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NON-ASYMPTOTIC CONCENTRATION INEQUALITY FOR AN
APPROXIMATION OF THE INVARIANT DISTRIBUTION OF A DIFFUSIONS
DRIVEN BY COMPOUND POISSON PROCESS

A. GLOTER, I. HONORE, AND D. LOUKIANOVA

ABSTRACT. In this article we approximate the invariant distribution v of an ergodic Jump Diffusion
driven by the sum of a Brownian motion and a Compound Poisson process with sub-Gaussian
jumps. We first construct an Euler discretization scheme with decreasing time steps, particularly
suitable in cases where the driving Lévy process is a Compound Poisson. This scheme is similar
to those introduced by Lamberton and Pages in [LP02] for a Brownian diffusion and extended
by Panloup in [Pan08b] to the Jump Diffusion with Lévy jumps. We obtain a non-asymptotic
Gaussian concentration bound for the difference between the invariant distribution and the empirical
distribution computed with the scheme of decreasing time step along a appropriate test functions f
such that f — v(f) is is a coboundary of the infinitesimal generator.

1. INTRODUCTION

1.1. Setting. Let (X¢)¢>0 be a d-dimensional cadlag process solution of the stochastic differential
equation:

(E) dX; = b(Xt)dt + J(Xt)th + H(th)dzt.

where b: R? 5 R? ¢ :R? 5 R?@R" and « : R - R? @ R" are Lipschitz continuous, (Wi)e>o is a
Wiener process of dimension 7, and (Z;);>o is a R" -valued compound Poisson process (CPP),

Z, = ZkNQ Yy, where (Yi)ken are ii.d. 7 -dimensional random vectors with common distri-
bution 7 on B(R") and (/Vi);>0 is a Poisson process, independent of (Yx)ren. The processes
(Wi)e>0 and (Zy);>0 are assumed to have the same dimension for the sake of simplicity. More-
over, (N¢)i>0, (Yi)ken and (Wy)i>o are independent and defined on a given filtered probability
space (2, G, (Gt)i>0,P). We assume that b, o, and « satisfy a suitable Lyapunov condition (assump-
tion (Lv) in Section 1.3) which ensures the existence of an invariant distribution v of (Xi)¢>0 (see
[Pan08b]). For the sake of simplicity we also assume the uniqueness of the invariant distribution.
We refer to [Mas07] under irreductibility and Lyapunov conditions for the existence and uniqueness
of the invariant distribution for a diffusion driven by Lévy process.

The aim of this paper is to establish a non-asymptotic bound on the probability of the deviation
vn(f) —v(f), where v, is an appropriate empirical measure such that lim, o vn(f) = v(f) a.s. for
all suitable test functions f.

The algorithm that we define in this article is based on an Euler-like discretization scheme with
decreasing time step (p)n>1 s.t. lim,7, = 0. Lamberton and Pages first introduced such a
scheme in [LP02] for a Brownian diffusion. They showed that the empirical measure of their scheme
converges to the invariant measure of the diffusion and that it satisfies the Central Limit Theorem.
The decreasing steps allows to the empirical measure to directly converge towards the invariant
one. If we choose a constant time step 7z = h > 0 in the scheme, the expected ergodic theorem
is v (f) % VI(f) = [ga f(z)v"(dz), where " is the invariant distribution of the scheme which is
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supposed to converge toward the invariant measure of the diffusion (E) when A — 0 (see e.g. For
more details about this approach we refer to [TT90], [Tal02] and [MT06]).

Next, Panloup in [Pan08a] and [Pan08b] adapted the algorithm of [LP02] to the Jump Diffusion
with Lévy jumps [Pan08b] and also showed the convergence and the Central Limit Theorem for the
empirical measure in this case. In the same way as the questions of the convergence of the empirical
measure v, or of its limiting distribution, the natural question is that of the nature of the deviations
vn(f) —v(f) along appropriate test functions f. In the case of the Brownian diffusion this question
was considered in [HMP18] and [Honl17]. Note that in the Brownian diffusion case the innovations
of the Euler scheme are designed in order to “mimic” Brownian increments, hence it is natural to
assume that they satisfy some Gaussian Concentration property (assumption (GC) in Section 1.3).
In particular this Gaussian Concentration property is satisfied by Gaussian or symmetric Bernoulli
law. Taken as an assumption on the Brownian innovations of the scheme, it allows to show a non-
asymptotic Gaussian Concentration bound for the probability of the deviations of v, (f) from v(f),
see [HMP18] and [Hon17] with sharp constants. The deviation v, (f) — v(f) is evaluated along the
functions f such that f — v(f) is a coboundary of the infinitesimal generator of the diffusion.

When the diffusion contains Lévy jumps, it is not generally expected that these deviations will
show a Gaussian behaviour. But such a behaviour seems natural if we suppose that the driving
Levy process is a Compound Poisson process and the jump size vectors (Yi)ren satisfy a Gaussian
Concentration property (GC). In this paper, we focus on this situation. Before giving its precise
formulation we need to introduce some notations. First of all, we introduce our discretization
scheme. In general, for a Euler scheme corresponding to a Jump Diffusion with Lévy jumps, one has
to define a numerically computable jump vectors designed to “mimic” the increments of the driving
Lévy process. In most cases, the increments of a Lévy process are not numerically computable, that
is why it is important to propose different ways to approximate these increments according to the
nature of the driving Lévy process. In this paper we introduce a scheme (S) particularly suitable in
the case where a driven Lévy process is a Compound Poisson. Note that our scheme is close to the
scheme (C) of [Pan08b]. Like in the previously mentioned articles, we denote time steps (Vx)g>1,
and for all n > 0, we define:

(S) Xnt1 = Xn + Ynr16(Xn) + V10 (Xn) Ung1 + 6(Xn) Zny1,

where X is an R? valued random variables such that Xy € L?(Q, Fo, P), (Up)n>11s anii.d. sequence
of centered random variables matching the moments of the Gaussian law on R" up to order three,
independent of Xy. Furthermore, for all n > 1 we put

(1.1) Zn = BnY,,
where (B,,),>1 are one-dimensional independent Bernoulli random variables, independent of Xy,

(Un)n>1 and (Yy,)n>1, s.t. By, (law) Bern(uyy), where p is an intensity of the Poisson process driving
the CPP (Z);>0. Without loss of generality we can suppose from now on that g = 1. The choice
(1.1) of the innovations Z,,n € N is motivated by the following heuristic reasoning: Z, has to
“mimic” the increment of the CPP Z; = lef\il Y: on the small time interval of the length ~,,. The
probability that the CPP does not jump on this interval is equal to exp(—v,) = 1 — v, + o(7,), and
if the CPP jumps on this interval, it will most probably have only one jump. Hence we approximate
the increment N, of the CPP by a {0,1} random variable with the probability of 1 equal to 7.

We also introduce the empirical (random) measure of the scheme: for all A € B(R?) (where B(R?)
is the Borel o-field on R%):

n Ml w) (A
(1.2) vn(A) = vy (w0, A) = ngsz;;( )(4)

Obviously, to study long time behaviour, we have to consider steps (7x)r>1 such that the current
time of the scheme I'y, := Y} v = +00. We recall as well that ~; i 0. We suppose that both
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jump amplitudes (Y;,)n>1 and Brownian innovations (Up)n>1 satisfy a Gaussian concentration (see
further the assumption (GC)). As we already mentioned, the aim of the paper is to show that
this assumption implies a non-asymptotic Gaussian Concentration inequality for the probability of
the deviations of vy, (f) from v(f) (see Theorem 2, Section 2). The main argument in the proof
of Theorem 2 is the fact that the (GC) property of jumps sizes Yy, k € N, permits to show the
similar Gaussian Concentration property for the jump innovations Zx, k € N. This result is given in
Proposition 1. However the Gaussian Concentration property of jump innovations depends on the
dimension of the jump heights. This dependence survives in the main Theorem 2 giving Gaussian
Concentration of the deviation of v, from v.

The paper is organized as follows. In Section 1.2, we introduce some useful notations. The
assumptions required for our main results are outlined in Section 1.3. In this part, we formulate a
Gaussian concentration property of the jump innovation Z,, the proof is given in Section 2.4. We
state in Section 1.4 some already known results connected with the approximation scheme. Our
main results are in Section 2, and the demonstration is located in Section 2.3. Section 3 is dedicated
to the analysis of the exponential integrability of Lyapunov function. Technical lemmas are stated
in Section 2.2, but their proofs are postponed to Section 4. Eventually, we propose a numerical
illustration of our main result in Section 5.

1.2. General notations. We set for any step sequence (7, )n>1:
n n
Ve € (0,400), T = va;? Iy = Z’Yk =1,
k=1 k=1

where I',, corresponds to the current time, hence I, _Jr 4o00. For the sake of simplicity, from
n—-+0oo

now on, the time step sequence will have the form: -, =< # with 6 € (0, 1], where for two sequences
(tn)nen, (Un)nen the notation u, =< v, means that Ing € N, 3C > 1 s.t. Vn > ng, C v, <y, <
Cuy,.

