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Photonic topological insulator plates violate Lorentz reciprocity, which leads to a directionality of surface-
guided modes. This in-plane directionality can be imprinted via an applied magnetic field. On the basis of
macroscopic quantum electrodynamics in nonreciprocal media, we show that two photonic topological insulator
surfaces are subject to a tunable, magnetic-field-dependent Casimir torque. Due to the directionality, this torque
exhibits a unique 2π periodicity, in contradistinction to the Casimir torques encountered for reciprocal uniaxial
birefringent media or corrugated surfaces which are π periodic. Remarkably, the torque direction and strength
can be externally driven in situ by simply applying a magnetic field on the system, and we show that this
can be exploited to induce a control of the rotation of small objects. Our predictions are relevant for nano-
optomechanical experiments and devices.

DOI: 10.1103/PhysRevB.98.144101

I. INTRODUCTION

The Casimir force was originally proposed as an attractive
force between two perfectly conducting plates due to a re-
duced virtual photon pressure in the space between the plates
[1,2]. Subsequently, the Casimir force for objects consisting
of anisotropic materials or possessing anisotropic surfaces
like birefringent plates [3], magnetodielectric metamaterials
[4], and corrugated metals [5] was studied. Since all those
materials have a distinguishable axis in the plane of the plates,
it is natural to ask whether the Casimir energy depends on
the relative angle between the two axes when bringing two
anisotropic surfaces together. It turns out that, indeed, one
obtains a Casimir torque [3,5–9]. There have been successful
measurements of the lateral Casimir force, which is closely re-
lated to the Casimir torque [10–14]. More recently, there also
have been several promising proposals for experiments with
the goal to measure the Casimir torque between birefringent
materials [15–17].

A material which is able to break rotational symmetry and
which is of great interest at the moment is the topological
insulator (TI) [18]. Topological insulators behave like regular
insulators in their bulk but possess conducting surface states.
Originally proposed for electronic states, it was shown more
recently that they also exist in so-called photonic topological
insulators (PTIs) [19–22] such as magnetized plasma [23–
25]. One of the most striking features of TIs is that there
exist unidirectional waves on the surfaces of these materials
which turn out to be immune to backscattering [26,27]. Due
to this directionality of the edge states PTIs not only have
a distinguishable axis like, e.g., birefringent materials, but
their axes also possess a distinguished direction. This feature
has been of great interest and was used to construct de-
vices like directional wave guides [27], optical isolators, and
circulators.

Now the natural question arises regarding what quantum
optical effects emerge when exploiting the directionality or
nonreciprocity in PTIs. This question has been addressed by
previous authors before: they studied the influence of the
presence of a PTI on the entanglement of a two-level system
[28]. In Refs. [29–31] the normal and lateral Casimir-Polder
force acting on an atom close to a vacuum/PTI interface
was analyzed; a huge anisotropic thermal magnetoresistance
was obtained in the near-field radiative heat transfer between
two spherical particles consisting of a PTI in Ref. [32]. A
persistent unidirectional heat current was found between three
objects at thermal equilibrium [33,34]; also the Casimir force
has been studied for two infinite half-spaces consisting of PTIs
in Ref. [35]. All those works showed that there exist interest-
ing new features in quantum optics arising from the interplay
of the quantized electromagnetic field with PTIs. However, the
unidirectional features of PTIs have not yet been seen to man-
ifest in Casimir torques between two macroscopic objects.

II. CASIMIR TORQUE

In this paper, we want to show how the unidirectionality and
nonreciprocity of PTI plates manifest in the Casimir force and
torque. To this end, we will show in the following that, in
addition to a normal component of the Casimir force, there
exists a non-negligible Casimir torque whose magnitude and
direction are tunable by the external magnetic fields. Fur-
thermore, due to the directionality of the topological surface
states, we find that this torque is 2π periodic with respect to
the relative angle between the two bias magnetic fields, in
sharp contrast to the π periodicity occurring for reciprocal
bianisotropic media. We also discuss how the tunability of the
Casimir torque can be exploited in nanomechanical schemes
to induce rotation.
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FIG. 1. In (a) we show the setup under the consideration consist-
ing of two semi-infinite half-spaces filled with a PTI. Additionally,
in each half-space there is an applied external magnetic field B+ and
B−. The fields are in the xy plane and are parametrized by the angles
�+ and �− between B+ and B− and the x axis, respectively. In (b)
we plot the dimensionless Hamaker constant H as a function of ��

for different values of B = 1, 2, 3, 4, 5 T (dots, squares, diamonds,
triangles, and upside-down triangles, respectively). In (c) we again
use the ε tensor in Eq. (1) with the only exception being that we
set εyz = 0 to obtain a description of a normal anisotropic medium
(B = 5 T). The Casimir torque T (��) is plotted in (d) for different
magnetic fields, where the same shapes correspond to the same
values of B as in (b). Additionally, we plot the Casimir torque for
the material model in (c) (dotted line) and for a setup where the two
PTI half-spaces are replaced by one barium titanate and one quartz
half-space (dashed line). In (b) and (c) we use L = 100 nm.

