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a b s t r a c t 

With the intention of achieving an experimental grain scale energy balance at finite strain and at the grain scale, 
a mechanical test on a coarse-grained aluminium is presented in this paper using two complementary imaging 
techniques based on visible and infrared light. Specific image processing methods referred to as Constrained Dig- 
ital Image Correlation (Constrained DIC) and Constrained InfraRed Thermography (Constrained IRT) are applied 
to investigate the thermomechanical behavior at the microstructural scale. Constrained DIC is used to obtain 
displacement and strain fields during the test, while Constrained IRT provides an estimate of temperature and 
heat source fields induced by the mechanical loading. The proposed “constrained ” methods allow to enforce an 
adjustable level of constraints on a measured field (displacement or temperature) without referring to a specific 
finite-element description. In that manner, it is possible to decouple the measurement model and the interpre- 
tation model while keeping regularizing constraints (such as continuity of the fields). In this paper, we mainly 
focus on the kinematic analysis of the experimental test. Electron Backscatter Diffraction (EBSD) is also used in 
this case to experimentally characterize the microstucture of a 3 mm thick specimen with centimetric grain size. 
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. Introduction

Polycrystalline metals usually possess a microstructure composed of
n aggregation of crystalline grains with varying size, morphology and
rientation. During a macroscopic tensile loading, the diversity of grain
rientations and the intrinsic anisotropy of crystal plasticity leads to
trong heterogeneities in the material plastic response, and consequently
o an inhomogeneous thermal distribution due to thermomechanical ef-
ects. 

Recently, heterogeneous phenomena on mechanical and thermal
elds have been studied in metallic materials at the granular scale [1–
] . All these works have shown the variety of micromechanical mod-
lling issues that can be addressed using classical DIC (Digital Image
orrelation) & IRT (InfraRed Thermography) method. Hereafter, a “Con-
trained ” surface DIC or IRT method is proposed to enrich the kinematic
r thermal transformation of neighbouring elements (or grains) by im-
osing continuity (or discontinuity) conditions on the displacement (or
he displacement gradient component) or on the temperature (or the
emperature gradient). 

Performing strain field and heat source measurements ultimately al-
ows to access to the evolution of the mechanical and calorimetric en-
n  
rgies involved in the transformation. This assessment contributes to a
etter knowledge of the local thermomechanical signature of the mate-
ial deformation mechanisms. 

As mentioned, two data processing methods (Constrained DIC
7,8] and Constrained IRT [9] ) are required to perform kinematic and
hermal measurements that are both needed to conduct a local energy
alance within each grain during a mechanically-loaded test. In the light
f this general objective, we mainly focus in this paper on the kinematic

spect of the aforementioned general methodology. 
First, the principle of Constrained DIC method will be introduced.

hen, the numerical validation of Constrained DIC method will be per-
ormed on numerical example associated to cracked polycrystalline ag-
regates. Afterwards, this novel method will be applied to real experi-
ental images. 

In fact, surface displacement field measurements of materials sub-
ected to various loadings ( e.g. mechanical loading or thermal loading)
re an important task for experimentalists addressing challenges in the
eld of solid mechanics. 

In recent years, an increasing number of spectacular developments
n optical full-field measurement techniques has been witnessed [10] ,
ncluding both interferometric techniques and non-interferometric tech-
iques. However, the interferometric techniques involve delicate proce-
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Fig. 1. Spatial description of the geometry of a polycrystalline aggregation. The 
grain boundaries are in magenta and the element contours are in black. And the 
three red dots are for spatial matching procedure [6] . (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version 
of this article.) 

 

 

 

 

 

ures which are not always easily transferable to conventional testing
aboratories. Consequently, the Digital Image Correlation (DIC) method
idely considered as a representative non-interferometric optical tech-
ique, has been largely accepted and commonly used as a powerful and
exible tool for surface displacement and strain measurement in the ex-
erimental solid mechanics field [2,4,6,11–14].  

These measurements are particularly valuable in the sense that they
llow the interpretation of complex tests at different scales and that
hey are naturally adapted to scale transitions. For these reasons, they
ave been largely used to characterise the deformation mechanisms or to
ropose and validate micromechanical models or scale transition laws. 

From a microstructural viewpoint, polycrystalline materials are a
iscrete structure that are composed of jointed grains with varying sizes
nd orientations. The characterisation and measurement of grain struc-
ures is of great interest to Materials Scientists because they are directly
elated to the physical properties of matter [15,16].  

Our objective here is the understanding of the relationship between
he microstructural parameters and the mechanical behaviour of the
eterogeneous materials at the macroscopic scale, in particular at the
ranular length scale [17–19].  

Using the classical local approaches, the material microstructure is
ot accounted for in the kinematic computation: 

• Firstly, the introduced subsets (for DIC) are independently defined
from the microstructure

• Secondly, as the transformation of neighbouring subsets are sepa-
rately processed, so subsets may overlap.

This is an inherent disadvantage of these local methods when dealing
ith heterogeneous structure problems. 

Nevertheless, classical local DIC methods have been widely used to
ighlight the heterogeneity in kinematic fields [2,6,12,20] , in a large
ange of situations dealing for instance, with the fracture mechanics
intergranular or intragranular) problems. 

. Principle of constrained DIC method

Global DIC methods were proposed to determine the displace-
ent and strain fields on the whole image. These methods propose to
arametrize the kinematic fields using a limited set of degrees of free-
om which tends to regularize the DIC problem. These methods were
rstly introduced to impose the continuity of measured displacement
n a finite-element mesh [21,22] or using B-splines [23,24] . Gobal DIC
ethods were afterwards extended to allow some discontinuities in the
isplacement fields to account for crack development [25,26] . 

The Constrained DIC method proposed here corresponds to an al-
ernative to global DIC methods. It relies on a mesh that respects the
aterial microstructure and it introduces shape functions that are ex-
ressed in the real space and not on the associated reference element
as in classical finite elements). The shape functions can be any kind
we generally use linear, bi-linear, quadratic, bi-quadratic polynomial
unctions), and the shape function choice is independent of the shape of
he element. The most significant difference with global (finite-element
ased) DIC methods relies in the fact that the level of restriction between
wo adjacent elements can be modified by choosing the number (and the
ocation) of points where to enforce the continuity conditions on the el-
ment boundary. It is also interesting to note that the proposed method
llows to handle in the same framework classical local DIC methods
which corresponds to a regular rectangular mesh with no continuity
ondition between each elements) to global finite-element based meth-
ds on regular meshes (by imposing continuity conditions on the ends
f each element boundary). 