Henceforth, C' will be a non negative constant, and (en)n>1,(%n)n>1 will be deterministic se-
quences s.t. e, —, 0 and %, —, 1, that may change from line to line. The constant C as well
as the sequences (ep)n>1,(%n)n>1 depend on known parameters appearing in the hypotheses set
in Section 1.3 (which will be called (A) further). Other possible dependencies will be explicitly
specified.

We denote by I, m € {d,r} the identity matrix of dimension m.

Through the article, for any smooth enough function f, for & € N we will denote D*f the
tensor of the k"' derivatives of f. Namely D*f = (9;, . O [)i<in,..in<d- Yet, for a multi-index
a € N§:= (NU{0})?, we set D*f =021 ...9%4f : RY — R.

For a (-Holder continuous function f : R* — R, we denote by

]y e sup @ =16

< +o00,
rF#x! |LL‘ - 1'/|5

its Holder modulus of continuity. Here, |z — 2’| stands for the Euclidean norm of  — 2’ € R
We define for (p, d, m) € N3, CP(R%,R™) the space of p-times continuously differentiable functions

from R? to R™. Furthermore, for f € CP(R%,R™), p € N, we set for 8 € (0, 1] the Hlder modulus:
| D f(z) — Df(2')]

o= o'

[f(p)]g = sup
z#£7 |a|=p

< 400,
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where o € N is a multi-index of length p, namely |a| := 2?21 o; = p. In other words, in the above
definition, the |- | in the numerator is the usual absolute value. We will also use the notation [n, p],
(n,p) € (No)?,n < p, for the set of integers being between n and p.

Let us introduce for k € Ng, 5 € (0,1] and m € {1,d,d x r} the Holder spaces
CHA(RLR™) := {f € C*(RY,R™) : Yo € N, |a| € [1, k], sup |D*f(z)| < +oo, [f®]s < +o0},
zCR4
CPP(RY,R™) = {f € CPP(RLR™) : || f]loo < 400}
(1.3)

In the above definition, we denote for all bounded mapping ¢ : R — R™, m € {1,d,d x r}, the
uniform norm [|¢||ee 1= sup,ega ||CC* ()] with [|C(z)] = Tr (¢¢*(x))"?, where for M € R™ @ R™,
Tr(M) is the trace of M. In particular, || - || is the Frobenius norm .

Practically, with these notations, C*#(R? R™) stands for the subset of C*(R? R™) whose ele-
ments have bounded derivatives up to order k and S-Hoélder continuous k' derivatives. In particu-
lar, for k = 0, the space of Lipschitz continuous functions from R¢ to R™ is denoted by C%!(R? R™).

For a given Borel function f : R — FE, where E can be R, R¢, R? @ R",R¢ ® R?, we set for
k € Ng:
fi = f(Xk).

Moreover, for k € Ny, we denote

(1.4) Fi =0 (X0, Uy, Z)jepyy) and  Fi, = o (Xo, (U}, Z;) jepi i Unt)-

Eventually, we define the infinitesimal generator associated with the diffusion (E) which writes
for all ¢ € C2(R?) and x € R%:

Aple) = )V + 37 (00" @) DPpla)) + [ (ol +rla)y) - pla)) wld)
(1.5) = Apla) + [ (ol + rla)y) — pla)) m(d).

where 7 stands for the distribution of Y7, and A is the infinitesimal generator of the continuous
part of the diffusion.

1.3. Hypotheses. We assume the following set of hypothesis about the coefficients of the SDE (E)
and the parameters of the scheme (S):
(C0) The functions b : R* — RY, o : R - R?® R" and & : R? — R ® R" are globally Lipschitz
continuous.
(C1) The first value of the scheme Xy is sub-Gaussian: there exists A\g € R* such that

YA < o, Elexp(A\Xo|%)] < +o0.
(C2) Defining for all x € R, () := o0*(x), K(z) = xk*(z), we suppose that

I* =

sup Tr(S(x)) = sup [lo(@)]|? = o2 < +00, sup Te(K(x)) = sup [ls(2)]2 = [[5]}% < +oc.

z€R4 z€R4 zcRd zcRd

1. Remark that this notation is also available for vector norms. Indeed, any R? vectors can be regarded as line
vectors, and we define similarly for a vector or for a matrix the uniform norm || - ||oo-
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(GM) The sequences of random variables (U, )n,>1 and (Y;,)n>1 are respectively i.i.d., such that
E[h] =EMW]=0; E[(UiU])i<ij<] = E[UF?] = I,
E[Y{*]) = I;; E[U{U{U})1<igusr] = E[U7?] = 0%

Also, (Up)n>1, (Yn)n>1 and Xy are independent.

(GC) We say that r.v. G € L' satisfies Gaussian concentration property, if for every Lipschitz
continuous function g : R" — R and every A > 0:

(1.6) E[exp(Ag(G))] < exp <)\E [9(G)] + >‘2[29]%> ’

We assume that U; and Y] satisfy the Gaussian concentration property.
(Lyv) We assume the following Lyapunov like stability condition:

There exists a non-negative function V : R — [v*, +-00) with v* > 0 such that
i) V is a C* continuous function s.t. [|D*V||o < +00, and lim,_, V() = +o0.
ii) There is C,, € (0,+40o0) such that for all x € R%:
VV (@) + [b(2)]* < C,V(2).
iii) There exist o, > 0, By € R* such that for all x € R?,
AV (z) < —a, V(z) + By.

(U) There is a unique invariant distribution v to equation (E).
(S) We assume that the sequence (yx)r>1 is small enough, namely for all £ > 1,

),

1 . ay
<= 2
ke < 5 min( y(BhCr (YOl | VOIDVIs | Guy /)

where CYy is given by the assumption (Lv). For g € (0, 1], we introduce:
(Ts) We choose a test function ¢ such that

i) p € C3’5(Rd,R),

ii) x — (Vp(z),b(x)) is Lipschitz continuous,

we further assume that there exist Cy,, > 0 s.t. for all x € RY:

iii) [p()] < Cvp(1 4+ /V(2)).

Remark 1. Under the assumption (CO) the equation (E) admits a unique non-explosive solution,
cf [App09] (Theorem 6.2.9.).

Remark 2. The assumption (GC) is central for this paper. Note that the laws N'(0,1,) and (3(61+
5_1))%", i.e. for Gaussian or symmetrized Bernoulli increments which are the most commonly used
sequences for the sub-Gaussian innovations, satisfy (GC). Moreover, inequality (1.6) yields that

for all v > 0, P[|UL| > r] < 2exp(—§) (sub-Gaussian concentration of the innovation, see e.g.
[BGL14]).

Remark 3. The assumption (Lv) together with (C2) ensure, following [Pan08a] (Proposition
1) the existence of at least one invariant distribution of the SDE (E). Note that this Lyapunov
assumption (Lv) is equivalent to the similar Lyapunov assumption for the continuous part of the
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equation (E). Indeed, using second order Taylor expansion, the fact that 7(-) =0 and 7(|-|?) =r <
oo, we get that

| 5031 D*V o
R" 2 '

Hence the condition iii) of (Lv) is equivalent that the generator of the diffusion without jumps

satisfies

(1.7) AV (z) < -&,V(z) + B,

(V(z + w(2)y) — V(z))m(dy)| <

with &y = ay, By = By + W. For more information about Lyapunov function existence,
see e.g. [GP14].

Moreover, it is classic to see that this assumption constraints the drift coefficient b to be under a
linear map. Indeed, this is the consequence of the fact that the Lyapunov function V has to be lower
than the square norm, i.e. there exist constants K,¢ > 0 such that for all |z| > K, |V (z)| < ¢z|?

and hence using ii) of (Ly) |b(z)] < /Cyelx|.

Remark 4. The assumption (Tg) allows to substantially simplify the proof of our results. The
condition 1) is natural for ¢ Lipschitz continuous, which is obviously lower than the square root
of a quadratic function (potentially V). Whilst the condition ii) is a direct consequence if ¢ is the
solution of the Poisson equation:

(1.8) Ap = f,

where f € CY8(RYR) s.t. v(f) = 0. If o,k € CLP(RE,RPTY) b € CLA(RY, RY) and ¢ € C3P (R, R),
then both sides of the following identity:

(Vo) = = 5TED) =~ [ (o640 = o))

are Lipschitz continuous.

From now on, we identify assumptions (C0), (C1), (C2), (GM), (GC), (Lv), (U), (S) and
(T3) for some § € (0,1] to (A). Except when explicitly indicated, we assume throughout the paper
that assumption (A) is in force.

We suppose that the step sequence (vy;)r>1 is taken such that v, < k=% @ € (0,1]. This pick
yields for any £ >0, T\Y) =< n!=% if ¢0 < 1, T\Y = In(n) if 0 = 1 and T = 1 if ¢6 > 1.