A. Setup

We study a setup consisting of two semi-infinite half-
spaces separated by a vacuum with separation L and filled
with PTIs where a bias magnetic field is applied to each half-
space [see Fig. 1(a)]. The PTI is implemented by a magnetized
plasma with an applied bias magnetic field B as an example
of a gyrotropic material which is described by a permittivity

tensor of the form [36]

ε =
⎛⎝εxx 0 0

0 εzz εyz

0 −εyz εzz

⎞⎠,

εyz(ω) = iωcω
2
p

ω
[
ω2

c − (ω + iγ )2
] ,

(1)

εzz(ω) = 1 + ω2
L − ω2

T

−i�ω + ω2
T − ω2

+ ω2
p(ω + iγ )

ω
[
ω2

c − (ω + iγ )2
] ,

εxx (ω) = 1 + ω2
L − ω2

T

−i�ω + ω2
T − ω2

− ω2
p

ω(ω + iγ )

if B points in the x direction. This is easily generalized for
arbitrary directions of the magnetic field by simply rotating
ε. The plasma and cyclotron frequencies are given by ωp =√

nq2
e /(m�ε0) and ωc = Bqe/m�, respectively, where qe is

the electron charge, m� is its reduced mass, n is the free-
electron density, and γ is the free-carrier damping constant.
Furthermore, � represents the phonon damping constant, and
ωL and ωT are the longitudinal and transverse optic-phonon
frequencies, respectively. Throughout this paper we will use
the following values for the material constants of InSb which
have been measured in Ref. [36]: ωL = 3.62 × 1013 rad/s,
ωT = 3.39 × 1013 rad/s, � = 5.65 × 1011 rad/s, γ = 3.39 ×
1012 rad/s, n = 1.07 × 1017 cm−3, m� = 0.022me, where me

is the electron mass. Although we choose a specific PTI model
here, our findings are general and can be applied to other
specific PTI realizations.

B. Basic formulas

We first have to derive a general expression for the Casimir
torque T of our system which is usually obtained from the
Casimir energy E of the system. To build on previous results
we use the intermediate result in Eq. (18) of Ref. [35] as
obtained using macroscopic QED in nonreciprocal media
[37]:

F = − h̄

2π

∫ ∞

0
dξ

∫
∂V

dA
{

2ξ 2

c2
S [G(1)(r, r′, iξ )] + 2∇ × S [G(1)(r, r′, iξ )] × ←−∇ ′

−Tr

[
ξ 2

c2
G(1)

(
r, r′, iξ

) + ∇ × G(1)
(
r, r′, iξ

) × ←−∇ ′
]

I
}

r′→r
. (2)

Here we have introduced the symmetrization S of
a tensor defined by S [G(r, r′, ω)] = (1/2)[G(r, r′, ω) +
GT(r′, r, ω)]. Furthermore, ξ = −iω, where ω is the fre-
quency of the electromagnetic wave, I is the unit tensor, ∂V

is any infinite planar surface in the vacuum gap between the
two planar bodies, dA is its surface element, and r and r′ are
arbitrary points on the surface of body 1. Most importantly,
G(1)(r, r′, iξ ) is the scattering Green’s tensor [38] of our
setup. It can be expressed using the reflection coefficients of
the vacuum/PTI interfaces calculated in Appendix A and the
different components of the wave vector k = (k‖,T , kz = iκ )T

satisfying k2 = −ξ 2/c2, where c is the speed of light in vac-
uum. The full expression of G(1)(r, r′, iξ ) and its derivation
can be found in Appendix A.

Using these results, we find first of all, as expected, that
there is no lateral force in the ground state of the system,
and thus the x and y components of F are zero. Furthermore,
in Appendix B we find a general expression for the normal
component of F per unit area A which we define as f ≡ Fz/A,
where Fz is the z component of F. This result is not shown
here since we are interested only in the near-field behavior
of our system. Thus we want to analyze f further under
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the assumption ξ/c 	 k‖, which is often referred to as the
nonretarded limit and becomes valid for small separations
L 	 c/ωch, where ωch is the highest characteristic frequency
of the permittivity tensor (compare Ref. [38]). To estimate
the value of ωch for our specific material model in Eq. (1)
we take a closer look at the monotonically decreasing func-
tion χij (iξ )/[χij (iξ ) + 2], with χij (iξ ) = εij (iξ ) − δij . The
condition

χij (iωch)

χij (iωch) + 2
= 1

2
(3)

gives a good estimate of the characteristic frequency ωch.
Neglecting absorption effects and phonon contributions. one
obtains from Eq. (3)

ij = xx, zz ⇒ ωch � ωp√
2
, (4)

ij = yz ⇒ ωch � 3
√

ωpωc, (5)

where we also assumed ωc 	 ωp, which is true for magnetic
fields B of the order of a few teslas. Therefore we conclude
that the nonretarded limit approximation is valid for distances
L 	 c

√
2/ωp = 3.4 μm. Note, however, that this estimation

for the validity of the nonretarded limit approximation is true
only for our specific material model as given in Eq. (1), which
includes only two medium resonances.

Under this assumption the reflection coefficients simplify
significantly to r±

s,s � r±
s,p � r±

s,p � 0 and

r±
pp(ω) � −2 + D ∓ 2iεyz sin(�± − ϕ)

2 + D ∓ 2iεyz sin(�± − ϕ)
,

D =
√

2εzz{εzz + εxx + (εxx − εzz) cos [2(�± − ϕ)]}.
(6)

Here ϕ is defined by k‖ = k‖( sin(ϕ), cos(ϕ))T, with k‖ ≡
|k‖| [compare Fig. 1(a)], and the ± symbol indicates the
reflection at the lower and upper half-spaces, respectively.
Note that this reflection coefficient is not real even when
evaluated at imaginary frequencies ω = iξ due to the terms
proportional to εyz. But since this term also flips sign under
k‖ → −k‖, the Schwarz reflection principle G(1)(r, r′, iξ ) =
G(1)�(r, r′, iξ ) is obeyed, which, according to [39], implies
r�

pp(k‖, iξ ) = rpp(−k‖, iξ ). Thus it is ensured that the Green’s
tensor and therefore the Casimir force are real.

Finally, using the previous result of the reflection coeffi-
cients in the nonretarded limit, f simplifies to

f = − h̄

16π3L3

∫ ∞

0
dξ

∫ 2π

0
dϕ Li3[r+

pp(iξ )r−
pp(iξ )], (7)

where Li3 is the polylogarithm of order 3. As in the reciprocal
case [38] and for a magnetized plasma with a bias magnetic
field perpendicular to the interface [35], we find a simple
f ∝ 1/L3 behavior in the nonretarded limit. Therefore we
can easily calculate the Casimir energy E per unit area in
the nonretarded limit from Eq. (B19) by integrating f with
respect to L and eventually find E = Lf/2. From this result
we can now calculate the Casimir torque T = −∂E/(∂��),
where �� = �− − �+.

