recovered detection. Note that at high SNR, expanding the spa-
tial neighborhood seems to limit the detection power, because of
increasing border effects. Note also that the RX algorithm [15] is
outperformed even without considering the local neighborhood,
likely because the anomaly in the simulated HSI has low energy.

We also observe in Figure 3 that using multiple observations
lowers method performance. Indeed, searching for the max-
imum in Equation (17) heavily relies on the SNR, and with
stacked multiple observations the SNR for a given spectrum is
considerably lowered. The conclusion on this point is that, when
using multiple observations, the max operator has to be avoided.

Compound Similarity Constrained GLR Test. The graphs
from Figure 4 illustrate the performance gain brought by the
spatial features. One can in particular notice that 1) using only
a 3-pixel-wide FSF window already greatly improves results;
and 2) that due to FSF fading, the gain of using wider windows
diminishes as the windows size increases.
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Figure 3: Numerical results for the bright source detection. First column: ROC
curves at SNR = 0 dB; second column: P̂DET with P̂FA = 0.05. The first line
investigates the use of spatial features, and the second line present estimations
with multiple (50) observations, stacked or averaged, with a fixed window size
of 11 px. Vertical dashed black line indicates the correspondences between ROC
curves at 0 dB and P̂FA = 0.05.

The conclusion drawn from the bright source detection is
applied when investigating the multiple observations features.
Indeed, it relies in practice on the successive estimations of
the coefficient αb – based on the max operator – and the sim-
ilarity coefficient β f ,b (see Equation 8). We propose then to
use the former on the averaged datacube and the latter on the
stacked observations. Results are presented in Figure 4. They
show that using jointly multiple observations does not enhance
the detection at a significant level. In this setting, using an
observation-wise setting is counter-balanced by the loss induced
by low observation-wise SNR.

Detection strategy. We now detail the global method for
detection. As stated before, the two main steps consist in the
bright source detection followed by the faint extended source
detection. Note also that each step uses different whitened data:
for the first step the complete datacube is whitened, as in the
second the whitening addresses the spectra not already detected
(in F ). This ensure that the covariance estimations are not
contaminated by the bright spectra set B. Furthermore, detecting
all bright pixels at the first step is not necessary, but it is desirable
that there is no false detection to avoid further error propagation.
To enforce this, a processing step is added, removing from B
all spectra that are not spatially connex to the central source.
This does not impede the detection strategy, as these spectra are
recovered in the second step. The complete detection strategy is
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Figure 4: Numerical results for extended faint source detection. The legend is
the same as in Figure 3.

Algorithm 1 Full Detection Strategy.

Input: Source cube Y, target maximum PFA, catalog C, FSF
matrix F.

Output: Detection map C.
1. Y spectral whitening on the S set.
2. Bright detection: Tn(ys) ∀ s ∈ S (Equation (17)), produc-
ing B.
3. Preprocessing: remove pixels non-connex to the central
one, producing B1.
4. Y spectral whitening on the S \ B1 set.
5. Extended detection: T B1

ncs(y f ) ∀ f ∈ S \B1 (Equation (18)),
producing C.

summarized in Algorithm 1.
Strategy performance is presented in Figure 5, and its behavior

is close to the results explained previously: considering spatial
relationship gains up to 71% on detection probabilities, and
considering multiple observations does not provide visible gain.
At low SNR, we observe interesting results: P̂DET = 70% at
−10 dB, P̂DET = 49% at −15 dB when P̂FA = 5%. One can
also notice that the overall performance seems improved, as a
result of using both halo and galaxy as the reference ground
truth, instead of the halo without the galaxy. Finally, it should
be noted that using multiple observations still does not provide
noticeable gain.

We now address the comparison of the proposed detection
strategy with other methods. First, results concerning a random
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Figure 5: Numerical results for the full strategy. Same legend as in Figures 3
and 4.

field geometric modeling method [19] on the same simulated
data are also presented. This method proposes a Spatio-Spectral
Gaussian Random Field (SS-GRF) model for the background,
accounting for the local spatial relationship between pixels.

Other well-known dectors in HSI are AMF [7] and ACE [8],
both requiring the knowledge of a reference spectra. For com-
parison purpose, we design a second detector based on ACE.
We use the detection strategy from Algorithm 1 and replace the
last step (5. Extended detection) with an ACE detector, using
as reference the averaged spectrum from the B1 region. Let
us add that experiments with an AMF variant yields similar
performance than the presented ACE variant.

Figure 6 illustrates the comparison between the proposed
method, its ACE variant and the SS-GRF model. Our method
clearly outperforms SS-GRF modeling. This is explained by the
fact that our application targets spectrally-constrained signals,
accounts for wide spatial dependence, and is in this sense more
specific than SS-GRF modeling. On the other hand, we observe
that the ACE variant of the detection strategy offers slightly
better results than our method at SNR = 0 dB. However, this is
not the case at low SNR, where there is noticeable gain between
the proposed method and its ACE variant. This may be due to a
lowering of the ACE reference estimation quality when the SNR
decreases.

To sum up, the main conclusions from the experiments are:
1. the use of spatial features greatly enhances the detection,

up to a gain of 71% map proportion recovering;
2. using multiple observations is, in this framework, not an
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Figure 6: Comparison of the proposed method with its ACE variant and with the
SS-GRF method [19]. Same legend as in the first rows of Figures 3,4 and 5.

advantage because of the observation-wise lower SNR;
3. at very low SNR, the proposed strategy still provides good

results.
We now detail experimental results concerning the link between
the test thresholds and their false alarm rates.