The corner stone of our analysis is the fact that the jumps innovations (Z,)nen inherit the
Gaussian concentration property of (Y;)nen:

Proposition 1 (Gaussian concentration of the jumps innovation). Let g : R” — R wuniform Lipschitz
continuous function, € € (0,1) and

1
(1.9) p(r) = Vr(B+7) + ¢ +4exp(Vr+147/2).
Then for all 0 < A < m the following inequality holds for all m € N

My (147 +e)[g]F

(1.10) Eexp(Ag(Z,)) < exp(AEg(Z,) + 5

).

Remark 5. Let us point out that the concentration inequality is only valid for A on a compact
set. This constraint is due to the difficulty to approximate a compound Poisson process which has
actually a sub-exponential tail (and not a sub-Gaussian one).

The proof of this proposition is given in Subsection 2.4.
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1.4. Existing results. The natural next question concerns the rate of that convergence. In a
Brownian diffusion framework, a Central Limit Theorem (CLT) was established by Lamberton and
Pages [LP02] for functions f of the form f — v(f) = Ap, namely f — v(f) is a coboundary for A,
where A denotes the continuous part of the infinitesimal generator (see (1.5) further). This choice
of functions class comes from the characterization of the invariant distribution v by a solution in
the distribution sense of the stationary Fokker-Planck equation: A =0 (where A* stands for the
adjoint of A). In other words, for all functions ¢ € C2(R?% R), we have v(Ap) = Jra Ap(z)v(dz) = 0.

In [Pan08a], the author also provided the rate of convergence through a Central Limit Theorem
(CLT) for the already mentioned general scheme:

Theorem 1 (CLT). Under (C2), (U) and (Lv), if B|Z** < 400 for p > 2, if E[UZ®] = 0,
(2)

E[|U1]?] < 4+o0 and lim, \171;— = 0 then for all function p € C>'(RY,R) we have the following

results (with (L) denoting the weak convergence):

(1.11) Vava(Ap) 5N (0.02)
with
(112) o= [ (0 el@)+ [ lola +rla)y) - pla) Prd)v(de).

In the Brownian diffusion context (k = 0), under some confluence and non-degeneracy or reg-
ularity assumptions Honoré, Menozzi and Pages [HMP18] established suitable derivatives controls
for the Poisson problem (e.g. Schauder estimates). With a compound Poisson process, we think
that a similar analysis may work. It will be a future research. Let us mention [Pril0] for some
Schauder estimates for Poisson equation, with a potential, associated with a SDE purely driven by
stable processes but with a constant drift.

In [HMP18], the authors have established a non-asymptotic Gaussian concentration with x = 0
there are explicit sequences ¢, < 1 < C, converging to 1 such that for all n € N, for all @ > 0 and
Te = k_07 NS (%7 1]7

2
a
(1.13) Plv/Invn(Ap) > a] < Cpexp <—c ) ,
o ! “2]lolZ Vel
which is our goal for a diffusion with jump contributions. Remark that, in [Hon17], a non-asymptotic
Gaussian concentration was established with the asymptotically best constants for a particular large
deviation called “Gaussian deviations” therein. In other words, for a = o(y/T',):

2
(1.14) P[\/Tpvn(Ap) > a] < C, exp <_cn21/(|a(:Vg0|2)> .

In this present work, we aim to obtain a Gaussian deviations bound like (1.13) for the scheme
(S). To do so, we will perform the so-called martingales increments method which was exploited
successfully by Frikha and Menozzi [FM12]. It was also the backbone of the analysis in [HMP18§]
and [Honl17]. Here, we adapt their techniques for the stochastic differential equation (E) driven by
the compound Poisson with Jump heigh sizes satisfying Gaussian concentration.

2. MAIN RESULTS

2.1. Result of non-asymptotic Gaussian concentration. Our main result is stated below.

Theorem 2. For 0 € (ﬁ,l}, B € (0,1], assume that (A) is in force. For all positive sequence

(Xn)n>1 with lim,_soo Xn = 0, there are two non-negative sequences (cp)p>1 and (Cp)p>1 satisfying
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cn 1 and Cp, (1 as n — oo, such that for alln € N, a > 0 , satisfying a < Xn\lf(—lj)l, the following

bound holds:
a2

P[[v/Tpvn(Ap)| > a] <2Cpexp (— cnﬁ),
oo
D3 “{;)SLB]E U, |3+8 (%ﬁ) (2)
where o2, i= (147 [8]2%| Vl + 012V pl2, and Cu = exp (Pglelgle STy, D)

(2)
for p, > 1 such that p, —, +oo and pn% —, 0.
The proof of Theorem 2 is given in Section 2.3.

Remark 6. Note that for all 6 € ( L 1], VI _ 400, then we can choose x, s.t. Xn% — 400.
woon

#0113 =
In other words, we can pick a = a(n) —, +o0o. We have unsurprisingly that O'(Qp < o2, where
‘7920 is the asymptotic variance of /T pvn(Ap) defined in (1.12). Moreover, the difficulty to adapt a
Gaussian Concentration result to compound Poisson process yields that the upper-bound variance

o2, depends on the dimension.

2.2. Strategy. For the analysis of v, (Ap), we will first perform an appropriate Taylor expansion
(equation (2.3) below). An expansion of this kind is standard in this context, and analogous decom-
positions were already used in [HMP18], [Hon17] and [Pan08b], [Pan08a] with a jump component.
It can be viewed as a kind of It6 formula for Euler scheme, because it permits to write the difference
©(Xp) —¢(Xo) as a sum of a martingale, a term involving the generator and a remainder term. Re-
call that Fp, = O'(Xo, U, Zj)je[[l,k]])a k € N*. Let us define the contributions of the decomposition
of v, (Ap) in the following lemma.

VP (Xi-1,Uk) = VAkok—-1Uk - Voo(Xp—1 + Yibr—1)
1
+’7k/ (1- t)Tl“<D280(Xk—1 + b1 + t\/kOk—1Uk) 01Uy, @ Upop_4
0

—D?*p(Xj—1 + ’kak—l)zk—l)dta

AV (X1, Uk) = f (Xp—1,Up) — E[¢pf (Xp—1, Up)| Fr—1],
A (Xp1,Z1) = o( X1 + K1 Z1) — o(Xpm1) — /T [o(Xp—1 + Kr—1y) — (Xi—1) |7 (dy).
(2.1)

Moreover, we define the remainder contributions in the decomposition of v, (Ay).
1
DEF(Xima) = o [ (VplXima + i) = Vip(Xio). bus ),
0

DEE(Xi1) 1= STr((D%0(Xio1 + bi-1) = D2o(Xp1)) B ),

DY (X1, Uk, Zi) = @(Xp) — (X1 + Wbro1 + vAOk-1Uk) — (0( X1 + £r—1Z1) — o(Xp—1)) -
(2.2)

Lemma 1 (Local decomposition of the empirical measure). For all ¢ € C*(R%R), k € N* the
following decomposition holds:

(2.3)  o(X) — @(Xp_1) = AP(Xp_1) + AL (Xp1, Up) + AL (Xi1, Zi) + R (Xp—1, Uy, Zi),
where
(2.4)

RY (Xp—1, Uk, Zt) := Dy f (Xp-1) + Dy€(Xp-1) + D5 (X1, Ur, Zi) + E[vf (Xe—1, Up) | Fi—1].
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Furthermore, we have the following properties:

i): For all k € N*, the functions u— A} (Xp—1,u) and z — Ef(Xk_l, z) are Lipschitz, satisfying
[AY (Xk-1, )1 < Vllor-1llIVelleo < VARlolcl Vel
(AL (X1, ) < Nl Velloo < (1600l Veolloo-
ii): For all k € N*, AY(X}_1,Uy) and Kf(Xk,l, Zy) are martingale increments with respect to Fy,
namely:

E[A (X1, Up)|Fio1] =0, E[AY(Xp—1, Zi)| Fii] = 0.