As classical DIC approaches (whether local or global), the proposed
ethod also relies on the Brightness Conservation equation [27] mo-

ivating the use of a pattern recognition algorithm for the detection of
hanges in the grey level distribution of targeted surface during loading.
ndeed, the main steps of Constrained DIC method are the following: 
• Spatial discretization of the geometry
Through an EBSD analysis, a two-dimensional array of data asso-
ciated with the microstructure is provided by microscopic devise
[28,29] . Afterwards, this microstructural map ( Fig. 1 a) can be used
to perform a spatial discretization (Finite Element type) in order to
respect as much as possible the real microstructure. The obtained
mesh is used for subsequent processing of the kinematic response.
In order to optimize the meshing procedure, the real grain bound-
aries (white contours in Fig. 1 a) are simplified and polygonized so
as to keep the large grains and regroup the smallest ones, as shown
in Fig. 1 b in magenta. By construction, the level of microstructural
simplification has to be adjusted depending on the spatial resolution
associated with the kinematic and/or thermal measurement. The in-
troduced uncertainty during the grain boundary extraction operation
is not quantified, which is supposed to be negligible in this paper.
Afterwards, an unstructured mesh is carefully applied on the “simpli-
fied ” geometry (representing the microstructure) within each grain
in order to keep the representation of physical grain boundaries, as
shown in Fig. 1 c. Inside each grain, the smallest mesh unit is called
an “element ”, which is equivalent of the correlation subset for clas-
sical DIC methods. The element contours are accurately determined.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Description of the boundary 𝑙 𝑖𝑗 𝑢 between two adjacent elements i and j 
and definition of the local Normal-Tangential coordinate system ( ⃗𝑁 

𝑖𝑗 , ⃗𝑇 𝑖𝑗 ) of the 
boundary 𝑙 𝑖𝑗 𝑢 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The computational mesh underlying the microstructure is defined
in the initial configuration. The kinematic variables associated with
each element describing the physical transformation of the material
will be introduced in the next section. 

• Description of the physics
The specimen might be subjected to different loadings (traction,
compression, shear or rotation). Depending on the mechanical situ-
ation under consideration, the displacement field can be continuous
(continuous medium) or discontinuous (granular medium or frac-
ture). The method developed here proposes to enrich the DIC formu-
lation in order to introduce constraints in the DIC algorithms com-
patible with the continuity or discontinuity of displacement field.
In order to describe the kinematic physics, a polynomial shape func-
tion is assigned to each element e of the mesh to represent the local
displacement variations ( Eq. (1) ).

𝐮 𝐞 𝐱 ( 𝑋 𝐶 𝐶 𝐷 , 𝑌 𝐶 𝐶 𝐷 , 𝑝 
𝐞 
𝑋 ) =

𝑑𝑘 𝑋 ∑
𝑘 =0 

𝑑𝑙 𝑋 ∑
𝑙=0 

𝑎 𝐞 𝑘𝑙 𝑋 

𝑘 
𝐶 𝐶 𝐷 𝑌 

𝑙 
𝐶 𝐶 𝐷

𝐮 𝐞 𝐲 ( 𝑋 𝐶 𝐶 𝐷 , 𝑌 𝐶 𝐶 𝐷 , 𝑝 
𝐞 
𝑌 ) =

𝑑𝑘 𝑌 ∑
𝑘 =0 

𝑑𝑙 𝑌 ∑
𝑙=0 

𝑏 𝐞 𝑘𝑙 𝑋 

𝑘 
𝐶 𝐶 𝐷 𝑌 

𝑙 
𝐶 𝐶 𝐷

(1)

where, 𝐮 𝐞 𝐱 and 𝐮 𝐞 𝐲 are the components of local displacement field ( u 

e )

for element e in the directions �⃗� and 𝑌 , and ( X CCD , Y CCD ) represents
the Lagrangian coordinates in pixels. Vector 𝐩 𝐞 = ( 𝑝 𝐞 

𝑋
, 𝑝 𝐞 

𝑌
) = ( 𝑎 𝐞 

𝑘𝑙
, 𝑏 𝐞 

𝑘𝑙
)

gathers the kinematic shape function parameters. The order and
the type of the kinematic shape function can be chosen accord-
ing to requirements. The displacement fields in each element are
thus described in the real space, and not through a “reference ele-
ment ”, which is the case for classical Finite Element (FE) descriptions
[25,30] . 

• Introduction of the restriction 
In the previous section, kinematic transformations for each individ-
ual element have been introduced. We will now detail the possible
relationships between kinematic transformation of neighbouring el-
ements. 
Three situations can be encountered: 
• The transformations between neighbouring elements are com-

pletely independent.
• At least one component of the displacement vector is continuous

through the common boundary.
• A displacement jump is allowed on the common boundary.

The first situation corresponds to classical local DIC methods. When
imposing continuity conditions on both displacement components,
the second situation is analogous to global DIC methods [31] . Here,
the continuity condition can be enforced on the whole boundary
(exact restriction) or in a limited number of nodes (partial restric-
tion). In the same spirit, continuity conditions can also be introduced
at boundary on the displacement derivatives. The third one corre-
sponds to unilateral condition (crack opening). This kind of restric-
tions will not discussed in this paper. 
After the displacement shape function has been chosen for each el-
ement, restrictions can be introduced between the kinematic fields
associated with each pair of neighbouring elements. Fig. 2 schemat-
ically illustrates the situation for a given pair of adjacent elements
(element i and element j ) of the kinematic mesh. As proposed, the
degrees of the polynomials for kinematic description in element i
and element j are not necessarily identical. 
The boundary 𝑙 𝑖𝑗 𝑢 between elements i and j is modeled as a linear
relationship between X and Y , whose coefficients depend only on the
mesh geometry. For a relatively “horizontal ” boundary, as shown in
Fig. 2 , the boundary 𝑙 𝑖𝑗 𝑢 is expressed as 

𝑌 𝐶 𝐶 𝐷 = 𝛼𝑢 𝑋 𝐶 𝐶 𝐷 + 𝛽𝑢 (2)

Naturally, the case of a “vertical ” boundary is deduced by inverting
the role of X and Y , expressed as 𝑋 𝐶 𝐶 𝐷 = 𝛼′𝑌 𝐶 𝐶 𝐷 + 𝛽′ .
𝑢 𝑢 
By construction, the coefficients { 𝛼u , 𝛽u } or { 𝛼′𝑢 , 𝛽
′
𝑢 } of the boundary

expression are defined only by the geometrical mesh. The compo-
nents of the normal and tangential vectors of the boundary, �⃗� 

𝑖𝑗 and
𝑇 𝑖𝑗 , are expressed from 𝛼u or 𝛼′𝑢 as follows: 
• for the relatively ”horizontal ” boundary:

�⃗� 

𝑖𝑗 = 

( 

− 𝛼𝑢 
1 

) 

and 𝑇 𝑖𝑗 = 

( 

1 
𝛼𝑢 

) 

(3)

• for the relatively ”vertical ” boundary:

�⃗� 

𝑖𝑗 = 

( 

1 
− 𝛼′𝑢

) 

and 𝑇 𝑖𝑗 = 

( 

𝛼′𝑢
1 

)
(4)

The restriction conditions are introduced along the element
boundary 𝑙 𝑖𝑗 𝑢 using the local Normal-Tangential coordinate system
( ⃗𝑁 

𝑖𝑗 , ⃗𝑇 𝑖𝑗 ) of the boundary. As mentioned above, different kind of
restrictions can be imposed: 
• continuity restriction : equality of the variable (or its derivative) on

both sides of the boundary
• jump restriction : inequality of the variable (or its derivative) on

both sides of the boundary
In this paper, we only focused on describing continuity restrictions.
They correspond to the introduction of linear equations between
the parameters describing kinematic fields of two adjacent elements.
The continuity of the displacement field ( u 

e ) is imposed in the local
Normal-Tangential coordinate system of the boundary, in order to
impose either a normal or a tangential displacement continuity (or
both simultaneously). 
Furthermore, restriction conditions can also be imposed on the dis-
placement gradient on the element boundaries. 
Finally, taking into account these different restrictions leads to im-
pose the corresponding linear equations between the two adjacent
elements i and j , that can be expressed as a linear system: [
𝐀 

