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Cracking is a common type of failure in machines and structures. Cracks must be detected at an early stage before catastrophic failure. In structural health monitoring, changes in the vibration characteristics of the structure can be utilized in damage detection. A fatigue crack with alternating contact and non-contact phases results in a non-linear behaviour. This type of damage was simulated with a finite element model of a simply supported beam. The structure was monitored with a sensor array measuring transverse accelerations under random excitation. The objective was to determine the smallest crack length that can be detected. The effect of the sensor locations was also studied. Damage detection was performed using the generalized likelihood ratio test (GLRT) in time domain followed by principal component analysis (PCA). Extreme value statistics (EVS) were used for novelty detection. It was found that a crack in the bottom of the midspan could be detected once the crack length exceeded 10% of the beam height. The crack was correctly localized using the monitoring data.

Introduction

Cracking is a common failure mechanism in machines, vehicles, and structures. Therefore, it is important to detect cracks at an early stage before catastrophic failure. Detection of cracks may be approached using wave-propagation or vibration based methods. Crack detection using vibration measurements is attractive, because damage can be detected remotely from the sensors. Furthermore, the structure under investigation needs not be taken out of service. On the other hand, cracking is a very local phenomenom resulting in only minor changes in the global low-frequency vibration characteristics of the structure. The question thus arises, whether cracks can be detected from vibration signals.

Crack models can be divided into two main categories: 1) open crack and 2) breathing crack. An open crack is often assumed, in which the crack edges are never in contact. There are two main reasons to use this assumption: 1) the structure behaves linearly, and linear models are easy to use both in simulation and in system identification; 2) preparing test objects with open cracks is relatively easy. However, a breathing crack is more realistic, in which the crack opens and closes due to external loading. As the crack closes it transmits compressive stress, while in the opening stage, no normal stress is present. This leads to a sudden change in the dynamic properties and a non-linear behaviour, which is more difficult to study both mathematically and experimentally.

A selection of previous studies addressing monitoring and detection of fatigue cracks with vibration measurements are listed in the following. Vanlanduit et al. [START_REF] Vanlanduit | On-line detection of fatigue cracks using an automatic mode tracking technique[END_REF] proposed an on-line fatigue test with designed excitation and damage detection using mode tracking or static stiffness. They also compared linear and nonlinear identification techniques for damage detection [2]. Nguyen and Olatunbosun [3] proposed a wavelet-based method to monitor a breathing crack using harmonic excitation. They used strain measurements close to the crack and made numerical and experimental investigation varying the crack size in a cantilever beam. The smallest crack size that could be detected was 30% of the beam height in the numerical analysis and 19% of the beam height in the experiments. Zabel and Rücker [START_REF] Zabel | Detection of a Fatigue Crack by Vibration Tests[END_REF] investigated detection of fatigue cracks by vibration tests using an output-only covariance-based damage indicator. Abu-Mahfouz [START_REF] Abu-Mahfouz | Vibration based diagnostics of fatigue damage[END_REF] studied experimentally three damage indicators for a vibrating cantilever beam with a fatigue crack: kurtosis, FFT, and wavelets. Tsyfansky and Beresnevich [START_REF] Tsyfansky | Detection of fatigue cracks in flexible geometrically nonlinear bars by vibration monitoring[END_REF] simulated flexural vibrations of a geometrically non-linear cracked beam under harmonic excitation. The resulting non-linear effects could be used for damage detection. Razi et al. [START_REF] Razi | Application of a robust vibration-based non-destructive method for detection of fatigue cracks in structures[END_REF] utilized the empirical mode decomposition method (EMD) to establish an energy-based damage index for fatigue crack detection. It showed better sensitivity to damage detection than the frequency-based methods.

Due to the importance of detection and diagnosing fatigue cracks in structures, this paper attempts to find the minimum crack size that can be detected in a beam structure using vibration measurements with an array of accelerometers distributed along the structure. The data are simulated using a breathing crack model. The modelling aspects are discussed first. Next, the damage detection method in time domain using the generalized likelihood ratio test is described. The results using different sensor array configurations are shown, and finally the concluding remarks are given.

Modelling

Since the aim of the present work was to investigate the smallest crack size which can be detected by the proposed structural health monitoring method, a quite simple structure was studied. It is a simply supported beam with the following dimensions: length 5 m, height 0.5 m, and width 0.01 m. Much attention was put on the quality of the finite element model in order to minimize all the problems caused by numerical errors. It was also possible to compare the numerical static response with the analytical solution making the analysis more reliable. The beam was modelled with 4-node linear 2D elements with reduced integration, since Abaqus Explicit finite element code was used for the simulations. In order to obtain results close to the beam theory, the beam ends were supported on the neutral axis of the beam. Furthermore, the beam end nodes were forced to follow the Euler Bernoulli beam theory by assuming that the planes at the beam ends remain planes. Fig. 1a illustrates the beam edge displacement field, if the beam was supported only at one node without assuming the beam end nodes to follow the Euler Bernoulli beam theory. The approach used eliminated this unwanted behaviour. The contact of the crack surfaces was assumed to be frictionless in the tangential direction of the surfaces. In the normal direction the Abaqus surface-tosurface option was used. Figure 1b shows the finite element mesh in the vicinity of the crack. The accuracy of the finite element model was checked by upward static bending of the beam. The resulted deformation caused full contact between the crack edges, and the effect of the crack was negligible. The computed static deflection at the midspan deviated from the analytical solution by only 0.34% when also shear deflection was taken into account in the analytical solution.