The proof of Lemma 1 is given in Section 4. Now we introduce the martingales associated to
these martingale increments:

(2.5) Mg =Y A{(Xp1,Ur), Mf =Y A(Xp12y).
k=1 k=1

Summing (2.3) over k we obtain the following global decomposition of the empirical measure:

1 —

(26) n(Ap) = == (M + D¢ + %),

where we denoted

(2.7) Ry = ZRf(kah Uk, Zi) — ((Xn) — ¢(X0)).-
k=1

Using the definition (2.2) we can write R, = —L{ + D3,  + D5y + DY, + G7, with

L = ¢(Xa) —9(Xo), DE,,:= ZD’; (Xp-1), Dfy, = ZD (Xi-1),
(28) DY, = Y DI(Xpo1,Ur, Zr), GY = E[{(Xi—1,Up)|Fial.
k=1 k=1

In the proof of Theorem 2, we need some key results stated below. The proofs of all these statements
are postponed to Section 4. -

The main contribution in the decomposition (2.6) is given by the martingales M;; and M. Their
analysis is given with the help of the Gaussian Concentration inequality (1.6) and (1.10), trough
the following lemma:

Lemma 2 (Concentration of the martingale increments). Let Af and AE given by (2.1).
i): For all A > 0 we have

A, A?
E |ow (5 AL (X1, U) ) [Fact | < e (mllolIVelZogps )

ii): For all 0 < e < 1,n € N*, for all A > 0 s.t. % <
(1.9) , we have

A~ A?
B [oxp (~ K7 (X1, 20) ) [Pt ]| < exp (allsDol 0+ +2) 01 ).

m, where p(r) is defined in

Now we formulate several propositions and lemmas that are used to control the components of
the remainder term 2R;,. The following proposition is the counterpart to the jumps diffusion of the
useful Proposition 1 in [HMP18].
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Proposition 2. Under (A), there is a constant cy := cy((A)) > 0 such that for all X € [0, cy]:
1
(2.9) IZ :=supE[exp ()\\/V(Xn))] < 400.
n>0

Remark 7. In particular, we easily see that for all X € [0,cy]| and £ € [0, %]
(2.10) I‘g/ = sup E[exp (A\V(X,,)¢)] < +o0.
n>0

Note that for k = 0 (purely continuous case), the integrability of exp ()\V(Xn)g) is available until
& =1 (see Proposition 1 in [HMP18]). The lost of integrability is the consequence of the bound
condition over X\ in the Gaussian Concentration result of Proposition 1.

We have the following results for the initial term appearing in (2.3) which is handled thanks to
the below result.

Lemma 3 (Initial term). For all A > 0 s.t. % < 25&9 :
| <p| A 1 20y ,A
Eexp( T ) < exp <2CV oT. )(1‘3) cvlin
with cy, Ié given in Proposition 2.
Next the last remainders are controlled as following:
Lemma 4 (Remainders). For all A >0 s.t. & < 2oy

Tn = (IVelooBh+(Veb)]1 ) /Ty r<2

" A(I9¢lloo bl +1(Veot)]1 ) Ty T2
(2.11) Eexp( ]D bn\) (1% 2oy T .

We also have, for all A > 0 s.t.

cy 1 .
>~ E () -
HUH ID3¢ll00/Cy T

2 3 5 o p(2)
o136 11D ¢lloo CZ ATy,

(2.12) Eexp( | Df wal) ST =

Lemma 5 (Bounds for the Condltlonal expectations). With the notations (2.8), and for 6 €
(ﬁ, 1], we have that

_ . 348
GEles _ Pllol SR T

VT A+ +AEB+L) VI, n

Remark 8. The strongest condition over 8 comes from this remainder term. Indeed, for 6 < ﬁ,
P8 ieeme _ : . . ,
\/ﬁ =n- 2 which goes to 0 if and only if 6 > 5 Whilst for the other remainders, for

(2) _
\l;ﬁ =n'7" —n 0 which is implied by 6 > é

Now, let us deal with the remainder term Dj,, due to the jump vector (Zy)x>1.

0 < 2, we need to have

then we have:

Lemma 6 (Remainder term due to the jumps). If 0 < % < 12HNHOOHéLPHOOP(T)7

o1 oo (207 <om (122 2.

where we recall that e, = e, ((A)), n > 1, is a sequence such that e, —, 0.

The proof of this lemma is one of the most intricate of this article, we the decided to postponed
it to the end of Section 4.
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2.3. Proof of our main result.

Proof of Theorem 2. Through the following analysis, we deal with P[v/T',v,(Ap) > a]. The term
P[vThvn(Ap) < —a] can be handled readily by symmetry.

From notations introduced in (2.6), v, (Ayp) = —ﬁ(iﬁﬁ + My + M;)). The idea is now to write
for a, A > 0:

P[mun(Aw) >a] < exp(-—

(2.14) <

A
;ﬁ)E [exp (-
a
=® (=5
for L+ 2 =1, p,q > 1. We will choose later p = p(n) —, +oo slowly enough, which implies that
g =q(n) — 1. Let A > 0. Recall that

9{ :_L¢+D2bn+D22n+D;€n+éﬁ

X (95 + Mg+ 7))

DA

T
E[exp(—l(ii(Mf—i—Mrf))}l/qE[ex ( ]%OD]

By Cauchy-Schwarz inequality, we obtain:

E{exp (ﬁ\%ﬁ!)}l/p < (EGXP( ‘LSDD) <EeXp <|Gﬂ>> .

1

(500 (22105,,1) ) (esn (22105 MW (5w (42105, )) ™

We recall that all the long of our analysis, C' > 0 denotes a generic constant, (%n)n>1 and (en)n>1
are generic non-negative sequences, depending on coefficients of assumption (A), which may change
frome line to hne such that lim,_yoo %, = 1, lim,, s €, = 0. For the term associated with L,, in
(2.15), if 2p>‘ <36 -, by Lemma 3 we can write:

(2.15)

| n’ )\ 1 2CV,<,0>‘ )\
(2.16) (E exp (2p/\ )) < exp (QCVWF )(1‘2/) cvin = exp(CF—).
From Lemma 5, with a,, defined there and by Young inequality we obtain:
dpA - i A A2 aZp A2
(2.17) (E exp (F—n\Gﬁ )) P <exp (ﬁan) < exp (I‘ % + 7) = Xy exp (F—nen).

In the last equality, %, = exp(a2p,/2) and e, = 1/2p,. Recall that a;, —, 0. We need to choose
P = pn —n +00. We choose p,, such that p,a? —, 0.
For the term involving Dy y; . from (2.15), if 16pA 2cy

S @ s ,
I lollZ[1D3¢llec £/ Cy

using Lemma 4, we can

write

1
T ol 1 D3l so 02 AT 2)
16 1/2 =) & vAI'n )\F )\
| DSsal)) ™ S (AT AT = exp( ) = ep(Cen),

( (2)
where in the last equality we take e, = \I;% and recall that for all 8 € (%, 1], \F/% —0
n n -n

For the remainder depending on D;b,n from (2.15), if ‘iﬂpj < T (vl [b]?i"Kv@ AN thanks
n oo b \( V

16pA

(2.18) (E exp (4

o (2)
to Lemma 4 we have again with e, = \1;*117 :
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(2.19)
1 A(Iv el bl + (V.01 ) oy TP r® \

(Eexp( ‘D bn| ) < (111//2) 2eyTn = exp(C)\F: )= exp(Cmen).

Finally, Lemma 6 yields that if 0 < % < 12||/Q||oo||é§0”oop(7‘)’ then:
1 2
(2.20) E [exp < ?p)\D‘p )] exp (\/%en + f\,nen> )
We gather (2.16), (2.17), (2.18), (2.19) and (2.20) into (2.15) and finally from (2.14) we obtain:
a\ gA 1 A A2

. n¥n > < - R v MS@ T A - /tn n:

(2.21) P[v/Thprn(Ap) > a] <exp ( m)E[exp( T (ME+ ME))] e ((m + Fn)e V%,

Now, let us control the martingale terms thanks to Lemma 2. Let 0 < ¢ < 1, and A > 0 s.t.
g\/Ty, < m, we recall that p(r) is defined in (1.9).
Thanks to Lemma 2 and the independence of Z,, and U,, conditionally to F,_1 we can write

Eexp(— (IJ‘—A(M;f —&—M;f)) =

E[exp (- —)\(M“" L+ ME ) exp (- i{—/\(Aﬁ(Xn_l, U) + A2(X 1, Zn)))fn_lH

qA q2)\2'}/n
< E[GXP (- F(Mw L+ M) exp < (lolZIVellz + 52 IVelZ (L +r+2) ) |-

By induction we obtain

A — 2\ -
Eexp (— 1~ (Mf + 1)) < exp<(‘12r2 (812190 l% (1 + 7 +2) + o2 erio))zvk)
n k=1

242
q°A
= o (B (WIEITPIR 4+ + ol Vel) )

Plugging this inequality into (2.21) yields:

PIVEw(A9) > d] < exp (— )

g\? A2
222 xexp (S (WIRIVAR(+r+2) + IolIVelZ) ) expl

A
— 4 —
\/Fn Pn
~(IRlZ NV lI% 1+ r+2) + [l ]2 [ Vel %) over A which

)en) n.