𝐢𝐣
𝐔

]{ 

𝐏 𝐢𝐣𝐔
} 

= { 𝟎 } (5)

where 
[
𝐀 

𝐢𝐣
𝐔

]
is the kinematic elementary restriction matrix between

element i and j , and 
{ 

𝐏 𝐢𝐣𝐔
} 

is the elementary vector containing

all the unknown kinematic parameters ( 𝐩 𝐢 , 𝐩 𝐣 ) = ( 𝑎 𝑖 
𝑘𝑙 
, 𝑏 𝑖 

𝑘𝑙 
, 𝑎 𝑗 

𝑘𝑙 
, 𝑏 𝑗 

𝑘𝑙 
) for

these two adjacent elements. The linear relations between p 

i and p 

j 

( Eq. (5) ) allows to decrease the number of independent parameters
to be determined by correlation for element i and j . The introduction
of this linear relations reduces the number of Degrees Of Freedom
(DOFs) required to describe the kinematic field. 
By iterating this operation for all boundaries on which continuity
restrictions are applied, a global kinematic restriction matrix A U is
built for the mesh, as well as a global vector P U containing all the
kinematic parameters. [
𝐀 𝐔 

]{
𝐏 𝐔 

}
= { 𝟎 } (6)
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Fig. 3. Microstructure of a polycrystalline aggregation used for FE simulation. 
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The line number of A U corresponds the introduced restriction num-
ber. The column number of this matrix is related to the number of
parameter for the kinematic description. The rank of the restriction
matrix is necessarily smaller than the number of parameter, so this
matrix can be triangularized to take out the “independent ” parame-
ters for the kinematic description. 
It is important to recall that, working in the Lagrangian framework,
all restriction matrices are determined in the initial configuration
and are calculated only once throughout the data processing. 

• Resolution of the enriched kinematic problem
As mentioned in the beginning of this section, this Constrained DIC
problem is solved under the principle of Brightness Conservation
[27] .
A correlation criterion is chosen to quantify the luminance mismatch
difference between the initial and final images. Different correlation
criterion can be introduced as shown in the literature [14,32] . Here,
we used the SSD criterion ( Sum of Squared Differences ) to assess the
similarity between the reference image I 0 and the deformed image
I 1 :

ℭ 𝑆 𝑆 𝐷 =
∑
𝐞 ∬𝑆 𝐞

[
𝐼 0 ( 𝑋 𝐶 𝐶 𝐷 , 𝑌 𝐶 𝐶 𝐷 )

− 𝐼 1

(
𝑋 𝐶 𝐶 𝐷 + 𝐮 𝐞 𝐱 ( 𝑋 𝐶 𝐶 𝐷 , 𝑌 𝐶 𝐶 𝐷 , 𝑝 

𝑒 
𝑋 ) ,

𝑌 𝐶 𝐶 𝐷 + 𝐮 𝐞 𝐲 ( 𝑋 𝐶 𝐶 𝐷 , 𝑌 𝐶 𝐶 𝐷 , 𝑝 
𝑒 
𝑌 )

)]2 
d 𝑋 𝐶 𝐶 𝐷 d 𝑌 𝐶 𝐶 𝐷 (7)

where, S e represents the polygon associated with the element “e ”, 𝐮 𝐞𝐱
and 𝐮 𝐞 𝐲 represent the shape functions which depend on parameters
𝑝 𝑒 
𝑋 

and 𝑝 𝑒 
𝑌 

.
The numerical resolution of this kinematic problem consists in mini-
mizing the functional ( ℭ 𝑆 𝑆 𝐷 ) under the above mentioned linear con-
straint. 

𝐏 optimal 
𝐔 = argmin 

𝑝 𝑋 ,𝑝 𝑌 

{ ℭ 𝑆 𝑆 𝐷 }

with 
[
𝐀 𝐔 

]{
𝐏 𝐔 

}
= { 𝟎 }

(8)

By construction, the global vector P U has been previously obtained
by assembling all the elementary vector of each element. Once this
global vector 𝐏 optimal

𝐔 is determined, all the elementary vector ( 𝐏 e 𝐔 )
are determined, allowing to describe the local displacement fields

�⃗� 𝐞 = 

( 

𝐮 𝐞𝐱
𝐮 𝐞𝐲

) 

for each element. 

The components of the local finite transformation gradient tensor F e 

or each element e is then expressed analytically: 

 

 

 

 

 

 

 

 

 

 

 

𝑭 
𝑒 
𝑥𝑋 = 1 + 

𝜕 𝐮 𝐞𝐱
𝜕𝑋 

𝑭 
𝑒 
𝑥𝑌 = 

𝜕 𝐮 𝐞𝐱
𝜕𝑌 

𝑭 
𝑒 
𝑦𝑋 = 

𝜕 𝐮 𝐞𝐲
𝜕𝑋 

𝑭 
𝑒 
𝑦𝑌 = 1 + 

𝜕 𝐮 𝐞𝐲
𝜕𝑌 

(9)

Strain fields are deduced in Lagrangian, Eulerian or small deforma-
ion framework. 

Afterwards, these local quantities can be analytically integrated to
btain the average values per element. Similarly, by defining element
ets belonging to one grain, these quantities can be averaged for each
rain. 

Using the method that has been presented above, the kinematic data
an be analysed with different restrictions. As the restrictions are im-
osed between two elements, we can naturally process intergranular or
ntragranular crack data. In addition, instead of the restriction imposed
pon all the boundary points (exact restriction), it is possible to impose
t on a limited number of nodes on the element boundary (partial restric-
ion), resulting in less constraint equations and thus a more compliant
inematic description. 

After having introduced the principle and some advantages of Con-
trained DIC method, the performance of this kinematic data processing
ethod will be demonstrated through numerical examples on polycrys-

alline aggregates in the next section. Concerning the thermal data pro-
essing, the Constrained IRT method has been previously presented in
9] .

. Numerical validation on a cracked specimen

The procedure is numerically validated on heterogeneous fields ob-
ained on computer-generated speckle images associated with com-
letely known kinematic fields: here, the focus will be an intergranular
rack opening in a polycrystalline microstructure. 

.1. Synthetic image generation 

Crystal plasticity is usually used in materials science as the consti-
utive model to describe the response of crystal grains. The objective
f crystal plasticity is to introduce slip elementary features into the
escription of plasticity [33] . At the same time, one major interest of
icromechanics of heterogeneous polycrystalline materials is to access

ocal mechanical fields in a given microstructure associated to surface
train fields that can be measured [17–19] , in order to contribute to
 better understanding of the microstructure dependence of yield be-
aviour during the mechanical loading at granular scales, and to assess
ocal stress fields in view of developing physically-based damage mod-
ls. 

For this numerical study, the kinematic field was obtained by di-
ect crystal plasticity Finite Element (FE) analysis for the crystal plas-
icity law proposed by Cailletaud and Meric [34] and for a given set of
oundary conditions and grain orientations. An aggregate of 50 grains
as generated using a classical Vorono tessellation [35–38] , which pro-
ides convex polyhedric grains as shown in Fig. 3 . This microstructure is
epresentative of coarse-grained aluminum having relatively equiaxed
rains of convex shape. The size distribution of grains has been ran-
omly chosen but could be adjusted more precisely if needed. In order
o focus on intergranular cracking, an initial intergranular crack is in-
roduced in the middle of the specimen (colored in black in the middle
f Fig. 3 ). 