A uniform transverse random load history, different in each case, was applied to the top surface of the beam. The load histories were low-pass filtered below 1000 Hz, resulting in five active dynamic modes of the structure. The measurement period was two seconds.

Rayleigh damping [START_REF] Clough | Dynamics of structures[END_REF] was applied, because a damping matrix was needed in the explicit dynamic analysis. The coefficients of the mass and stiffness matrix were chosen to produce low damping in the frequency range of interest.

Sensor network model

The dynamic response x of a linear system comprises of the modal contribution of the d lowest modes and the static correction term [START_REF] Clough | Dynamics of structures[END_REF]:
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where φ i is the mode shape vector of mode i and q i (t) is the response of mode i. The term in brackets is a constant matrix, where K is the stiffness matrix of the system and F i is
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Vector f(t) contains the load amplitude functions and B is the load distribution matrix with a number of columns equal to the number of load amplitude functions.

If the spatial distribution of the load does not vary with time and B has r columns, the number of states is r d + . For example, in case of a uniform load at all top nodes in vertical direction, matrix B consists of one column only, in which the only non-zero terms correspond to the vertical degrees of freedom of the top edge nodes.

The sensor network is modelled as a Gaussian process. This process can be both spatial (static) and temporal (dynamic) [START_REF] Kullaa | Sensor validation using minimum mean square error estimation[END_REF]. In mechanical vibrations, spatial correlation is comprised of the mode shape information, whereas temporal correlation is related to the natural frequencies. The Gaussian process model is fully determined by its mean vector µ µ µ µ and covariance matrix Σ Σ Σ Σ:
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where y is the measured variable, typically a simultaneous sample of accelerations or strains.

The sensor network model is derived by estimating µ µ µ µ and Σ Σ Σ Σ of the sensor network. The reference model is identified using the training data from the undamaged structure. Each sensor can be estimated in turn using the other sensors in the network by applying the minimum mean square error (MMSE) estimation.

The main assumptions are that the sensor network is redundant (the number of sensors is greater than r d + ), all sensors are simultaneously sampled, and there are training data from the undamaged structure. The data are composed of the measured time series; accelerations at different locations of the structure are used in this paper. It is assumed that the input (excitation) to the system is not known, but the vibration response is only measured. No physics-based model is used. No restriction is made about the stationarity of the process, because samples at the same time instant (spatial correlation) are only used in this study.

The sensor network is divided into observed sensors v and missing sensors u:
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where n is the time index. The covariance matrix of output y is then estimated with
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where N is the number of samples. The partitioned covariance matrix estimate R of the training data is
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is obtained by estimating the parameters from the current measurement, while the parameters of
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are estimated from the training data. The threshold needed to accept or reject the null hypothesis is discussed in the following.

Each sensor yields one test statistic. Thus, the number of variables equals the number of sensors in the network. The dimensionality can be reduced by applying principal component analysis (PCA) [START_REF] Sharma | Applied multivariate techniques[END_REF] to the log-likelihood ratios s [n]. The variable used for damage detection is finally the subgroup extreme value [START_REF] Castillo | Extreme value theory in engineering[END_REF][START_REF] Worden | Damage detection in mechanical structures using extreme value statistics[END_REF] of the first principal component scores, which is plotted on a control chart [START_REF] Montgomery | Introduction to statistical quality control[END_REF] with appropriate control limits. In this study, the subgroup consists of 100 subsequent variables.

In order to assess the detection performance, the true-positive rate TPR and the false-positive rate FPR are computed from the test data.

Damage localization is a multiple hypothesis test. The highest log-likelihood ratio computed separately for each sensor 

Results

The sensors measured accelerations in the transverse (vertical) direction at the top or bottom edge of the beam. The top sensors are depicted in Fig. 2. The bottom sensors located at the same longitudinal positions on the opposite side of the beam. The bottom sensor in the middle of the beam was removed from the analyses, because it was located at the crack edge resulting in too an idealistic case.

Noise was added to the acceleration records obtained from the finite element analyses. The signal-to-noise ratio (SNR) was 30 dB, which is a typical value in vibration measurement systems. This value greatly affects the minimum crack size that can be detected.

The training data for model identification and in-control data for the control chart design were measurements 1-6. The first principal component of the generalized likelihood ratio was used for damage detection. The extreme value statistics of subgroup size 100 were plotted on the control chart. Also temporal correlation was studied, but the detection performance was not increased. Therefore, spatial correlation was only used. The test data included six measurements, four measurements (7-10) from the undamaged structure and two measurements [START_REF] Kay | Fundamentals of statistical signal processing[END_REF][START_REF] Sharma | Applied multivariate techniques[END_REF] from the damaged structure.