III. RESULTS AND DISCUSSION

Next, we want to analyze our previous results for the
Casimir force, energy, and torque. To this end, in Fig. 1(b), we
display the dimensionless Hamaker constant defined by H ≡∫ ∞

0 (dξ/ωp )
∫ 2π

0 dϕLi3[r+
ppr

−
pp] at a fixed gap distance L =

100 nm. Note that one can easily retrieve f, E, and T from H

via f = −ωph̄H/16π3L3, E = −ωph̄H/32π3L2, and T =
(ωph̄/32π3L2)∂H/(∂��). Before discussing the qualitative
features of these results let us discuss the magnitude of the
torque. As depicted in Fig. 1(d), the Casimir torque at zero
temperature for two semi-infinite PTI half-spaces reaches the
same order of magnitude as the one for quartz or calcite
half-spaces kept parallel to a barium titanate half-space. Those
examples for birefringent plates were studied in Ref. [15], and
we have used the same model for the permittivity, including
the same values for the constants measured in Ref. [40] to
reproduce these results. More concretely, this means that the
torque for the PTI setup reaches a maximal torque of about
67 pN/m with B = 5 T, whereas the quartz (calcite)–barium
titanate setup reaches 22 pN/m (317 pN/m). Nevertheless,
the Casimir torque between two corrugated metals is three
orders of magnitude larger [5]. Note that these torques are
all periodic under a rotation of π of one of the plates around
its normal component since their distinguished axes are not
directional. On the contrary, we see in Fig. 1(b) that H (��)
is 2π periodic with a maximum (minimum) when the two
magnetic fields B± point in the same (opposite) direction.
This result is therefore qualitatively different from the ones
observed when dealing with birefringent half-spaces with one
in-plane optical anisotropy [15] [compare the dashed line in
Fig. 1(d)] or corrugated metals [5]. Heuristically, this new
periodicity can be explained by the fact that not only does our
material model have a distinguished axis, but this axis also has
a direction.

The angle dependence of the Casimir energy can be under-
stood in more detail by studying the contributions of different
surface-plasmon polaritons (SPPs) which dominate in the
nonretarded limit [41]. To this end, we take a closer look at
the spectral decomposition of the Casimir energy evaluated
at real frequencies H̃ (ω) ≡ ∫ 2π

0 dϕ Im{Li3[r+
pp(ω)r−

pp(ω)]},
which allows us to see which surface modes contribute the
most to the Casimir energy. The total Casimir energy is
simply the integral over this spectral energy density, H =∫ ∞

0 (dω/ωp )H̃ (ω), and therefore E, f ∝ ∫ ∞
0 dω H̃ (ω), as

can be seen from contour-integral techniques.
The central ingredient to the spectral Casimir energy den-

sity is the SPPs of the individual plates, which are resonances
of the respective reflection coefficients r+

pp(ω) and r−
pp(ω).

The frequencies of the SPPs are easily found by setting the
denominators in the reflection coefficients (6) to zero, which
upon using Eq. (1) and neglecting the photon contribution
leads to the dispersion relations

�±(�± − ϕ) = 1
4

{√
6ω2

c + 8ω2
p + 2ω2

c cos[2(�± − ϕ)]

± 2ωc sin[�± − ϕ]
}

(8)

in the lossless limit, as also found in Ref. [29]. The single-
plate SPPs are illustrated by the dotted and dashed lines in
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FIG. 2. Contributions of surface-plasmon polaritons (SPPs) to
the Casimir energy. (a)–(c) Single-plate SPPs Re[r±

pp(ω)] (dotted
lines) and Im[r±

pp(ω)] (dashed lines) and angle-resolved spectral
energy density H̃ (ω, ϕ) (solid lines) with �+ − ϕ = π/2 and �� =
0, π/2, π , respectively. Re[r+

pp(ω)] and Im[r+
pp(ω)] correspond to the

curves with the resonance at higher frequencies, whereas Re[r−
pp(ω)]

and Im[r−
pp(ω)] correspond to the ones with a lower resonance fre-

quency (�+ > �− in this case); the two single-plate SPP frequencies
�±(�± − ϕ) as given by Eq. (8) are indicated as vertical lines. (d)
Total spectral energy density H̃ (ω) with �� = 0, π/4, π/2, π (dots,
triangles, diamonds, and squares, respectively). For all plots we have
used B = 3 T.

Figs. 2(a)–2(c) for selected combinations of magnetic field
and wave vector directions. In particular, we see that the SPP
frequencies of the two plates coincide in the special case
�� = π [Fig. 2(c)].

When the two plates are brought in close proximity, as
is the case in the nonretarded limit considered, the single-
plate SPPs combine to form symmetric and antisymmetric
coupled SPPs [41]. Mathematically, this can be seen from
the Casimir spectral energy density. Using Li3[z] ≈ ζ (3) z for
z 	 1, where ζ is the Riemann zeta function, we find H̃ (ω) ≈
ζ (3){Im[r+

pp(ω)]Re[r−
pp(ω)] + Im[r−

pp(ω)]Re[r+
pp(ω)]}. We can

clearly see how H (ω, ϕ) is built up from the products
Im[r±

pp(ω)]Re[r∓
pp(ω)] in Figs. 2(a)–2(c). As illustrated by the

solid lines in Figs. 2(a)–2(c), the symmetric coupled SPPs
give the dominant positive contribution to the Casimir energy
(left peak), while the antisymmetric coupled SPPs give a
smaller negative contribution (right dip). As further seen in
the figures, the difference between the positive and negative
contributions is quite pronounced for �� = 0 [Fig. 2(a)],
leading to a large net Casimir energy. The splitting is reduced
for larger angles [Fig. 2(b)] until, eventually, the single-plate
SPPs coincide for �� = π and the two coupled SPPs become
very close in frequency and similar in magnitude. For this
case, we have a smaller Casimir energy.