Next, we optimize the polynomial — \%‘7 + gl’}
leads to consider:

a1y,
q([RI3 Vel + 7 +e) + ol VellZ)

We check first the assumptions over A in all lemmas that we used in this proof. In (2.16) and (2.20)
we need pA, /Ty, < C. And for (2.18) and (2.19) we need pA, /T, < @ v Finally g\, /T, < Cey is

required to apply Lemma 2. We recall that we will choose p — oo and q — 1 and finally € — 0.
We recall also that from the statement of the theorem a = a(n) can depends of n in such a way

that \/LF—H < % —, 0. But if ¢ — 1, for n big enough %—Z = \/(11“7 < % — 0. Hence, the condition

(2.23) A=Ay =

)\n n
(2.24) p—xﬂdjx <Co/r®

r, VI (
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has to be satisfied. Let us calibrate p = p(n) — oo depending on x, — 0 s.t. limsup, px, < C.
This pick of p yields (2.24). We can also choose, for C' > 0 large enough ¢, = C % such that all

conditions over A, p, e are satisfied with these choices.
The inequality (2.22) yields then for A = \,:

~ 2
Cna A
P[\/Fnyn(Ago) > a] < %, exp(— i + = en>,
2((1+n)=2IVelZ + lol&lVels) VT
with & — — DIl IVel 2 +HlolZ Ve, 1 and e, < Cae,.
" (o) Rl IV N2 Hlo 121V el2, ) ntoo VI =
Ceyp

Ifa < 1, we take C), = %Z,, exp(Caey,) j 1, otherwiseif a > 1 then weset ¢, = 1—=% — 1.
n—-—+0oo

@ n—+oo
In any case, we write the result:

2

Cn@
> < — .
PLVEun(49) 2 d] < Cuexp (= S S ool oI ol

2.4. Proof of the Gaussian property of the jump innovation.

Proof of Proposition 1. Suppose first that g : R" — R is Lipschitz continuous with [g]1 < 1. The
case of [g]; > 1 follows by considering A = A[g]; and § = ﬁ. We suppose w.l.o.g. that g(0) = 0.
We recall that thank to the definition (1.1) the law of Z,, is the same that the law of B, Y, where B,

is a Bernoulli variable with parameter -,, independent of the random vector Y with distribution 7

on B(R"). We will establish first that for all e € (0,1) and 0 < A < Y G] (see (1.9)) we have

Ny (1 + (Eg(Y))? +¢)
+ 5 ).
Denote for this proof my := Eg(Y’). Using (GC) property of ¥ we can write

Eexp(Ag(Zn)) = mEexp(Ag(Y)) + (1 — 7n) < mexp(Amg + A*/2) + (1 — 7p).

(2.25) Eexp(Ag(Zn)) < exp(AEg(Zn)

Denote

)‘2 n 1+ m2 +e
(2.26) An? = mexp(Amg + 2) + (1 =) — exp(AMnimg + A2N2”).

Here, the second exponential corresponds to the right hand side in (2.25). We will show that
AZP < 0. Indeed, let us develop the difference AP by power series expansion:

A2 n(l+m2+¢e
AP =y (Amyg + 7) — (nAmg + AQMQQ))
1 A2 1 VA2 (1 +m? + ¢)
+§%(Amg + 5)2 - 5(%Amg + 5 9 P +QMWN

YA
= =5 (et mmg) + ~o— (mg(1 = (1 +mg +)))

where
VA2 (1+m? +¢)

2 )k

1 A2 1
Q()‘) = "Tn Z E()‘mg + ?)k - Z H(’Vn)\mg +
k>3 E>3

In particular, using 7, < 1 from (S), and £ < 1, we can roughly estimate:

. A2 N 1
(2.27) ASP < —%s—l— 72 (Imgl(34+m2)) + g'}’n)\4+Q()‘)a
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Because g is 1-Lipschitz continuous and from the assumption (GM) we obtain:
T
my = [Eg(Ya)]* < Elg(Ya)|* = Elg(Ya) — 9(0)* < [ghE[Yal? = [gh Y [Y** < 7.
k=1

Using again v, < 1, A <1, e <1 we get

k
Q) < %Z%W%)M%Z

E>3 k>3

At
Rl

(2+7)

(V7 + W < 29,  exp(vr + 1+ 71/2)

Thus combined with (2.27) gives :

2 3
AZXP < _’Yn;\ e+ ’Yn2/\

< ’yn/\2/2{ —e+Mr(3+7r)+ %)\2 +4Xexp(vr+1+471/2)} < %)\2/2{ —e+Ap(r)}.

1
(Imgl(3 +mg)) + gmA" + 292 exp(v/r + 1+ 7/2)

which is negative if Ap(r) < e, with p(r) defined in (1.9). This proves the (2.25). Together with the
inequality mg < r this proves the concentration inequality in the case [g]; < 1.
U

Remark 9. Note that r — p(r) is increasing, hence the condition we need to put on \ in order
to propagate the Gaussian concentration from Y € R" to Z became stronger if the dimension r
mcrease.

3. EXPONENTIAL INTEGRABILITY OF THE SQUARE ROOT OF LYAPUNOV FUNCTION.

In [HMP18], the exponential moments of the Lyapunov function was used to control the remainder
terms of the decomposition of the empirical measure. In this article, we also use the Lyapunov
function for this purpose. But our framework yields more constraints over the analysis. Namely, we
cannot directly use exp(C'V;,) which is not a priori integrable. Indeed, let us consider the Compound
Poisson process Z; := ch\il Y, where (Yj)ren is an i.i.d. sequence of a standard normal variables
independent of Ny wich follows a Poisson law, which is the typical jump random variables that we
aim to approximate. Conditionally to Ny, Z; ~ N (0, N¢). So if we choose the Lyapunov function to
be the standard quadratic map, i.e. for all 2 € R%, V(z) = |2|?> + 1. We obtain in fine:

’2 ) dyt
(27TNt)

Blexp(\V (20)] = E[ElexpMZDIN] = 51 | exp(Nnf?) exp(—

2N, 7 Lve>1l,

this is integrable if almost surely V; < % which is not true for A > 0.

Proof of Proposition 2. Preliminarily to the proof of this proposition, we write some useful controls
thanks to assumption (Lv), for all z € R9,

W VO
WY@ C 2

2 T *(p 2 o
32 IPVTE = 1 - So < 10y S

To begin we check that /V satisfies assumption (Ly) iii). We have readily that:
1

~ 1 ~ 1 _ ~ ay —
3.3 AVV = —— AV — VVI? < ——(—ayV < ——VV + By,
( ) 2\/V SV%‘U | = 2\/V( ay +BV) = 92 BV

(3.1) IVVV(2) |

| <
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with By := Q\Bﬁ The first inequality is a consequence of Remark 3. Furthermore, for the purely
jump part of the infinitesimal generator we write:

A\/>( ) — .»4\/>( / \/V (z + r(z \/V F‘|H||mﬂ(| D,

using (3.1). The previous inequality and (3.3) implies that:

(3.4) AVV < —%V\fvjuﬁ’v,
_ _ Okl ool

where 3], = By + v vllflel ()

Next, let us decompose the Lyapunov function v/V with a Taylor expansion similarly to Lemma, 1.

We again use a splitting between the deterministic contributions and those involving the innovation.
We write for all n € N:

\/‘7(Xn) - \/V(Xn—l) - \/V(Xn—l + ’ann—l + \/%O'n—lUn) - \/‘7(Xn—1)
+\/V(Xn) - \/V(Xn—l + ’ann—l + \/%O'n—lUn)

= ’Yn-A\/»( —1) + |:7n /01 <bn—1a [V\/V( n—1+ tYnbn—1) — Vf Xn-1) ]>dt]
[T (DA (X 1)) S01) ] + [VARon1Un - VYV (X1 + ba)

1
+’yn/ (1- t)Tr<D2\/V(Xn_1 + Ynbn-1 + t\/YnOn-1Up)opn—1Up ® Una,i,l)dt}
0

+[\/V(Xn)*\/v(anl+’ynbnfl+\/’%0n71Un)*’7n77(\/V( n— 1+/i \/V )}
= ’Yn-A\/V(Xn—ﬁ + Vl(Xn—l) + V2(Xn—1) + VS(Xn—h Un) + V4(Xn—1> Um Zn)v
(3.5)
where for all z € R?, the first term is such that:
! \A% \A%
V =, b(x), —=(x + ty,b — dt
@) = [ ). S+ b)) = S (a)
= /1<b(:1:) — b(x + tyb(x)) vV (x + tynb(x)))dt
= Tn ) Tn 72\/‘7 Tn
L vV \A%
3.6 Fn | (b, —=) (& + tyab(z)) — (b, —=)(x)dt =: Vi (x) + Vi(x).
(3. [0S e+ @) = () @t = V@) + VR )
Because b is supposed to be Lipschitz continuous and thanks to (Ly) ii), we readily writes:
\A%4 Y501 C
(3.7 v < 2wy [ e < Y v,

Whilst the next term is more subtle. Indeed, observe that thanks to (Ly) ii) the following term
is bounded:
(3.8)

% VV)(VV)'h VOVl VOVIID?V e oy’

b N < Db b2 Yy VNIV VOV, VDTV = Cas)
2V 2V 2VV 4V 32 2 2 4

which directly yields again thanks to (Lv) ii) that

VS

' 2035 VOV VY
(3.9) Vi(a) < 77210(3.8)/ t|b(x)|dt < In (3'8)\/27\/>(x).
0
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Hence plugging (3.7) and (3.9) into (3.6) implies that:

b C
(3.10) Vi) < 2 4 Gl OVT ),
The second term is handled by (3.2):
Ty 2 PVl Cv
3.11 1% < = + .
(.11 2(0) < Pl (5= + )