The chosen material behaviour obeys the Méric-Cailletaud model,
escribed in [34] for FCC slip systems. The boundary conditions have



Fig. 4. Displacement fields obtained by FE simulation. 

Fig. 5. Theoretical equivalent Von Mises strain field for the cracked polycrystal 
aggregates 𝜀 Aster 
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Fig. 6. Reference synthetic image. 
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een prescribed using uniform displacement at the upper and lower
dges of the mesh, and the grain orientations of the microstructure
re randomly chosen to obtain an isotropic texture (and therefore
n isotropic tensile response). Finally, the numerical simulation was
erformed using the FE package Code_Aster with a mesh of 11,300
uadratic triangular elements ( Fig. 3 ) in a bi-dimensional framework
nder a plane strain assumption [39] . 

The aim of this FE computation is to provide realistic local kinematic
elds associated with equilibrated stress fields and corresponding to re-
listic strain and stress heterogeneities. 

The intergranular crack generates a discontinuity, in the displace-
ent field on both components, as shown in Fig. 4 . 

A 2% macroscopic strain is imposed for this numerical study. The
train field is highly localized around the crack tip, with 2D plastic
quivalent strain 1 exceeding 12% ( Fig. 5 ). 

The simulated displacement field was introduced in a virtual image
eneration procedure, as described in [12] , to mimic the acquisition of a
erie of speckle images. The initial image with the superimposed initial
icrostructure is presented in Fig. 6 . It was chosen not to introduce any

rtificial image distortion in the synthetic images procedure, in order to
ocus solely on the DIC algorithm biases. 
1 The equivalent Von Mises strain is defined here by: 𝜀 eq = 

2

 

2
3

(
𝜀 2 𝑥𝑥 + 2 × 𝜀 2 𝑥𝑦 + 𝜀 2 𝑦𝑦

)
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To better illustrate the intergranular crack development in the syn-
hetic image, a magnified view of the cracking zone is presented re-
pectively for the reference image ( Fig. 7 a) and the deformed image
 Fig. 7 b). 

During the crack opening, the optical flow is not conserved between
he crack lips. To account for this phenomenon, a mask is superimposed
n the deformed image. This mask consists in a black line with a varying
idth equals to the computed local crack opening displacement (see
ig. 7 b in the middle). 

The robustness of DIC methods with respect to experimental noise is
lways a key issue [32,40] . Here, by decreasing the number of indepen-
ent degrees of freedom used to describe the displacement fields, the
roposed method diminishes the sensitivity to measurement noise, but
t adds spatial correlations in the displacement fields due to the linear
onstraints between the degrees of freedom. To study the noise prop-
gation in the method, we propose to introduce noise in these virtual
mages in order to account for the different error sources in the acqui-
ition chain, as proposed in [32] . Such study will be the subject of a
orthcoming publication. 

.2. Numerical results 

This section presents results obtained using various combinations
f processing parameters. Working with images with perfectly known
eformation allows to quantify the processing error by comparing the
inematic fields obtained by Constrained DIC to that derived from FE
imulation. 



Fig. 7. Zoom of the crack tip in the reference image and the deformed image. 

Fig. 8. Regular mesh for DIC processing. 
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Fig. 9. Microstructural mesh for DIC processing. 
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.2.1. Kinematic validation 

In this part, three processing results are presented. The three combi-
ations of parameters associated with these three processing cases are
recised below: 

• processing parameters for study-I:
• Regular mesh (with 1640 elements), as shown in Fig. 8 .
• No continuity restriction between any element.
• Bi-linear shape function (with respect to both variables, X and

Y ) for kinematic description of each element (8 parameters per
element), as introduced in Eq. (10) .

 𝐱 ( 𝑋, 𝑌 , 𝑝 𝑋 ) = 𝑎 00 + 𝑎 10 𝑋 + 𝑎 01 𝑌 + 𝑎 11 𝑋𝑌

 𝐲 ( 𝑋, 𝑌 , 𝑝 𝑌 ) = 𝑏 00 + 𝑏 10 𝑋 + 𝑏 01 𝑌 + 𝑏 11 𝑋𝑌
(10)

• The associated number of DOFs introduced to describe the kine-
matic field is then 8 ×1640 = 13120

• processing parameters for study-II:
• Microstructural mesh (with 1513 elements), as shown in Fig. 9 .

This mesh is consistent with the material microstructure.
• No continuity restriction between any element.
• Bi-linear shape function as introduced in Eq. (10) .
• DOFs = 8 ×1513 = 12104

• processing parameters for study-III:
• Microstructural mesh, as shown in Fig. 9 .
• Exact continuity restriction applied to all adjacent elements

within each grain. These restrictions impose intragranular conti-
nuity, but they allow the development of intergranular disconti-
nuity (cracking). 

• Bi-linear shape function as introduced in Eq. (10) .
• DOFs = 1372

The study-I is equivalent to a classical local DIC. The study-II is a
quivalent to a classical local DIC using a non regular mesh consistent
ith the microstructure. The study-III is a Constraint DIC analysis with

mposed intragranular continuity restriction. 
Naturally it is important to quantify the data processing error with

he proposed method. The error is defined as the difference between the
alculated results and their imposed “theoretical ” values. In order to fa-
ilitate the interpretation of error maps, we will only focus on equivalent
on Mises strain field ( 𝜀 eq ), averaged on each element. 

The reference field for both regular and microstructural meshes
re obtained by integrating the FE-computed equivalent strain on each
esh. They are represented in Fig. 10 . 

Figs. 11–13 show the error distributions for the aforementioned three
tudies. The Mean Error (ME) and its Standard Deviation (SD) are re-
orted in Eqs. (11) –(13) . 
 

ME ( 𝜀 Study-I
eq − 𝜀 Aster 

eq ) = −0 . 59 × 10 −4

SD ( 𝜀 Study-I
eq − 𝜀 Aster 

eq ) = 6 × 10 −3
(11)

 

ME ( 𝜀 Study-II
eq − 𝜀 Aster 

eq ) = −1 . 581 × 10 −4

SD ( 𝜀 Study-II
eq − 𝜀 Aster 

eq ) = 6 × 10 −3
(12)



Fig. 10. Averaged equivalent strain fields obtained by FE simulation. 

Fig. 11. Element-averaged error map ( 𝜀 Study-I 
eq − 𝜀 Aster 

eq ) for Study-I. 

Fig. 12. Element-averaged error map ( 𝜀 Study-II 
eq − 𝜀 Aster 

eq ) for Study-II. 
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Fig. 13. Element-averaged error map( 𝜀 Study-III 
eq − 𝜀 Aster 

eq ) for Study-III. 
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ME ( 𝜀 Study-III
eq − 𝜀 Aster 

eq ) = 3 . 327 × 10 −4

SD ( 𝜀 Study-III
eq − 𝜀 Aster 

eq ) = 8 × 10 −3
(13)

The error distributions are very different from one analysis to an-
ther, but they correspond to very similar global levels in Mean Error
ME) or Standard Deviation (SD). 