Our observations remain valid for general combinations
of magnetic field and wave vector directions and thus also
when integrating over all wave vector directions ϕ ∈ [0, 2π ]
to obtain the total spectral energy density H̃ (ω). As seen
from Fig. 2(d), this energy density has quite a complex profile
as it is the sum over contributions from many SPPs with
different resonant frequencies. Nevertheless, we again find

that positive and negative contributions are the most different
in magnitude for �� = 0 (dots), leading to a large total
Casimir energy. As the angle difference increases towards
�� = π (squares), the positive and negative contributions be-
come more similar in magnitude, and the total Casimir energy
decreases.

IV. APPLICATION

The advantage of having an in situ tunability of the torque
can be exploited for nanomechanical schemes. For instance,
we consider a setup of two nanodisks as depicted in Fig. 3(a).
This system is an example of a new mechanism (compare
Ref. [47]) to generate a motor with small moving parts. As
shown, the relative angle between the two applied magnetic
fields is given by ��(t ) = �−(t ) − θ (t ). The dependence of
the torque T on the relative angle between the applied mag-
netic fields is well approximated by T (��) ∼= T0 sin(��)
[compare Fig. 1(d)], where T0 = 67 pN/m if B+ = B− = 5 T.
Thus the equation of motion for the rotation of the upper disk
neglecting finite-size effects, retardation, and friction is given
by

d2θ

dt2
= 2T0

lr2ρInSb
sin[�−(t ) − θ (t )]. (9)

The result of the numerical solution of Eq. (9) can be found
in Fig. 3(b). As we can see, if we let the tunable magnetic
field B− rotate with an angular velocity of up to 0.75 rad/s,
the upper plate will follow the direction of B− and start to
rotate with the same angular velocity of almost one full 2π

rotation per second. If B− rotates faster than 0.75 rad/s, the

0 5 10 15 20 25 30
0

4

8

12

16

20

24

t/s

(t)

�b��a�

FIG. 3. (a) Scheme for inducing rotation via Casimir torques.
As shown, there are two disks with the same size as considered in
Ref. [16], namely, with radius r = 20 μm and thickness d = 20 μm
consisting of InSb, which has a mass density of ρInSb = 5.59 g/cm3

[42]. They are held at a distance of L = 100 nm from each other so
that the nonretarded limit assumption and the assumption of having
two semi-infinite half-spaces apply for the idealized medium re-
sponse assumed. Furthermore, B+ is a static magnetic field which is
attached to the disk, i.e., via magnetic coating [43–46]. Thus its angle
with the x axis �+ only changes if the whole disk rotates and the
rotation of the upper disk is described by the angle θ (t ) ≡ �+(t ). In
the lower disk there is a magnetic field B− whose direction described
by the angle �−(t ) may change over time, although the plate is fixed.
In (b) we show the numerical solution to Eq. (9) with B+ = B− =
5 T for the cases �−(t ) = 0.75πt, 0.4πt, 0.1πt, 2πt, 0 (dot, square,
diamond, triangle, and upside-down triangle, respectively) with solid
lines. Additionally, we plot �−(t ) = 0.75πt, 0.4πt, 0.1πt, 2πt, 0
(also indicated by the dot, square, diamond, triangle, and upside-
down triangle, respectively) describing the rotation of B− with dot-
dashed lines.
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upper disk cannot follow the direction of B−, and therefore
it barely rotates (triangle). Here r and l are the radius of the
upper disk and its thickness, respectively.

V. SUMMARY

To summarize, we have found a Casimir torque between
topological-insulator plates whose direction and magnitude
are tunable by an external bias magnetic field. We have further
shown that in the nonretarded limit this torque is dominated
by SPPs which are directional, and therefore it is symmetric
only under a rotation of 2π of one of the plates around its
normal component. This unique periodicity, in contrast to the
typical π periodicity for ordinary birefringent media, is a clear
signature of nonreciprocity. We have shown how the tunability
of the torque between two InSb disks can be exploited to set
one of the disks into rotation, which offers new possibilities
for measurements and nanomechanical applications of the
Casimir torque on small objects.
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APPENDIX A: GREEN’S TENSOR FOR TWO
SEMI-INFINITE HALF-SPACES OF PTI

In this appendix, we derive an expression for the Casimir
force between two half-spaces filled with photonic topological
materials separated by vacuum and with distinct in-plane bias
magnetic fields in each of the half-spaces [see Fig. 1(a)].
To this end, we first calculate the Green’s tensor for this
setup here as the essential ingredient for the Casimir force
calculated in Appendix B.

The following derivation of the Green’s tensor
G(1)(r, r ′, ω) is very similar to the ones given in Refs. [4,35].
As a starting point we can use the intermediate result of
Ref. [35] in their Eq. (26):

G(1)(r, r ′, ω) = i

8π2

∫
d2k‖ 1

kz

eik‖·(r−r ′ )
[
eikz (z+z′ )(es+, ep+) · R− · (D+)−1 ·

(
es−
ep−

)
+ e2ikzLe−ikz (z+z′ )(es−, ep−) · R+ · (D−)−1 ·

(
es+
ep+

)
+ e2ikzLeikz (z−z′ )(es+, ep+) · R− · (D+)−1 · R+ ·

(
es+
ep+

)
+e2ikzLe−ikz (z−z′ )(es−, ep−) · R+ · (D−)−1 · R− ·

(
es−
ep−

)]
. (A1)

Here we have split the wave vector k = (k‖,T , kz)T into its
components parallel (k‖) and perpendicular (kz) to the plates,
and the polarization vectors es±, ep± and the multiple reflec-
tion matrices D± are defined by

es± = ek‖ × ez = 1

k‖

⎛⎜⎝ ky

−kx

0

⎞⎟⎠, (A2)

ep± = 1

k
(k‖ez ∓ kzek‖ ) = 1

k

⎛⎜⎜⎝
∓ kz

k‖ kx

∓ kz

k‖ ky

k‖

⎞⎟⎟⎠, (A3)

(D±)−1 =
∞∑

n=0

(
R± · R∓e2ik⊥L

)n = [
1 − R± · R∓e2ik⊥L

]−1
.