3.3. Tests Statistics Distributions

This section reports numerical results on the test statistics
T

x̂b
s and T Bcs . The main goal is to characterize their behavior

under H0 with respect to the theoretical results expressed in
Section 2.4. The tests are performed on simulated datacubes
containing noise only, given a complete bright spectra set B (red
ellipse in Figure 1). A point of interest is the variation of the test
statistics when the spatial neighborhood windowing varies.

Figure 7 presents the results for the single T x̂b
s test and its

spatial variations T x̂b
ns . We first observe that, under H0, T x̂b

s
fits well its theoretical χ2

1 distribution. Let us notice that ML
estimates slightly underestimates the distribution tails, with up
to a 3.10−4 gap. Furthermore, the distributions seem to be almost
independent of the FSF window width, to the point of making
ML estimation fits almost indistinguishable in Figure 7.

In Figure 8, the results for the compound T Bcs and its spatial
variations T Bncs are presented. We also observe that the empirical
data distribution fits well a chi-squared distribution. Besides,
unlike the previous result, there is no visible gap between the
estimated distribution and the histogram. Estimations of the ML
distribution parameters reflect that as the FSF window grows, the
degrees of freedom decrease. Indeed, a wider window implies
that to describe the set B, less spectra are required.

The results confirmed the properties expressed in Section 2.4
and in practice allow us to provide a maximum false alarm
probability for the detection of astronomical sources. Results on
real MUSE images, for which no ground truth is available, are
presented in the next section.

4. Application on Real MUSE Data

In this section, we apply the method to MUSE observations.
The MUSE instrument is set since 2014 at the ESO/VLT facility
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Figure 7: Empirical T x̂b
s and T x̂b

ns statistics underH0. The results were obtained
with 106 spectra realizations under white noise. Left: histograms (blue area)
and ML estimation best fits of the tests without using spatial relationship. Right:
ML estimation best fits of for varying spatial FSF windows. The second row
focus on the distribution tails. Estimated degrees of freedom k̂ for each fit are
also given in the legend box.
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Figure 8: Empirical TBcs and TBncs statistics underH0. The results were obtained
with 105 spectra realizations under white noise. Legend is the same as in Figure 7.

(Paranal, Chile). It provides observations with a spatial size of
300 × 300 px and (0.2 arcsec)2 resolution, with 3640 spectral
bands at each pixel and 1.25 Å individual bandwidth. The total
bandwidth covers 4750−9300 Å and therefore makes it possible
to see very distant, faint and small astronomical objects.

Due to its complex structure, the instrument was the object
of several preliminary studies, including the noise behavior [39]
and the instrument’s Point Spread Function [40]. The main
points are:

1. Due to an over long exposure time (1h and more), the noise
can be considered as non-correlated and Gaussian. Note
that these assumptions are valid for the merged observa-
tion, but they are not for single observations, in which we
observed that the noise is non-Gaussian and correlated.

2. The PSF is separable. The FSF is modeled as a Moffat,
and is estimated from the observation of a bright star [36].
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The LSF in the observations spreads over 2.1 ± 0.2 spectral
bands.

The astronomical observation is available from [36]. The sources
are manually located by experts (catalog available from [41]),
and a total of 90 LAE were found. Note that the data is very
noisy and that extended sources (CGM) are visible only when
merging narrow-band information [1].

For each source, an HSI spatially and spectrally centered on
the LAE is extracted. Each HSI is processed independantly.
To avoid contamination by a smooth or energetic component
from neighbor object such as bright galaxy or star, spectrum-
wise median subtractions are performed over ± 150 bandwidths.
This step satisfies the assumption of zero-mean noise. Then
Algorithm 1 is applied on each HSI.

Figure 9 presents results on six objects with the target PFA
level of 10−4. These figures illustrate the diversity of cases
arising with real data:

– Spatially, there is no common shape between detection
maps, which may be narrow (ID 552) or wide (IDs 43, 92,
139), isotropic (IDs 43, 144) or not (IDs 92, 200) while
being split in multiple blobs (IDs 139, 552) or not (IDs 43,
92, 144, 200).

– Spectrally, the averaged spectra show that while they all
have an asymmetric emission line (the Lyman-alpha line),
they differ in shape from one object to another. Since the
spectra are averaged over the detection region, we observe
that the SNR range strongly varies, from bright objects
(ID 43, 144) to very faint signals (ID 200, 552).

These results highlight the challenges faced by CGM study.
They show that using priors on CGM shape is unrealistic, while
spectral behavior can subtly vary from one object to another,
preventing a fine general emission line modeling. Despite these
challenges, the method appears to be consistent: we observed
that varying the target PFA from 10−2 to 10−4 induces only minor
changes (few pixels) to the detection maps. This means that the
detection strategy provides a good contrast between signals and
background, which is the goal of the proposed method.

5. Conclusion

This paper has presented a two-step method for faint extended
source detection in HSI, with application to CGM detection
in astronomical data from the MUSE instrument. The meth-
ods behavior and theoretical properties were detailed, providing
maximum type I error probability for the second step of the de-
tection strategy. Results on simulated data have allowed a proper
method validation without hypothesis on the source morphology,
and results on real MUSE data seem convincing. In the spirit of
research reproducibility, the source code of our experiments will
be made available.
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