The third term satisfies the following identity:
Va(2,Up) = /o (2)Uy - VVV (2 + v,b(z))

1
+Yn /0 (1-— t)Tr(D2\/17(x + b(x) 4+ ty /o (z)Uy)o(2)U, @ Uw*(m)*)dt

(3.2) n 1DV = C

< Vo) WYV a4 b)) + (00 o Sz o, P
(3.12) =: V3 (2, Un) + V3 (Un),
and the last term is:

V4(-T,Unyzn)

= V(2 +7b(®@) + VAo (@)Un + k() Zn) — VV (2 + Yb(x) + /Ao (2)Uy)
e (VV (@ + r(@)) = /V(x))

L IV 1ubl@) + @)U + 5(@)Zn) — VT4 3ub(z) + o (@)Un)
L nllslleov Oy - )
2
(3.13) =: Vi(m, Un, Zy) + 771”’%”00\2@77(’ : |)

Hence plugging (3.4), (3.10), (3.11), (3.12) and (3.13) into (3.5):

VT(X0) = V(X 1) € VT (X ) = B4 32 4 g VO VT ()
2o ‘2%"" + 4%) + Va(Xn1,Un) + 7”””’”‘/2@”“ D vixa, o)

o ~
(314) < _’YnTV\/V(Xn—I) + 'YnBV + V?} (Xn—la Un) + Vg(Un) + Vi (Xn—la Uny Zn)7

for
ay ay

Tn S bl C' = 2
4([ ]18 Y 4 ClasyvOv) 4([51180\/ + (@[b]l + \/WH? Vil | %)m)
which corresponds to assumption (S) and
D%Vl Gy, Illev/Cum(l- )
2Vv* 4ur 2
We control the contribution of Vi(X,_1,U,) and V2(U,) (defined in (3.12)) in the exponential

moment of \/V(X,,) by the Gaussian concentration hypothesis (GC) and V} (X, _1,U,, Z,) (see
(3.13)) thanks to Proposition 1. We define for all x € R? and A > 0:

L\z) = E[exp (Avg(x,Un))}, L)) ::E[exp (Avg(Un))},
Is(\,z) = E [exp ()\Vi(x, Uy, Zn))] .

5 = 1
By =By + 501l
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Indeed, by (GC), we first write:

A2, o Lb(x)|2N B A2y, 2
B9 Hhs) < exp (T VTt W)Y O 009G, oty
2 4
Next, it is well known that under (GC), for all ¢ < 3, I, := E [exp(c|U,|*)] < +00. So we have for
all A < 2ev/* by Jensen’s inequality:

(Cv 24DV loo) oI5y’

AW(HDQVHN

LO) < [Bexp(dua?)] * 2

Cv

ol
/¥ = exp (’yn In(7.)

+

A

ID*V | LG
2c

( 2V/v* 4/ v*

YolZ).
(3.16)

Now, let us deal with the third term I3(\, z). First of all, note that from definition in (3.13) and
(3.1) the function z + V}(X,_1, Up, 2) is ||%/|cov/Cv-Lipschitz continuous.
Furthermore, we have that |E[V}(x, Uy, Z,)|Up]| = Y |E[VE(z, Un, Yo)|Unll < 4v/Ov ||6llcom(] - ])-
oy 1 .
Hence, by the Proposition 1, and for all 0 < A < Y ere) (see (1.9)), for the corresponding
notation of Proposition 1 we take ¢ = 1, and we get:

Ii(\z) < E[E[exp (/\Vi(a:, Un, Zn)) |Un]]

211 12
< E[exp (AEV (2, Un, Z,)|Un] + (2+7)mA 2’4(1‘»% )hﬂ
2 >‘2’Yn
(3-17) < exp (mllElloor/Cym(] - ) + 2+ )82 Cv "),

From now on, we assume that for all

Ao 2cv/v* 1 )
2 Cv 2+ 1DV lo B 6nllov/Cr ()
Gathering identities (3.14), (3.15) and (3.16), and by the Cauchy-Schwarz inequality, we obtain
that for all A < Ay,

E exp ()\\/V(Xn))
= E|exp WV (Xp1))E[exp AVV(Xn) = VV(Xn1))) | Fai]]

A< Ay := min (1

IN

E [ exp (AVV (X)L = “F9) + Byl 1 (20, X)L (40) VI (4, X,) 1|

< exp (B )E [ exp (A1~ 2@y WV (X)) .

where we have defined:

D2V ||o C
(15 + 15 loll%

+ In(L) 2= 4 nfloo /Oy 2m(] - ) + 22 + 1) |82 C

Cyllall3
2

By = By +
and

1 ay
Gy :=min (—, —) € (0, —].
cmmin (L %) 0 4
So (1 — ypay) € [0,1) and we deduce by Jensen inequality:

. T—ynd&
(3.18) E exp ()\\/V(Xn)) < exp (Ayn By )E [ exp ()\\/V(anl))}( ! V).
For all A > 0, we introduce

Cy,» := max (E[eAW(Xo)L eAé’V/dV)‘

In particular, we have ]E[e’\W(XO)] < Cy.
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Let us check by induction that for all n € N:
E[eMVV )] < Oy
We deduce from (3.18) and by induction assumption that:
E exp ()\\/V(Xn)) < exp (/\%B{/)C‘g;%d‘/) < Cy.

We pick cy < Ay and the proof is completed. O

Remark 10. Observe also that v* := inf cpa V(z) > 0, we have that for all (n,§) € N x [0, %],
A < Av(v%)¢:

*

——
>1

Eexp(AVS) = Eexp ()\(v*)E (E)g) < Eexp ()\(v*)f_lvn) < Cyprye-1 < Fo0.

Hence, € € [0,1], A < Ay (v*)' ¢, SupneN}Eexp(A\/Vi) < 400.

4. PROOF OF THE TECHNICAL LEMMAS

Proof of Lemma 1. For k € [1,n], we first write:

0(Xk) — p(Xp—1) = (p(Xk) — (X1 + Ybr—1 + VYkok—1Uk))
+(p(Xp—1 + br—1 + Vok—1Uk) — 0(Xi—1 + vebi—1)) + (@(Xp—1 + br—1) — ©(Xp—-1))
(4.1) = Tp1(0) + Th—1,(¢) + Tr-1,4(¢),

with

Tr1(p) = (o(Xk) = @(Xp-1+Mbr—1 + V%ok-1U))
1
Tr-1,4(p) = MW(Vo(Xp_1),brp—1) + ’Yk/ (Voo(Xp—1 + tyrbre—1) — Vo(Xp_1), bp—1)dt,
0
Th-1,0(0) = V%ok-1Uk - Vo(Xi—1 + vbi—1)

1
+%/ (1- t)Tr(D2<P(Xk—1 + Vibk—1 + t/VEOk—1Uk)0k—1Uf ® UkUZ_1>dt-
0

Thanks to this splitting, we are able to isolate the deterministic, the sub-Gaussian random vari-
able approximating Brownian increments and the jump contributions. Then we proceed by Taylor
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expansion up to the order 2 for the function ¢ in the two last terms of the r.h.s. of (4.1),
(X)) — p(Xp—1) = T AP(Xi-1)

+o(Xk) — p(Xp—1 + Ybr—1 + Vwok—1Uk) — %/R ((Xp—1 + K—1y) — ©(Xp—1)) 7(dy)

1
"’[’Yk/ (VX1 + tyrbr—1) — Vo(Xg_1), bp—1)dt] + [%(DQSO(Xk—l + Yebr—1) — D*p(Xj-1))]
0
+HivV760k-1Uk - Vo(Xi—1 + Ybi—1)
1
+k / (1- t)TT<D2<P(Xk—1 + Yrbr—1 + t/Ok—1Uk)ok—1Ur ® Uroj_4
0

—D*o(Xj—1 + ’kak—l)zk—l)dt]

= wAP(Xi 1) + Dy (X1) + DY + ¢f (X1, Up)

+o(Xk) = (X1 + Vebr—1 + VVeOk-1Uk) = 7k /RT (p(Xk—1 + Kg—1y) — ©(Xg-1)) 7(dy)
= wAp(Xg—1) + Dg:f(Xk—l) + DQ’% + 7 (Xp—1, Ug)

+Ho(Xp—1 + krp—12Zk) — p(Xg—1) — %/ (o(Xg—1 + Kp—1Y) — ©(Xp—1)) 7(dy)]
RT‘
+Ho(Xk) — (Xp—1 + Ybr—1 + V10k-1Ux) — (0(Xp—1 + kp—121) — o(Xi—1))]
= AP(Xip_1)+ Dy Y (Xpo1) + Dy E(Xpo1) +0f (X1, Un)+ A (Xpo1, Zi)+ DY (X1, U, Zg).-
(4.2)

Note finally, that by definition of D;W(X k—1, Uk, Z) in the previous expansion (4.2):

VP (Xi—1,Up) = o(Xi) —o(Xp—1) =M Ap(Xp—1) — AL (Xi—1, Z1)