The crack size was varied using values of 150, 100, 50, 30, 20, and 10 mm. The crack sizes 150, 100, and 50 mm were well detected, while crack sizes of 30 mm or less were not detected. All 29 sensors were needed to detect the 30 mm crack. Extreme value statistic (EVS) control charts using the 15 top sensors with crack sizes of 50 mm and 30 mm are plotted in Fig. 3. Similar results were obtained using the 14 sensors at the bottom of the beam.

Crack localization using the top sensors is depicted in Fig. 4 for crack size of 50 mm. The correct position was found at sensor 8 above the crack showing the largest log-likelihood. If sensor 8 was removed from the analysis, the localization was not always the closest sensor from the crack.

The sensor array was varied both in the number and locations of sensors. The investigated sensor configurations can be seen in the legends of Figs. 5 and6. The figures plot the true-positive ratio and the false positive ratio as a function of the crack size for different sensor configurations. It was seen that using five or less sensors, no detection was possible. On the other hand, using seven or more sensors, detection was successful. This supports the notion of the redundancy of the sensor network discussed earlier. It is interesting to note that using just the left side sensors or the right side sensors resulted in better detection performance than if using the same number of sensors distributed uniformly along the beam. This is probably due to the symmetric structure, in which sensor pairs at the same distances from the midspan produced somewhat similar information. On the contrary, each sensor at only one side of the beam produced different information. This finding was further investigated using non-symmetric top sensor arrays [1 3 5 7 10 12 14] and [2 4 6 9 11 13 15] both consisting seven sensors at different distances from the crack at either side of the beam. The results were similar to those of one-sided sensor arrays. 

Conclusion

Structural health monitoring of a cracked beam was studied. The novelties and main improvements to structural health monitoring practice are as follows. 1) A breathing crack model is more realistic than an open crack model in simulating a fatigue crack. 2) The analysis of output-only data is performed in time domain with no complex system identification. 3) Environmental or operational variability can be taken into account. 4) The generalized likelihood ratio test was used for detection, which is more reliable than residual-based methods. 5) Damage detection and localization are fully automatic.

Two significant results were obtained: 1) The minimum crack length which could be detected was 10% of the beam depth when (a) the beam was simply supported with a central crack; (b) there were at least 7 sensors; (c) the SNR was 30 dB; and (d) the proposed data analysis was used. 2) For symmetric structures, the detection performance was better if the sensors were placed at different distances from the symmetry axis to acquire maximum amount of information.

It would be important to investigate also other crack positions and different structures, for example cantilever beams or plates. Also experimental validation would be necessary. 

Figure 1 .

 1 (a) This unwanted boundary behaviour was prevented in this work. (b) Element mesh in the vicinity of the crack.

  to reveal the sensor closest to damage.
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 2 Figure 2. FE model with the top accelerometers.
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 4 Figure 4. Damage localization using the top sensors. Crack size is 50 mm.
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 5 Figure 5. Detection performance (top sensors) with different sensor configurations. TPR = truepositive rate, FPR = false-positive rate.

Figure 6 .

 6 Figure 6. Detection performance (bottom sensors) with different sensor configurations. TPR = truepositive rate, FPR = false-positive rate.
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where the precision matrix Γ Γ Γ Γ is defined as the inverse of the covariance matrix R and is also written in the partitioned form. A linear MMSE estimate for v u (u given v) is [START_REF] Kullaa | Sensor validation using minimum mean square error estimation[END_REF]:

where

and µ µ µ µ u and µ µ µ µ v are the mean of u and v, respectively, and E(⋅) is the expectation.

The error covariance matrix (mean square error MSE) is

Assuming a Gaussian distribution, the conditional probability density function (pdf) of v u can be constructed from the model parameters K, C, µ µ µ µ u and µ µ µ

Notice that the sensor model was derived without using a physics-based model or an identified parametric model of the system.

GLRT for Sensor fault detection and isolation

Damage detection is done using a hypothesis test for the MMSE parameters. The hypothesis test used for fault detection is

where K 0 , C 0 , and µ µ µ µ 0 are estimated from the training data. This is a composite hypothesis test with unknown parameters in hypothesis H 1 . For this case, damage detection is performed with the generalized likelihood ratio test (GLRT) [START_REF] Kullaa | Sensor validation using minimum mean square error estimation[END_REF][START_REF] Basseville | Detection of abrupt changes -Theory and application[END_REF][START_REF] Kay | Fundamentals of statistical signal processing[END_REF]. The test statistic is the log-likelihood ratio for each sample:

where

is the probability according to hypothesis H i , i = 0, 1. The hypothesis H 0 assumes the parameters to be equal to those of the training data (undamaged), whereas the hypothesis H 1 assumes the parameters to be different to those of the training data (damaged). The