It is important to point out that, for an equivalent level of perfor-
ance, Study-III uses ten times less DOFs than the two others. Conse-

uently, Study-III will be much more robust against the noise. 
The strain errors are highly localized around the crack tip for the
hree studies. The first reason is due to the non conservation optic flow
n this region. The second one is the presence of strong strain gradients
t the rear of crack tip. Everywhere else, the error level is smaller and
s randomly distributed. 

The Study-III gives the highest error levels because of the reduced
umber of DOFs, that generates a coarser kinematic description. 

.2.2. Crack description 

A local analysis will now be conducted focusing on the crack lips. The
isplacement jump profiles computed for the different methods will be
sed to quantify their performances in capturing discontinuities. 

Indeed, the displacement jump is defined in the local Normal-
angential coordinate system of the crack as the difference between the
easured displacement in the lower side of the crack and in the upper

ide. 
Fig. 14 represents the evolution of the normal displacement jump for

he different processing along the crack. In this figure, the FE-simulated
isplacement jump profile (Aster) gives the reference in red . 

The results obtained for Study-I ( green one in Fig. 14 ) are very dif-
erent from the reference ones. Indeed, in this case, the mesh is regular
nd is not consistent with the microstructure, so the crack crosses the
lements used for DIC processing. Furthermore, the shape functions are
ontinuous within each element, but they are discontinuous from on el-
ment to another ( i.e. on each element boundary). Consequently, the
iscontinuity remains very challenging to capture in this case. 

However, the Study-II (local DIC with microstructural mesh) pro-
ides a slightly closer displacement jump profile (in cyan ) to the refer-
nce one. In fact, the crack physically contains 5 elements. And the im-
ortant displacement jumps are found at each element changing, since
o continuity restriction is imposed along the crack between the ele-



Fig. 14. Normal displacement jump profile. 

Fig. 15. Identification of the intergranular crack via the normal displacement 
jump. 
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Fig. 16. Initial microstructure analysis of specimen (60 ×20 mm 

2 ). 

Table 1

Main camera characteristics. 

Image size (pixel) Scale factor (μm /pixel) Frame rate (Hz)

Cedip Titanium 512 ×640 97 40
Phantom V12 1280 ×800 45 80
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ents. As expected, the displacement jump evolves quadratically inside
ach element by using the bi-linear shape functions. 

With the study-III, a rigorously continuous displacement jump pro-
le is obtained (in blue ), which is even closer to the reference curve.
ut the trend is not exactly similar. This observation is likely the con-
equence of a too high number of kinematic restrictions. In fact, the
ontinuity restriction is imposed on all the boundary points (exact con-
inuity restriction), so there is not enough DOFs for an accurate local
inematic description. 

In order to increase the number of DOFs for the kinematic descrip-
ion, the level of the imposed continuity restriction is decreased. Instead
f imposing the continuity condition for all the points along each ele-
ent boundary within each grain, a partially relaxed continuity restric-

ion is applied. This condition consist in enforcing continuity only on
he two extremes points of the boundary instead of the full boundary.
he relaxed continuity allows to have more DOFs number ( = 4290 com-
ared to 1372), resulting in a better local crack description as shown in
lack in Fig. 14 , which is referred to as Study-III-Partial. 

Using the result of the last study (with partial continuity condition),
e can additionally investigate the normal displacement jump ( u n ) for
ll the grain boundaries (according theirs local Normal-Tangential co-
rdinate system) inside of ZOI and draw all of them in the Fig. 15 . 
As expected, the displacement jump is only found in the introduced
racking zone. In the Fig. 15 , the width of the segment corresponds to
he amplitude of the displacement jump, and the width corresponding
he maximum displacement jump is represented in the legend of figure.
nd the blue color is for negative jump and the red color is for positive

ump. With such investigation, only the introduced intergranular crack
s clearly identified and localized, so, the discontinuity capturing ability
f Constrained DIC method is obviously demonstrated. 

For this numerical validation section, the comparison of kinematic
elds (displacement and strain) calculated by Constrained DIC and ob-
ained by FE simulation is conclusive and validates our methodology. In
he following paper, this Constrained DIC data processing method will
e applied on experimental test, which can potentially be coupled with
he local thermal measurement method [9] for the grain-scaled energy
alance establishing. 

. Experimental procedures and results

.1. Microstructure analysis 

In this experimental study, the as-received material used consists in a
 mm thick aluminium sheet, grade A1050 . The chemical composition
f this material and the sample preparation procedure is reported in
6] .

The initial microstructure is analysed by EBSD before mechanical
esting and the microstructural map is represented in the following fig-
re: 

Each color in the Fig. 16 corresponds to a crystal orientation (inter-
reted here as a grain) and the white line materializes the high disori-
ntation zone associated with grain boundaries. The green frame in this
gure corresponds to the Zone Of Interest (ZOI) defined in the CCD and

R coordinate systems (see Fig. 17 ) but transported in the EBSD coordi-
ate system. 

.2. Experimental setup 

In this study, mechanical (load-unload) tensile tests are performed
t room temperature with a hydraulic testing machine ( MTS-810 ) in
 displacement-controlled mode. A simultaneous observation of both
ides of the sample is performed by the CCD and IR cameras. The main
haracteristics of the cameras are reported in Table 1 . 

Thanks to a spatial matching procedure [6] , the grain boundaries
white in Fig. 16 ) are respectively transported in the CCD and IR coor-
inate systems (in Fig. 17 a and b). 

In Fig. 17 , the contour of the grain boundaries given by EBSD analysis
re represented in black. In the ZOI (green frame), this microstructure
s then “simplified ” in order to obtain meshes with a “reasonable ” size



Fig. 17. Spatial description of the specimen in the CCD and IR coordinate systems. 

Fig. 18. Macroscopic responses of material. 
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or the image correlation and the calorimetric analysis. According the
ifferent spatial resolution of the CCD and IR cameras ( Table 1 ), the
esh sizes used here for the kinematic and the thermal analysis are

espectively 18 pixels and 40 pixels. 

.3. Macroscopic response 

The macroscopic response of the aluminum sample for this load-
nload tensile test (in Y direction of Fig. 17 ) until failure is reported
n Fig. 18 . The mechanical loading is represented in blue, the macro-
copic kinematic and thermal responses ( i.e. averaged over the ZOI) are
espectively represented in green in the Fig. 18 a and b. 

.4. Full field analysis 

After the macroscopic temporal evolutions, the grain-scaled result
ill be presented in this section. The Constrained DIC method is used in
rder to perform the full field analysis. In this paper, the results at the
oading state specified by the D loading step (in Fig. 18 a) are presented
t first. 

.4.1. Displacement fields 

As illustrated in Fig. 17 a, there are 8 grains inside of ZOI. The data
rocessing applied here involves a displacement continuity for all the
djacent elements within each grain, and no continuity relation on the
rain boundaries, which is equivalent to an intragranular displacement
ontinuity inside of each grain. A bi-linear shape function is used for
he local kinematic description for each element. And the SSD criterion
 Sun of Squared Differences ) is used for DIC processing, as mentioned in
q. (7) . 