(A4)

We are left with the task of calculating the reflection matrices

R± =
(

r±
s,s r±

s,p

r±
p,s r±

p,p

)
(A5)

to find G(1)(r, r ′, ω). Here r+
σσ ′ (r−

σσ ′) is the reflection coeffi-
cient for a σ ′-polarized incoming wave which is reflected off

body 1 (body 2; see Fig. 1 in the main text) as a σ -polarized
wave.

We are going to calculate R+ first and retrieve R− from
symmetry considerations. To find R+ we first find appropriate
expressions for the electric and magnetic fields in vacuum and
in the PTI by making use of Maxwell’s equations. Afterwards,
we can obtain R+ from the continuity relations at the inter-
face.

We start with the permittivity tensor for body 1, which is
given by

ε =

⎛⎜⎝εxx 0 0

0 εzz εyz

0 −εyz εzz

⎞⎟⎠ (A6)

if the external magnetic field B+ points in the x direction.
Note that we have εyy = εzz and εyz = −εzy . We generalize
this expression to arbitrary directions �+ of B+ (see Fig. 1
in the main text) in the xy plane by rotating ε by an angle of
�+ around the z axes. Furthermore, we consider a general
wave vector k = (k‖ cos ϕ, k‖ sin ϕ, kz)T , but by rotating
ε by an angle of −ϕ we get without loss of generality
k = (k‖, 0, kz)T , which simplifies the following calculation
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significantly. So the permittivity tensor eventually reads

ε̃ =

⎛⎜⎝
1
2 {εxx + εzz + (εxx − εzz) cos[2(�+ − ϕ)]} 1

2 (εxx − εzz) sin[2(�+ − ϕ)] −εyz sin[�+ − ϕ]
1
2 (εxx − εzz) sin[2(�+ − ϕ)] 1

2 {εxx + εzz + (εzz − εxx ) cos[2(�+ − ϕ)]} εyz cos
[
�+ − ϕ

]
εyz sin[�+ − ϕ] −εyz cos[�+ − ϕ] εzz

⎞⎟⎠ (A7)

in the rotated frame. As expected, it depends on only the relative angle between the magnetic field and the wave vector. Note
that this form of the permittivity tensor is different from the one considered in Ref. [35]. Nevertheless, the general procedure to
find R± is analogous.

Now we make a plane wave ansatz for the field in the vacuum layer given by

Ei =
[
es,iey + ep,i

c

ωε
(kz,iex − k‖ez)

]
ei(k‖x+kz,iz−ωt ),

Hi =
[
ep,iey − es,i

c

ω
(kz,iex − k‖ez)

]
ei(k‖x+kz,iz−ωt ),

(A8)
Er =

[
es,rey − ep,r

c

ωε
(kz,iex + k‖ez)

]
ei(k‖x−kz,iz−ωt ),

Hr =
[
ep,rey + es,r

c

ω
(kz,iex + kxez)

]
ei(k‖x−kz,iz−ωt ),

which satisfies Maxwell’s equations

∇ × E = −1

c

∂

∂t
H, ∇ × H = 1

c

∂

∂t
(ε · E), (A9)

with ε = I since the wave propagates in vacuum. In Eq. (A8) eσ,i and eσ,r are unknown complex-valued amplitudes of the fields,
where the subscripts i and r indicate the incident and reflected waves, respectively. To eventually find the reflection coefficients
we also need to find a way to describe the field within the PTI. Due to the structure of ε̃ in Eq. (A7) Maxwell’s equations in
Eq. (A9) mix s- and p-polarized waves within the PTI. Therefore an ansatz as in Eq. (A8) is not possible, and thus in a more
general approach plane waves are assumed in the form

E =
⎛⎝ex (z)

ey (z)
ez(z)

⎞⎠ei(k‖x−ωt ), H =
⎛⎝hx (z)

hy (z)
hz(z)

⎞⎠ei(k‖x−ωt ). (A10)

Note that k‖ is conserved across the interface. The z components of Maxwell’s equations (A9) read

hz(z) = c

ω
k‖ey (z), (A11)

ez(z) = 1

εzz

[
− c

ω
k‖hy (z) + ε̃xzex (z) + ε̃yzey (z)

]
(A12)

and can be inserted into the x, y contributions. For these components we introduce the vector u with u1 = ex, u2 = ey, u3 = hx ,

and u4 = hy . By assuming the ansatz uj = uj (0)eik
(m)
z z for the single components with k(m)

z as the z contribution of the wave
vector in the PTI one obtains again from Eq. (A9)

L · u = − c

ω
k(m)
z u, (A13)

with

L =

⎛⎜⎜⎜⎜⎝
−k‖c̃εxz/(ωε̃zz) −k‖c̃εyz/(ωε̃zz) 0 −1 + (ck‖/ω)21/̃εzz)

ε̃xy + ε̃yz̃εxz/̃εzz ε̃yy + ε̃2
yz/̃εzz − (ω/ck‖)2 0 −ωε̃yz/(ck‖̃εzz)

−ε̃xy ε̃xx − c2

ω2 (k‖)2 0 0

−ε̃xx − ε̃2
xz/̃εzz −ε̃xy − ε̃yz̃εxz/̃εzz 0 ωε̃xz/(ck‖̃εzz)

⎞⎟⎟⎟⎟⎠. (A14)