—(D5f (Xp1) + Dy &(Xio1)+ DY P (Xp—1, Uy, Zi))

= o(Xp—1+7bk—1+vV60k-1Uk) + o (Xi—1+ K—12k) = YeAL(Xi—1) —20(Xk—1)
—AL(Xk-1, Zk) — (D5f (Xp-1) + DYE(Xi1)),

hence after differentiating, we see that u — 97 (Xj_1,u) and hence u — AY(Xj_1,u) are Lipschitz
continuous with a modulus bounded by /7k—1||ok—1]|[|V@lloo < v/Ae—1|0]|00l| V&l co-

Moreover, from the definition E[AY(X;_1,Uy)|Fr—1] = 0 and using the definition of Z,, we get
(4.3) E[AY(Xp_1, Zy)| Fra] =
E[o(Xp-1 + Kr-1Zk) — o(Xp—1)| Fr1] — & /RT [o(Xi—1 + Kr—1y) — @(Xp—1)]7(dy) = 0.
O

Proof of Lemma 2. We first prove the point ii).
For all € € (0,1) and 0 < FAH < < (p(r) set in (1.9)), thanks to Proposition 1, we

6[An(Xn—1,)]1p(r)
have for all n € N:

E [exp <—If\£5(xn_1, Zn)> ‘]—"n_l]

2

A~ A
(4.4) < exp <—FE[Af(Xn1, Zn)\Fn1] + Mgy [A7 (Xn-1, F(+r+ 5)) :
n

n
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By definition of Ay (X,—1,Zy) in (2.1), and from (4.3) we have:

A~ ~
E[F—Aﬁ(Xn_l,Zn)\fn_l] =0, and [AY(Xn-1,)]} < [|5[5]IVe ]2

The previous control with (4.4) directly yield:
2

A~ n\
(4.5) E [exp <FA,f(Xn_1,Zn)) ‘]—"n_l] < exp (éfz 612 VellZ (1 + 7+ €)> )

with the constraint 0 < % < m.

The demonstration of the point i), is a direct consequence of the previous analysis without using
Proposition 1, which yields no restriction on A. ]

Proof of Lemma 3. By assumption (Tg), we know that there exists Cy,, > 0 such that for all
zeRY p(x)| < Cvp(1+ m), so we obtain:

AP(Xo) — (X))
ry

Cyp(2 4/ V(Xo) + JV(Xn))>
T,

Eexp (2CV,¢AV(XTL))] ’

Eexp( ) SEexp(A

E exp (QCVMAi"V(XO)) ’

A
< exp (20‘/’@?) T

The last inequality is obtained by Jensen’s inequality for FA < 25“; and by Proposition 2. O
n .

Proof of Lemma 4. From the definition (2.2) we can write:

1
DY = %/ (Vo(Xk—1 + tybk—1) — Vo (Xp_1), bp_1)dt
0

1
= Tk {/ (Vo(Xi—1 + tyebe—1), bg—1 — b(Xk—1 + tyrbr—1))dt
0
1
+/ ((Ve,b)(Xk—1 + tkbe—1) — (Vip,b) (Xk_l))dt}.
0

From the boundedness of V¢, Lipschitz property of the mapping = — b(x) (assumption (Cp)) and
Lipschitz property of the mapping z — (Ve(z),b(x)) (assumption (Tj3)), using the assumption
(Lv), ii) one derives that:

by.—
(1.6 10551 < R (19l + (9,801 ) 21 < 0o,

for Clag) = (| Velloo bl + [(Vip, 5)]1) Y5¥. Hence

D3}l < Z Crasy v/ Va—1-

k=1
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Next, by the Jensen inequality (for the exponential function with ﬁ > k1 V20K as a measure),
we deduce that: !

n—1

1 « A
EeXP( |D2bn) ) Z kE[eXP< )FC(ZL.G)\/ Vk—l)]
Iy k= n
1 n—1 0(4,6)AF$L2)
cy'n
T Z [GXP (CV\/ qu)} v :
Iy k=1
A < cy 2cy .. . .. .
for ¢ < 0(4‘6)11%2) E RN e e < 1, and cy is introduced in Proposition 2 which
readily yields:
— (2) (2)
1 2 L 1/2 Ca.6)AT'n 1/2 Cl4.6)AT'n
EeXp < |D2bn|) S m nyi(IV/ ) cyn e (IV/ ) cy'n
n o k=1

For the second inequality, we first use a Taylor expansion:

(4.7) D3| = %)TI((DQSO(Xk—l + Yebr—1) — DQ(P(Xk—l))Ek—l))‘
1 1 1
< §||U||c2>o||D3%0||oo%%\bk—1| < §HU||30||D390||oo\/ CyilVi1l2
So

1 " 1
D5l < iHUHgoHD?)SOHOO\/ Cy Z’Y}%Wk—ﬂQ-
k=1

Hence, like previously, by Jensen inequality and Proposition 2 for £ T < o HD35ﬁL 1‘(2)

we obtain

Eexp( |D22n|) < Eexp(

llol% D% elloe/C va 1)

1 & AT ,
5 2B (S0l D% loe vy Vi)

<
-
AL 12, 1D3 ¢l oo /Ty,
1/2,—= =
< (IV ) 2evin

g

Proof of Lemma 5. The proof is similar to the analysis of Lemma 3 in [HMP18]. By the definition
(2.1), and because Uy, k € [1,n], has the same moments as the standard Gaussian random variable
up to order three (see (GM)) we have for all k € [1,n]:

1

E [f (Xk—1, Up)| Fr—1] = ’Yk/o(l —t)Tr (E [D*o(Xk—1 + Vebr—1 + ty/Wkok—1Ur)ok—1Ux ® Uroj_y

—D*o(Xp—1 + Yibr—1)Sp—1]Fr—1] ) dt,
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where

E[TI‘(DQQO(Xk_l + Yebp—1 + t/AROk—1Uk) 0k 1Up @ Upoi_ 1 —D*p(Xp_1 + 'kak—l)zk—l) ‘]:k—l}

1
= t\/%/ E[TY<([D380(X1€—1 + Yebk—1 + uty/Akok-1Uk) — D3o(Xi—1 + Wbr—1)]ok—1Uk)
0

(Uk—lUk & Uk0271)> ‘Fk,11| du.
Then,

1 148 1
E [0f (Xg—1, Ug)|Fr—1]| < %/ (1 — )" P[P E |, 2 ||0k—1||3+B|Uk|3+ﬂ/ UﬂdU‘fk—l}dt
0 0

348
@572 llok—1]**E [[Ux[*+]
(1+8)(2+B)3+8)

(4.8)
We sum over k to get the result. O

Proof of Lemma 6. Recall that we have denoted for n € Ny, F, = a'(XO,(Uj,Zj)je[[Ln]]) and
ﬁn:fn\/a(Un—&-l)

(4.9) E[exp (FAZD?’W(XICA,Uk;Zk))}
" k=1
A n—1 - A . B
_ E[exp (F > D} P (X1, U, Zk,))IE[eXp (f7- D5 (X1, Un, Z0) ‘f,HH.

The idea is to control the last conditional expectation using Proposition 2. Recall that
Dfn(anly Una Zn) = (P(anl + ’annfl + v/ 'YnanflUn + KlanZn) - @(anl + 'annfl + 'Yna'nflUn)
- [@(Xn—l + /in—IZn) - (P(Xn—l)} .
Moreover, we have for all z € R":
‘szfn(Xn—ly Un> Z)’

= ‘/ﬁ;_l(v@(anl + 'annfl + v/ 'Yno'nflUn + K‘nflz) - V@(anl + ’{nflz))’ < 2||’{||OO||VSOHOO
(4.10)

Hence for all X,,_4, U, fixed the function z — DZ’;D(XH_L Un, z) is Lipschitz continuous satisfying

[DQ‘O (Xn—1,Un, 2)]1 < 2||6[loc [Vl oo-

.]7”

This estimation is used to bound A for which we can apply the Proposition 1. However, we need a
more subtle control of the last Lipschitz modulus. Namely, using Taylor expansion we can write

(4.11)
\VZD}‘jn(Xn_l, Un,2)| < ’/i;_l(vg()(Xn_l + Ynbn—1 + kn-12) — Vop(Xp_1 + Hn_lz))\
+ |55 1 (Vo(Xno1 + Yabne1 + VAnOn-1Un + n—12) = Vo(Xn_1 + bn_1 + Kn_12))]
< ||'f||oo(\/§HVSO||§o!V90(Xn—1+7nbn—1+f€n—12)—V@(Xn—1+f€n—12)|%+\/7n||D2<P||oo||UHoo|Un|)
< \/77||ff||oo(\@CéHVsOHéoHD%DHéoVi(Xn—l) + [1D?¢loollo |0l Unl).
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Now for all A satisying 0 < T, < DR=Velepi) We get
A ~
(412) E [exp (FD_;O,R(XTL_17 Un, Zn)> ’Fn_1:|
n
A [} T /VTLAQ ® 2
< exp (F—nE[Dm(Xn_l, Un Za)lFact] + S (L4 7+ )LD (X1, U .)]1)