In this stage of the post-processing, the grain-scaled displacement
elds in the two directions are obtained with the Constrained DIC
ethod. These displacement fields are represented in the Lagrangian

onfiguration, as shown in Fig. 19 . We can naturally represent the dis-
lacement fields in their Eulerian configuration. 
.4.2. Initial and deformed measurement mesh 

Using the obtained displacement fields (in Fig. 19 ), the initial kine-
atic mesh ( Fig. 17 a) can be deformed to obtain the current one in the
CD coordinate system ( Fig. 20 a). Using the spatial matching proce-
ure, the initial and deformed thermal mesh can be also represented in
he CCD coordinate system ( Fig. 20 b) and then in the IRT coordinate
ystem. 

In Fig. 20 , the initial and deformed computational mesh (DIC and
RT) are presented, together with the corresponding deformed visible
mage. Using this procedure, the microstructure evolution can be mon-
tored in real time during the test. 

.4.3. Equivalent Von Mises strain field 

The deformed mesh and the deformed image corresponding to the
ame loading step D are presented in Fig. 21 , and the color of mesh (ex-
ept the mesh contour in yellow) are represented the equivalent strain
evel in the current configuration. 

This figure illustrates the heterogeneous development of plasticity
etween and within grains (strain localisation). 

Apart from the strain localisation in different grains, a kinematic
ump is clearly identified in the area surrounded in magenta (in Fig. 21 ).
n fact, this area is corresponded the location where the initial crack is
dentified. 

.4.4. Initial crack 

In Fig. 22 a, the equivalent strain field for loading step C (in Fig. 18 a)
ith the corresponding deformed image has been presented in Eulerian

onfiguration. 
The distribution of strong strain localization and the kinematic jump

re clearly identified in the same area as shown in Fig. 21 . In addition,
inematic jump is better highlighted in Fig. 22 b, from which the initial
rack can be remarked. 



Fig. 19. Displacement fields obtained at loading step D in the Lagrangian configuration. 

Fig. 20. Initial and deformed mesh represented in the CCD coordinate system 

for loading step D. 
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Fig. 21. Equivalent strain field in Eulerian configuration for loading step D. 
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.4.5. Ultimate fracture 

For the loading step 2 in Fig. 18 a, the corresponding equivalent strain
eld with the deformed image is presented in Fig. 23 a. And, the zoom
f this representation is shown in Fig. 23 b. 

With the tracking operation of the microstructure, the initial crack
an be always localized until the last stage of test, despite the coating
s well degraded. This phenomena demonstrates that the displacement
Fig. 22. Kinematic field obtained at loading
elds obtained by Constrained DIC, used then for the computational
esh monitoring operation, are suitably corresponded the real defor-
ation during the experimentation. 

Simultaneously, the ultimate fracture is also clearly identified with
onstrained DIC method. For a better illustration, the ultimate crack is
ighlighted by a white dashed line in the Fig. 23 b. The ultimate frac-
ure has occurred exactly at the most deformed locus as revealed by the
 step C in the Eulerian configuration. 



Fig. 23. Kinematic field obtained at loading step 2 in the Eulerian configuration. 
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⟹ 𝐮 − 𝐮 + 𝛼 𝐮 − 𝛼 𝐮 = 0
onstrained DIC processing. Moreover, an incremental strain computa-
ion is used for this data processing, so a strain exceeding 100% was
btained in this final stage of experimentation. 

. Conclusion

Through this paper, a kinematic data processing method is pro-
osed, which is possible to take into account directly the microstruc-
ure for the computation of the displacement field and the strain field.
sing this method, the more or less complex kinematic description
an be performed with the different shape functions. And, the in-
ergranular and/or the intragranular effect can be explicitly consid-
red in the data processing procedure, via the different type of re-
triction and the different level of restriction. The material effects can
e explicitly introduced in the data processing procedure, while re-
pecting the physical microstructure given by EBSD analysis, is the
ey feature of this proposed method, which fit the polycrystalline
roblem. 

The validation procedure of the proposed method is performed on
 numerical example, which is associated with a complex situation
orresponding a cracked polycrystalline aggregates. Despite the im-
osed kinematic fields are very heterogeneous with strong gradient,
owever, for a 2% measured macroscopic strain (more than 10% lo-
ally), the obtained results show a quantitatively correct estimate with
he Mean Error and the Standard Deviation being respectively in or-
er of magnitude of 10 −3 and 10 −4 . All of these results are conclusive
o validate our methodology. Furthermore, for completely enclosing
his numerical validation stage, the robustness of the proposed method
ith respect to superimposed noise should be investigated in more
etail. 

Afterwards, this proposed method was applied to a real experimental
pplication. If we focus only in the kinematic part, a very early crack
etection is shown with the obtained result. Then, we can also follow
he specimen deformation until the ultimate fracture with the kinematic
nalysis. 

In a general way, using the Constrained methods (DIC and TIR [9] ),
he local distributions of strain and temperature fields can be measured
n the coarse-grained aluminium polycrystal. Therefore, the different
ocal thermomechanical variables can be characterised specifically for
ach grain (without introducing correlations with the response of adja-
ent grains). 

By construction, such measurements can potentially be confronted
o EBSD analyses which giving the grains initial orientation, in order
o estimate the local stress fields within each grain that are needed to
etermine the deformation energy locally developed [41] . This is the
ast step required for the proposition of a complete energy balance at
he scale of grain. 

ppendix A. Appendix : analytical example for restriction matrix 

onstruction 

We propose here to illustrate this Constrained DIC method in the an-
lytical case that the continuity restriction is imposed on the displace-
ent vector between two elements (elements i and j ) in Fig. 2 with a

elatively “horizontal ” boundary. 
Two analytical examples will be presented to introduce normal con-

inuity and tangential continuity on the boundary 𝑙 𝑖𝑗 𝑢 between the ele-
ents i and j . For both cases, a bi-linear shape function is chooses for

oth elements i and j : 

• Bi-linear shape function for element i :

𝐮 𝐢 𝐱 ( 𝑋 𝐶 𝐶 𝐷 , 𝑌 𝐶 𝐶 𝐷 , 𝑝 
𝑖 
𝑋 ) = 𝑎 𝑖 00 + 𝑎 𝑖 10 𝑋 𝐶 𝐶 𝐷 + 𝑎 𝑖 01 𝑌 𝐶 𝐶 𝐷 + 𝑎 𝑖 11 𝑋 𝐶 𝐶 𝐷 𝑌 𝐶 𝐶 𝐷

𝐮 𝐢 𝐲 ( 𝑋 𝐶 𝐶 𝐷 , 𝑌 𝐶 𝐶 𝐷 , 𝑝 
𝑖 
𝑌 ) = 𝑏 𝑖 00 + 𝑏 𝑖 10 𝑋 𝐶 𝐶 𝐷 + 𝑏 𝑖 01 𝑌 𝐶 𝐶 𝐷 + 𝑏 𝑖 11 𝑋 𝐶 𝐶 𝐷 𝑌 𝐶 𝐶 𝐷

(14)

• Bi-linear shape function for element j :

𝐮 𝐣 𝐱 ( 𝑋 𝐶 𝐶 𝐷 , 𝑌 𝐶 𝐶 𝐷 , 𝑝 
𝑗 
𝑋 
) = 𝑎 𝑗 00 + 𝑎 𝑗 10 𝑋 𝐶 𝐶 𝐷 + 𝑎 𝑗 01 𝑌 𝐶 𝐶 𝐷 + 𝑎 𝑗 11 𝑋 𝐶 𝐶 𝐷 𝑌 𝐶 𝐶 𝐷