To find nontrivial solutions one has to solve the relation det[ L + I ωk(m)
z /c] = 0, leading to the dispersion relations

k(m)
z = ±ω

c

1

2l
√

εzz

√
U1 + U2 cos [2(�+ − ϕ)] ±

√
1

2
{U3 + U4 cos [2(�+ − ϕ)] + U 2

2 cos[4(�+ − ϕ)]},

U1 = −3εzz + εxx (2l2εzz − 1) + 2l2
(
ε2
yz + ε2

zz

)
, U2 = εzz − εxx,

U3 = 6ε2
zz − 8l2 εzz

(
ε2
yz + ε2

zz

) + 8l4
(
ε2
yz + ε2

zz

)2 + 8l2 ε3
zz(εzzl

2 − 1) − 2εxx

[
3εzz + 4l2

(
ε2
yz − 2ε2

zz

) + 8l2 εzz

(
ε2
yz + ε2

zz

)]
,

U4 = 4
{
ε2
xx (1 − 2l2 εzz) − 2εxx

[
εzz + l2(ε2

yz − 2ε2
zz

)] + εzz

[
εzz − 2l2(ε2

yz + ε2
zz

)]}
(A15)
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for the four mathematical solutions m = 1, 2, 3, 4, corre-
sponding to the possible combinations of signs in Eq. (A15)
with the dimensionless quantity l = ω/(c k‖). Note that these
dispersion relations agree with the ones found in Ref. [29].
Since solutions with Im[k⊥(m)] > 0 would result in waves
propagating in the negative z direction, we can neglect these
solutions for the transmitted wave propagating in the positive
z direction. Let k⊥(1) and k⊥(2) be the two solutions with a
positive real part; then neglecting the other two, we finally
arrive at the expression for the transmitted components of E
and H parallel to the surface,(

Et

Ht

)
= ei(k‖x−ωt )

∑
m=1,2

u(m)(0)eik⊥(m)z. (A16)

According to the continuity relations, the parallel components
of the electric and magnetic fields E and H, i.e., the x, y com-
ponents, at the interface between vacuum and the topological
insulator are continuous. To simplify this set of four equations
we start by expressing ey, hx , and hy in terms of ex using
Eqs. (A13) and (A14),

α(m) ≡ e(m)
y (0)

e
(m)
x (0)

= (ck⊥(m)/ω + L11 − L31)L44/L14

L32 − L12 L34/L14 − (k⊥(m)c/ω)2
,

β (m) ≡ h(m)
x (0)

e
(m)
x (0)

= −−ck⊥(m)

ω
α(m), (A17)

γ (m) ≡ h(m)
y (0)

e
(m)
x (0)

= −ck⊥(m)/ω − L11 − L12α
(m)

L41
.

These equations are inserted into the boundary conditions, and
one obtains⎛⎜⎜⎜⎜⎜⎝

−1 0 α(1) α(2)

ck⊥
i

ω
0 −β (1) −β (2)

0 ck⊥
i

ω
1 1

0 −1 γ (1) γ (2)

⎞⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

≡ M

⎛⎜⎜⎜⎜⎝
es,r

ep,r

e(1)
x

e(2)
x

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
es,i

ck⊥
i

ω
es,i

ck⊥
i

ω
ep,i

ep,i

⎞⎟⎟⎟⎟⎟⎠.

(A18)

We now assume the incoming wave to be s (ep,i = 0, es,i �= 0)
or p polarized (es,i = 0, ep,i �= 0) separately and solve for the
reflected amplitudes to finally obtain the reflection coefficients
with the help of Cramer’s rule:

r+
s,s = es,r

es,i
= det

(
M1

)
det

(
M
) , (A19)

r+
p,s = ep,r

es,i
= det

(
M2

)
det

(
M
) , (A20)

r+
s,p = es,r

ep,i
= det

(
M3

)
det

(
M
) , (A21)

r+
s,s = ep,r

ep,i
= det

(
M4

)
det

(
M
) , (A22)

with the matrices

M1 =

⎛⎜⎜⎜⎜⎜⎝
1 0 α(1) α(2)

ck⊥
i

ω
0 −β (1) −β (2)

0 ck⊥
i

ω
1 1

0 −1 γ (1) γ (2)

⎞⎟⎟⎟⎟⎟⎠, (A23)

M2 =

⎛⎜⎜⎜⎜⎝
−1 1 α(1) α(2)

ck⊥
i

ω

ck⊥
i

ω
−β (1) −β (2)

0 0 1 1

0 0 γ (1) γ (2)

⎞⎟⎟⎟⎟⎠, (A24)

M3 =

⎛⎜⎜⎜⎜⎝
0 0 α(1) α(2)

0 0 −β (1) −β (2)

ck⊥
i

ω

ck⊥
i

ω
1 1

1 −1 γ (1) γ (2)

⎞⎟⎟⎟⎟⎠, (A25)

M4 =

⎛⎜⎜⎜⎜⎜⎝
−1 0 α(1) α(2)

ck⊥
i

ω
0 −β (1) −β (2)

0 ck⊥
i

ω
1 1

0 1 γ (1) γ (2)

⎞⎟⎟⎟⎟⎟⎠. (A26)

Having found the reflection coefficients for waves reflected
at body 1 (R+), we can easily derive the ones reflected by
body 2 (R−). To this end one simply has to invert the direction
of the z coordinate (z → −z) and therefore replace εyz →
−εyz, kz → −kz, and k(m)

z → −k(m)
z . Thus we have

r−
σσ ′ = r+

σσ ′ |εyz→−εyz, kz→−kz, k
(m)
z →−k

(m)
z

. (A27)

We also want to calculate the reflection coefficients in the
nonretarded limit by assuming k‖ � ω/c. In this limit we find
from Eqs. (A19), (A20), (A21), (A22), and (A27)

r±
s,s � r±

s,p � r±
p,s � 0, (A28)

r±
pp(ω) � −2 + D ∓ 2iεyz sin(�± − ϕ)

2 + D ∓ 2iεyz sin(�± − ϕ)
, (A29)

D =
√

2εzz{εzz + εxx + (εxx − εzz) cos [2(�± − ϕ)]}.
(A30)

Finally, we can insert the results for the reflection coef-
ficients found in Eqs. (A19), (A20), (A21), (A22), and (A27)
into Eq. (A1) to find a fully analytic expression for the Green’s
tensor of our setup. In the next section we want to use this
result to calculate the Casimir force.