Tah’
21?2

A -
< exp (F’ynE[Dfn(Xn_l, Unyyn)‘]:n—l] + (Clﬁ(Xn_l) + C2|Un|2>>,

where we have denoted
Cr = (L+7+&) 834V OV [ Vel D*¢lloo,  Co:=2(1 47 +e)|[w]% D%l % o112
and used the following identities:
Dﬁn(anla Una 0) = 07
and

E[D?

j,n(anl’ Un, Zn)|j—jn71] = WHE[Dﬁn(anla Un, Yn)’fnfl]a

which is a consequence of the definition of Z,, in (1.1). To control E[Dﬁn(Xn,l, Uy, Yn)|j’-:n,1] we
introduce for all (z,y) € (R%)? the function:
P, y) == Elp(z + r(y)Yn)] — o(z),
which readily implies that:
E[Dfn(Xn—lv Una Yn)|ﬁn—1] = @(Xn—l + ’ann—l + vV ’Yna'n—lUna Xn—l) - @(Xn—la Xn—1)~

The idea in the following is to apply the expansion of Lemma 1 with x = 0 to the function

x — @(x,y) , which also corresponds to the expansion of Lemma 1 in [HMP18] for diffusion without

jumps. If K = 0, then X,, = X, 1 +7nbn—1++/1n0n-1Un, we can write using (2.3) and the definition
(2.1) of AY with M = D?, =0:

@(Xnv Xn—l) - @(Xn—la Xn—l) = 7n~/z(¢(Xn—1) + ng’n(Xn—l) + Dgc’iz’n(Xn—l) + wf(Xn—lv Un)
(4.13)

All the terms in the right have obviously the same properties as the corresponding terms in the
similar expansion of ¢ given by Lemma 1 with x = 0. In particular, for all y € R?, the map @(-,%)
is Lipschitz continuous with

414) Vo9l <2IVelloos  1ID*3(9)lloo < 2(1D%@lloc,  1ID°3(:9)lloo < 2/ D%l|oo-

Furthermore, DY b and DY, satisfy similar inequalities as (4.6) and (4.7) where ¢ is replaced by
@. We directly have thanks to the definitions (1.5), (2.2), identities (4.6), (4.7) and (4.14):

~ B 1 sy
Yl AP(Xn-1)] = Yn|(bn-1, V@(Xn_1)) + iTT (UO’ D2<p(Xn_1)) |
< MmVOVV(Xn ) IVellso + 10121 D*Pllos) < mCsVV (Xno1),
_ 1
’ng,n(Xn—lﬂ = 7n| / <v¢(Xn—1 + t’)/nbn—l) - V@(Xn_l), bn—1>dt|
0

b
< 2198 lelth + (901 ) Pt < 420000V (),
|D§E,n(Xn—1)| = |’y27nTr((D2¢(Xn—1 + 'ann—l) - D2@(Xn—1))2n—1)‘

1
< MlolZ I D@l CEVV (Xno1),
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where C3 := 2v/Cy ||Vl + HJ||§O||D2¢||OO(U*)*%. Therefore, from the previous controls and using
(4.12) and (4.13), we get that there is a constant C' = C((A)) > 0 such that:

A
E [exp <1_‘D;fn(Xn_1, Un, Zn)>

-/%n—lj|

2
(4.15) < exp (%% (M VV (Xno1) + 45 (X1, Un)) + %%%(\/V(Xn—l) + \UnIQ))-

Next, the idea is to separate the unbounded contribution from the terms involving (v/V (X)) kel,n]>
(1UL|?) ke[1,n] by a global Cauchy-Schwarz inequality:

A n
E [eXP <F ZDf’w(Xk—la Uk,Zk)>
" k=1

20 & 20
<E [eXP <F > [Df’¢(Xk—1,Uk, Zi) = Cr(1+ = IWVV (Xp) —

r
noa n

[\]
1Q
-
RIS
=
T
—_
N——
—_
N[

A 2A2 2C A2 3 11
(4.16) xE[exp (22 [C'yk <F + T2 )\/V(Xk_l) & R D}z = T2 x Y2,

Again by the Cauchy-Schwarz inequality, we get :

+21f\22)zn:7,3\ﬁV(Xk—1))}i {GXP< T2 Z’Wf’ Ul )}
nok=1

nok=1

1/2 _ A
417) T} _E[exp <4C(Fn

2.2
We control the second expected value under condition 4011}2 L < 1 using Jensen inequality:
(4.18)

o _ 160A2r(?)

el (155 > tnf)] " < 3= ZEnfesn (X4 )] < B (140

nok=1

Because U satisfies (GC), E [exp(|U1| )] < +o00. We handle the first expectation in (4.17) by the

2
same method, using Jensen inequality under condition 2 T, < —cv A

cy oy
20r@° T < Toor® and Proposition 2

and we obtain:

lew (10 (2 + 25) Sapvion-)]|

n

1 & A 2A2 i
22 2 4
< 7(1 kz [exp (4CTn (Fn + T2 )\/V(Xk—l)ﬂ
2
(4.19) < (1‘1//2) F%Q)(CVAFnJFciAr%).

Gathering (4.17), (4.18) and (4.19), \ﬁ> — 0, we deduce that:

(4.20) T;ﬂ < exp (( + A2)€n>.
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The first term in (4.16), Ty, is handled by identity (4.15).

11 < B exp (ot (Xa1,03)
1

9A "= 2A 2CA?
T > DV (Xp1, U, Zi) — Cp(1+ F)W(X’“—l) I2 Vz‘Ukﬂ)]
" k=1 " "
2A 5
= E[E[exp (F’anﬁ(Xn*L Un)‘]:n71:|

27 L 2A 20A2
X exp (*Z [D;?’@(kal,Uk,Zk) C”y (1+F7)\/‘7(Xk71) — ’)/]3|Uk|2]>}

k=
o) oA 3+ﬁ 2 o 3+5 ‘U ’3+5 4A
( 71+ 5H H E[|U; ] 5 3ol IVell%
T T+8)2+AB+E) 12

2A 2 2A C2A?
[exp (7 Z "P Xk 1,Uk,Zk) C’}/]%(l + F)W(Xk_l) F2 '7k|Uk:| ]>:|

The last inequality is a consequence of the bound (4.8) in the proof of Lemma 5 and the Lipschitz
modulus control of vy, (Xn—1,-) in Lemma 1. Hence, we iterate this procedure and with some
positive constants C7, Cy not depending on A neither n but only on the assumptions we get :

~ (M) ~ (3)
C1 ATy, 2 +02A2rn> . ( A +A2>e
= €X T T~ JEn ]
PUNVE. T T,

T, 2
( )
where, using F — 0 for 0 > 3 Eventually, inequalities (4.20) and (4.21) yields that:

(4.21) Ty < exp (

n

[exp Z ‘(Xk—1, Ug, Zk))} < exp ((\/% + i}j)en) .

" k=

5. NUMERICAL RESULTS

This section is a numerical illustration of the deviations results of the empirical measure v,, from
Theorem 2. We consider the mono-dimensional case, d = r = 1. The innovations (U;);>1 and
Xo are Gaussian variables. Also, a difficulty is to approximate the jump part of generator A,
namely 7(p(x + k(z)-) — ¢(x)) for x € R. To avoid this problem, we choose (Y})r>0 to be Bernoulli
variables, hence we directly get m(¢(z + k(2)) — ¢(2)) = 2 (p(z + k(2)) + p(z — k() — p(z). We
consider for the coefficients and the test function b(z) = —§, and o(z) = k(z) = ¢(r) = cos(x) in
(E). Note, in particular, that we have picked a degenerate framework. Thanks to Theorem 2, for

(Vi)r>1 = (k™) r>1, 0 € [1/3,1] (corresponding to 3 = 1 therein) the function

a € R" — gy(a) := log (P[|\/Tnn(Ap)| > a])

is such that for
a2
2[lo]13IVellZ, + 4llkl12 I VellZ

In Figure 1, we plot the the curves of g, for § = %+ 10~3 We perform the simulations for n = 5 x 10*
in Figure 1, the probability is estimated by Monte Carlo simulation with MC = 10* realizations of

gn(a) < —cn + log(2C},).
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the random variable |\/I',v,(Agp)| in the unbiased case. Let us also introduce the function

(12

2ol NIVelZ + 4llx1ZIVellZ,
such that gn(a) < ¢,S,(a) + log(2C,,).

Sy(a) ==

-0.5

-1.5

-2.5

-3.5

-45

0 0.2 0.4 0.6 0.8 1 1.2 1.4

FIGURE 1. Plot of a — gy(a), for § = %, with (z) = o(z) = cos().

26

The Figure 1 enhance the fact that g,(a) is indeed under a quadratic form in a. Nevertheless,
we see s that the result of Theorem 2 is not sharp, to obtain such a result we have to avoid the

dimension dependency and a sharp inequality of Proposition 1.
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