𝐮 𝐣 𝐲 ( 𝑋 𝐶 𝐶 𝐷 , 𝑌 𝐶 𝐶 𝐷 , 𝑝 
𝑗 
𝑌 
) = 𝑏 𝑗 00 + 𝑏 𝑗 10 𝑋 𝐶 𝐶 𝐷 + 𝑏 𝑗 01 𝑌 𝐶 𝐶 𝐷 + 𝑏 𝑗 11 𝑋 𝐶 𝐶 𝐷 𝑌 𝐶 𝐶 𝐷

(15)

Hence, it is noted that the two displacement vectors of the element
 and j are expressed as follows: 

⃗
 

𝐢 =

( 

𝐮 𝐢𝐱
𝐮 𝐢𝐲

) 

and ⃗𝐮 𝐣 =
( 

𝐮 𝐣𝐱
𝐮 𝐣𝐲

) 

(16)

For a relatively “horizontal ” boundary likes in Fig. 2 , by combing
qs. (3) and ( 16 ), the continuities on displacement in the normal and
angential direction could be written: 

• Normal continuity restriction of displacement

�⃗� 𝐢 ⋅ �⃗� 

𝑖𝑗 = ⃗𝐮 𝐣 ⋅ �⃗� 

𝑖𝑗 ∀( 𝑋, 𝑌 ) ∈ 𝑙 𝑖𝑗 𝑢 

soit 
(

𝐮 𝐢𝐱 𝐮 𝐢𝐲
)
⋅
( 

− 𝛼𝑢
1 

) 

− 

(
𝐮 𝐣𝐱 𝐮 𝐣𝐲

)
⋅
( 

− 𝛼𝑢
1 

) 

= 0 

⟹ − 𝛼𝑢 𝐮 𝐢 𝐱 + 𝛼𝑢 𝐮 
𝐣 
𝐱 + 𝐮 𝐢 𝐲 − 𝐮 𝐣 𝐲 = 0

(17)

• Tangential continuity restriction of displacement

�⃗� 𝐢 ⋅ 𝑇 𝑖𝑗 = ⃗𝐮 𝐣 ⋅ 𝑇 𝑖𝑗 ∀( 𝑋, 𝑌 ) ∈ 𝑙 𝑖𝑗 𝑢 

soit 
(

𝐮 𝐢𝐱 𝐮 𝐢𝐲
)
⋅
( 

1 
𝛼𝑢 

) 

− 

(
𝐮 𝐣 𝐱 𝐮 𝐣𝐲

)
⋅
( 

1 
𝛼𝑢 

) 

= 0 

𝐢 𝐣 𝐢 𝐣 

(18)
𝐱 𝐱 𝑢 𝐲 𝑢 𝐲 



isplacement on the relatively ”horizontal ” boundary 𝑙 𝑖𝑗 𝑢 likes in Fig. 2 , we 
 17 ):

 

𝑗 
10 

)
+

(
− 𝛼2 𝑢 𝑎 

𝑖 
01 + 𝛼2 𝑢 𝑎 

𝑗 
01 + 𝛼𝑢 𝑏 

𝑖 
01 − 𝛼𝑢 𝑏 

𝑗 
01

)
+ 𝑏 𝑖 00 − 𝑏 𝑗 00

)
+ 

(
− 𝛼𝑢 𝛽𝑢 𝑎 

𝑖 
01 + 𝛼𝑢 𝛽𝑢 𝑎 

𝑗 
01 + 𝛽𝑢 𝑏 

𝑖 
01 − 𝛽𝑢 𝑏 

𝑗 
01

)} 

= 0 

For this condition to be respected, each coefficent of the monomials of 
respect to the unknown parameters 𝑝 𝑖 ( 𝑎 𝑖 00 , 𝑎 

𝑖 
10 , 𝑎 

𝑖 
01 , 𝑎 

𝑖 
11 , 𝑏 

𝑖 
00 , 𝑏 

𝑖 
10 , 𝑏 

𝑖 
01 , 𝑏 

𝑖 
11 ) and

resented in matrix form as follow:

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝛼2 𝑢 0 0 0 − 𝛼𝑢
𝛼𝑢 𝛽𝑢 0 −1 − 𝛼𝑢 − 𝛽𝑢 

𝑢 0 −1 0 − 𝛽𝑢 0 

⎤ ⎥ ⎥ ⎦ 

𝐏 𝐢𝐣𝐔
⏞⏞⏞⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

𝑎 𝑖 00 
𝑎 𝑖 10 
𝑎 𝑖 01 
𝑎 𝑖 11 
𝑏 𝑖 00 
𝑏 𝑖 10 
𝑏 𝑖 01 
𝑏 𝑖 11 
𝑎 𝑗 00 
𝑎 𝑗 10 
𝑎 𝑗 01 
𝑎 𝑗 11 
𝑏 𝑗 00 
𝑏 𝑗 10 
𝑏 𝑗 01 
𝑏 𝑗 11 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

= 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(19)

ced “only ” on a set of points on the boundary 𝑙 𝑖𝑗 𝑢 . 
nt

striction on displacement on boundary 𝑙 𝑖𝑗 𝑢 gives: )
+ 

(
𝛼𝑢 𝑎 

𝑖 
01 − 𝛼𝑢 𝑎 

𝑗 
01 + 𝛼2 𝑢 𝑏 

𝑖 
01 − 𝛼2 𝑢 𝑏 

𝑗 
01

)
− 𝛼𝑢 𝑏 

𝑗 
00

)
+ 

(
𝛽𝑢 𝑎 

𝑖 
01 − 𝛽𝑢 𝑎 

𝑗 
01 + 𝛼𝑢 𝛽𝑢 𝑏 

𝑖 
01 − 𝛼𝑢 𝛽𝑢 𝑏 

𝑗 
01

)} 

= 0 

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

 𝛼𝑢 0 0 0 − 𝛼2 𝑢 
 𝛽𝑢 0 − 𝛼𝑢 − 𝛼2 𝑢 − 𝛼𝑢 𝛽𝑢

− 𝛼𝑢 0 − 𝛼𝑢 𝛽𝑢 0 

⎤ ⎥ ⎥ ⎦ 

𝐏 𝐢𝐣𝐔
⏞⏞⏞⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

𝑎 𝑖 00 
𝑎 𝑖 10 
𝑎 𝑖 01 
𝑎 𝑖 11 
𝑏 𝑖 00 
𝑏 𝑖 10 
𝑏 𝑖 01 
𝑏 𝑖 11 
𝑎 𝑗 00 
𝑎 𝑗 10 
𝑎 𝑗 01 
𝑎 𝑗 11 
𝑏 𝑗 00 
𝑏 𝑗 10 
𝑏 𝑗 01 
𝑏 𝑗 11 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

= 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(20)

duction of normal and tangential continuities on the boundary. It is possible 
t ary, by assembling the normal restriction matrix ( 𝐀 

𝐢𝐣 
𝐔 𝐍 

) and the tangential

r atrix 𝐀 

𝐢𝐣 
𝐔 which takes into account these two types of continuity at the same
• Introduction of the Normal continuity restriction on displacement

In order to take into account a normal continuity restriction on d
introduce the Eqs. (14) and ( 15 ) in the expression of the restricton ({ 