APPENDIX B: CASIMIR FORCE BETWEEN TWO
INFINITE HALF-SPACES OF A PTI

The starting point for the calculation of the Casimir force
between two infinite half-spaces of a PTI separated by a layer
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of vacuum of thickness L can be found in Eq. (18) of [35]:

F = − h̄

2π

∫ ∞

0
dξ

∫
∂V

dA ·
({

2ξ 2

c2
S [G(1)

(
r, r′, iξ

)
] + 2∇ × S [G(1)

(
r, r′, iξ

)
] × ←−∇ ′

}
r′→r︸ ︷︷ ︸

≡ S(1)
(r,iξ )

− Tr

[
ξ 2

c2
G(1)

(
r, r′, iξ

) + ∇ × G(1)(r, r′, iξ ) × ←−∇ ′
]

r′→r
I
)

. (B1)

Here ∂V is any infinite planar surface in the vacuum gap between the two planar bodies, and dA is its surface element, whose
sign depends on the body on which F acts. First, we want to calculate the 3 × 3 tensor S(1)(r, iξ ) from whose entries S

(1)
ij (r, iξ )

we obtain the surface force density f acting on body 1 using Eq. (B1) via

f = h̄

2π

∫ ∞

0
dξ

1

2

[
S (1)

zz (r, iξ ) − S (1)
xx (r, iξ ) − S (1)

yy (r, iξ )
]
ez + S (1)

zx (r, iξ )ex + S (1)
zy (r, iξ )ey, (B2)

where we used dA = −dAez. To find S(1)(r, iξ ) we are going to calculate its different components step by step. That
means, in the following, we are going to calculate G(1)T (r′, r, ω), G(1)(r, r′, ω) + G(1)T (r′, r, ω), and ∇ × [G(1)(r, r′, ω) +
G(1)T (r′, r, ω)] × ←−∇ ′ subsequently.

First, we rewrite the Green’s tensor given in Eq. (A1) by inserting the reflection matrices as found in Eq. (A5) and expanding
the scalar products to obtain

G(1)(r, r′, ω) = 1

8π2

∫
d2k‖ eik‖·(r−r′ )

κ

∑
σ,σ ′

[
eσ
+eσ ′

− ee−κ (z+z′ )
∑
σ1

r−
σσ1

D+
σ1σ ′︸ ︷︷ ︸

≡Iσσ ′ (k‖)

+eσ
−eσ ′

+ eκ (z+z′ )e−2κL
∑
σ1

r+
σσ1

D−
σ1σ ′︸ ︷︷ ︸

≡IIσσ ′ (k‖)

+ eσ
+eσ ′

+ e−κ (z−z′+2L)
∑
σ1,σ2

r−
σσ1

r+
σ2σ ′

D+
σ1σ2︸ ︷︷ ︸

≡IIIσσ ′ (k‖)

+eσ
−eσ ′

− e−κ (z′−z+2L)
∑
σ1,σ2

r+
σσ1

r−
σ2σ ′

D−
σ1σ2︸ ︷︷ ︸

IVσσ ′ (k‖)

]
. (B3)

Here we have replaced kz = iκ , and the polarization indices are σ, σ ′, σ1, σ2 = s, p. Furthermore, D±
σ1σ2

= (D±)σ1σ2 refers to
components of the matrix D± defined in Eq. (A4).

To obtain S(1)(r, iξ ), in the second step, we calculate G(1)T(r′, r, iξ ). Because of the switching of r′ and r we have to
substitute k‖ → −k‖ to ensure that the term eik‖·(r−r′ ) stays the same. Using the fact that e±

p → e∓
p and e±

s → −e±
s = −e∓

s for
k‖ → −k‖, we therefore get

G(1)T(r′, r, iξ ) = 1

8π2

∫
d2k‖ eik‖·(r−r′ )

κ

∑
σ,σ ′

{(−1)σσ ′
[eσ

+eσ ′
− e−κ (z+z′ ) Iσ ′σ (−k‖) + eσ

−eσ ′
+ eκ (z+z′−2L) IIσ ′σ (−k‖)

+ eσ
−eσ ′

− e−κ (z′−z+2L) IIIσ ′σ (−k‖) + eσ
+eσ ′

+ eκ (z′−z−2L) IVσ ′σ (−k‖)]}. (B4)

Here we also relabel σ ↔ σ ′ and introduce (−1)σσ ′
, given by

(−1)σσ ′ =
{

1 if σ = σ ′,
−1 if σ �= σ ′. (B5)

As a side note, we want to mention here that by comparing Eqs. (B3) and (B4), one finds that Onsager’s reciprocity, i.e.,
G(1)T(r′, r, iξ ) = G(1)(r, r′, iξ ), holds if

(−1)σσ ′
Rσ ′σ (−k‖) = Rσσ ′ (k‖), R = I, II, III, IV. (B6)

Note that a similar expression has also been found in Ref. [39] for one-dimensional nanogratings. Nevertheless, in the setup
considered here Eq. (B6) is not satisfied, and hence Onsager reciprocity is violated. Continuing with finding an expression for
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S(1)(r, iξ ), we combine Eqs. (B3) and (B4) and obtain

G(1)(r, r′, iξ ) + G(1)T(r′, r, iξ ) = 1

8π2

∫
d2k‖ eik‖·(r−r′ )

κ

∑
σ,σ ′

{eσ
+eσ ′

− e−κ (z+z′ ) [(−1)σσ ′
Iσ ′σ (−k‖) + Iσσ ′ (k‖)]

+ eσ
−eσ ′

+ eκ (z+z′−2L) [(−1)σσ ′
IIσ ′σ (−k‖) + IIσσ ′ (k‖)]

+ eσ
−eσ ′

− e−κ (z′−z+2L) [(−1)σσ ′
IIIσ ′σ (−k‖) + IIIσσ ′ (k‖)]

+ eσ
+eσ ′

+ eκ (z′−z−2L) [(−1)σσ ′
IVσ ′σ (−k‖) + IVσσ ′ (k‖)]}. (B7)

Next, we need to evaluate the curls. This can be done by realizing that the operators ∇ and
←−∇ reduce to ∇ → ik± and

←−∇ →
−ik±, where k± = k‖ ± iκez. Using ik± × es± = ξ

c
ep±, ik± × ep± = − ξ

c
es±, we find that ∇ × S [G(1)(r, r′, iξ )] × ←−∇ ′ is

obtained from S [G(1)(r, r′, iξ )] by simply replacing all eσσ ′
± → eσ̄ σ̄ ′

± ξ 2(−1)σσ ′
/c2, where σ̄ is defined by s̄ = p and p̄ = s. We

can combine this result with Eq. (B7) to find

S(1)(r, iξ ) = ξ 2

8π2c2

∫
d2k‖ eik‖·(r−r′ )

κ

∑
σ,σ ′

{[eσ
+eσ ′

− + eσ ′
− eσ

+ + (−1)σσ ′
(eσ̄

+eσ̄ ′
− + eσ̄ ′

− eσ̄
+)︸ ︷︷ ︸

≡ Q(1)

][e−2κzIσσ ′ (k‖) + e2κ (z−L)IIσ ′σ (k‖)]

+ e−2κL[eσ
−eσ ′

− + eσ ′
+ eσ

+ + (−1)σσ ′
(eσ̄

−eσ̄ ′
− + eσ̄ ′

+ eσ̄
+)︸ ︷︷ ︸

≡ Q(2)

][IIIσσ ′ (k‖) + IVσ ′σ (k‖)]}. (B8)

Here, in the last step, we substituted k‖ → −k‖ back in some of the terms to find the two tensor valued prefactors Q(1) and
Q(2) corresponding to terms with odd and even numbers of reflections, respectively. To eventually be able to evaluate Eq. (B2)

we need to calculate the outer products in Q(1) and Q(2) in Cartesian coordinates. With the help of Eq. (A2) we find

ep
∓ep

± = c2

ξ 2(k‖)2

⎛⎜⎝ −κ2k2
x −κ2kxky ±i(k‖)2κkx

−κ2kxky −κ2k2
y ±i(k‖)2κky

∓i(k‖)2κkx ∓i(k‖)2κky −(k‖)4

⎞⎟⎠, (B9)

ep
±ep

± = c2

ξ 2(k‖)2

⎛⎜⎝ κ2k2
x κ2kxky ±i(k‖)2κkx

κ2kxky κ2k2
y ±i(k‖)2κky

±i(k‖)2κkx ±i(k‖)2κky −(k‖)4

⎞⎟⎠, (B10)

es
±es

± = es
±es

∓ = 1

(k‖)2

⎛⎜⎝ k2
y −kxky 0

−kxky k2
x 0

0 0 0

⎞⎟⎠, (B11)

es
+ep

± = es
−ep

± = (es
±es

+)T = (ep
±es

−)T (B12)

= c

ξ (k‖)2

⎛⎜⎝∓κkxky ∓κk2
y i(k‖)2ky

±κk2
x ±κkxky −i(k‖)2kx

0 0 0

⎞⎟⎠. (B13)

Comparing Eq. (B8) with Eq. (B2), we see that we need to evaluate the terms (Q(i)
zz − Q(i)

xx − Q(i)
yy )/2, Q(i)

zx , and Q(i)
zy . Using

Eqs. (B9)–(B13) and the dispersion relation (k‖)2 − κ2 = −ξ 2/c2, we eventually find(
Q(1)

zz − Q(1)
xx − Q(1)

yy

)/
2 = Q(1)

zx = Q(1)
zy = 0, (B14)

Q(2)
zx = Q(2)

zy = 0, (B15)

(
Q(2)

zz − Q(2)
xx − Q(2)

yy

)/
2 = −2c2

ξ 2
κ2. (B16)

Equation (B14) shows that all terms with an odd number of reflections do not contribute to the Casimir force, whereas Eq. (B15)
tells us that there is no lateral Casimir force, i.e., a nonzero x or y component of f . Finally, using Eqs. (B2), (B8), and
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(B14)–(B16), we find the final result for the Casimir force density acting on body 1:

f = − h̄

8π3

∫ ∞

0
dξ

∫
d2k‖ κe−2κL[IIIpp(k‖) + IVpp(k‖) + IIIss (k‖) + IVss (k‖)]ez (B17)

= − h̄

8π3

∫ ∞

0
dξ

∫ 2π

0
dϕ

∫ ∞

0
dk‖ κe−2κLTr[R− · (D+)−1 · R+ + R+ · (D−)−1 · R−]ez. (B18)

Note that this result differs from the one obtained in Ref. [35] only by the fact that in Eq. (B18) we cannot carry out the dϕ

integral due to the ϕ dependence of the reflection coefficients, whereas in Ref. [35] the media were isotropic in the plane of the
surfaces and hence this integral simply gave a factor of 2π .

In the nonretarded limit the reflection coefficients simplify significantly according to Eqs. (A28) and (A30), and thus Eq. (B18)
reduces to

f = − h̄

16π3L3

∫ ∞

0
dξ

∫ 2π

0
dϕ

∫ ∞

0
dκ κ2

r+
pp(iξ )r−

pp(iξ )e−2κL

1 − r+
pp(iξ )r−

pp(iξ )e−2κL
ez

= − h̄

16π3L3

∫ ∞

0
dξ

∫ 2π

0
dϕ Li3[r+

pp(iξ )r−
pp(iξ )]ez. (B19)
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