− 𝛼2 𝑢 𝑎 
𝑖 
11 + 𝛼2 𝑢 𝑎 

𝑗 
11 + 𝛼𝑢 𝑏 

𝑖 
11 − 𝛼𝑢 𝑏 

𝑗 
11

} 

𝑋 

2 
𝐶 𝐶 𝐷 + 

{ (
− 𝛼𝑢 𝑎 

𝑖 
10 + 𝛼𝑢 𝑎 

𝑗 
10 + 𝑏 𝑖 10 − 𝑏

+ 

(
− 𝛼𝑢 𝛽𝑢 𝑎 

𝑖 
11 + 𝛼𝑢 𝛽𝑢 𝑎 

𝑗 
11 + 𝛽𝑢 𝑏 

𝑖 
11 − 𝛽𝑢 𝑏 

𝑗 
11

)} 

𝑋 𝐶 𝐶 𝐷 +
{ (

− 𝛼𝑢 𝑎 
𝑖 
00 + 𝛼𝑢 𝑎 

𝑗 
00 

Thus, we obtain a polynomial expression of degree 2 in X CCD . 
X CCD must be equal to zero, which gives 3 linear equations with 

𝑝 𝑗 ( 𝑎 𝑗 00 , 𝑎 
𝑗 
10 , 𝑎 

𝑗 
01 , 𝑎 

𝑗 
11 , 𝑏 

𝑗 
00 , 𝑏 

𝑗 
10 , 𝑏 

𝑗 
01 , 𝑏 

𝑗 
11 ) . These linear equations could be p

𝐀 𝐢𝐣 𝐔 𝐍
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎡ ⎢ ⎢ ⎣ 
0 0 0 − 𝛼2 𝑢 0 0 0 𝛼𝑢 0 0 0 
0 − 𝛼𝑢 − 𝛼2 𝑢 − 𝛼𝑢 𝛽𝑢 0 1 𝛼𝑢 𝛽𝑢 0 𝛼𝑢 𝛼2 𝑢 
− 𝛼𝑢 0 − 𝛼𝑢 𝛽𝑢 0 1 0 𝛽𝑢 0 𝛼𝑢 0 𝛼𝑢 𝛽

Note that a similar system can be obtained if the continuity is enfor
• Introduction of the Tangential continuity restriction on displaceme

In the same way, taking into account of the tangential continuity re{ 

𝛼𝑢 𝑎 
𝑖 
11 − 𝛼𝑢 𝑎 

𝑗 
11 + 𝛼2 𝑢 𝑏 

𝑖 
11 − 𝛼2 𝑢 𝑏 

𝑗 
11

} 

𝑋 

2 
𝐶 𝐶 𝐷 + 

{ (
𝑎 𝑖 10 − 𝑎 𝑗 10 + 𝛼𝑢 𝑏 

𝑖 
10 − 𝛼𝑢 𝑏 

𝑗 
10

+ 

(
𝛽𝑢 𝑎 

𝑖 
11 − 𝛽𝑢 𝑎 

𝑗 
11 + 𝛼𝑢 𝛽𝑢 𝑏 

𝑖 
11 − 𝛼𝑢 𝛽𝑢 𝑏 

𝑗 
11

)} 

𝑋 𝐶 𝐶 𝐷 +
{ (

𝑎 𝑖 00 − 𝑎 𝑗 00 + 𝛼𝑢 𝑏 
𝑖 
00 

This system is written in matrix form as follow: 

𝐀 𝐢𝐣 𝐔 𝐓
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎡ ⎢ ⎢ ⎣ 
0 0 0 𝛼𝑢 0 0 0 𝛼2 𝑢 0 0 0 −
0 1 𝛼𝑢 𝛽𝑢 0 𝛼𝑢 𝛼2 𝑢 𝛼𝑢 𝛽𝑢 0 −1 − 𝛼𝑢 −
1 0 𝛽𝑢 0 𝛼𝑢 0 𝛼𝑢 𝛽𝑢 0 −1 0 − 𝛽𝑢 0 

The two systems ( Eqs. (19) and ( 20 )) correspond to the separate intro
o simultaneously introduce these two continuities on the same bound

estriction matrix ( 𝐀 

𝐢𝐣 
𝐔 ) to construct the normal-tangential restriction m

𝐓 



t

⏞ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎡⎢⎢⎢⎢⎢⎢⎣

0 
𝛼2 𝑢 
𝛼𝑢 𝛽𝑢 
0 
− 𝛼𝑢 
− 𝛽𝑢

L rix b  

a e tw
tricti  

m ters,

S
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[

[

[  

[

[  

 

[

[  

 

[  

[  

[  

[  

[

ime: 

𝐀 𝐢𝐣𝐔
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

 

 

 

 

 

 

 

 

0 0 0 − 𝛼2 𝑢 0 0 0 𝛼𝑢 0 0 
0 − 𝛼𝑢 − 𝛼2 𝑢 − 𝛼𝑢 𝛽𝑢 0 1 𝛼𝑢 𝛽𝑢 0 𝛼𝑢 
− 𝛼𝑢 0 − 𝛼𝑢 𝛽𝑢 0 1 0 𝛽𝑢 0 𝛼𝑢 0 
0 0 0 𝛼𝑢 0 0 0 𝛼2 𝑢 0 0 
0 1 𝛼𝑢 𝛽𝑢 0 𝛼𝑢 𝛼2 𝑢 𝛼𝑢 𝛽𝑢 0 −1 
1 0 𝛽𝑢 0 𝛼𝑢 0 𝛼𝑢 𝛽𝑢 0 −1 0 

ike in Eq. (5) , where 
[
𝐀 

𝐢𝐣
𝐔

]
is the kinematic elementary restriction mat

ll the unknown kinematic parameters ( 𝐩 𝐢 , 𝐩 𝐣 ) = ( 𝑎 𝑖 
𝑘𝑙 
, 𝑏 𝑖 

𝑘𝑙 
, 𝑎 𝑗 

𝑘𝑙 
, 𝑏 𝑗 

𝑘𝑙 
) for thes

By iterating this operation for all boundaries on which continuity res
esh, as well as a global vector P U containing all the kinematic parame

upplementary material 

Supplementary material associated with this article can be found, in
he online version, at 10.1016/j.optlaseng.2018.08.003 
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𝛼2 𝑢 0 0 0 − 𝛼𝑢
𝛼𝑢 𝛽𝑢 0 −1 − 𝛼𝑢 − 𝛽𝑢
0 −1 0 − 𝛽𝑢 0 
− 𝛼𝑢 0 0 0 − 𝛼2 𝑢 
− 𝛽𝑢 0 − 𝛼𝑢 − 𝛼2 𝑢 − 𝛼𝑢 𝛽𝑢
0 − 𝛼𝑢 0 − 𝛼𝑢 𝛽𝑢 0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

𝐏 𝐢𝐣𝐔
⏞⏞⏞⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

𝑎 𝑖 00 
𝑎 𝑖 10 
𝑎 𝑖 01 
𝑎 𝑖 11 
𝑏 𝑖 00 
𝑏 𝑖 10 
𝑏 𝑖 01 
𝑏 𝑖 11 
𝑎 𝑗 00 
𝑎 𝑗 10 
𝑎 𝑗 01 
𝑎 𝑗 11 
𝑏 𝑗 00 
𝑏 𝑗 10 
𝑏 𝑗 01 
𝑏 𝑗 11 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

= 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 
0 
0 
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