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With the intention of achieving an experimental grain scale energy balance at finite strain and at the grain scale,
a mechanical test on a coarse-grained aluminium is presented in this paper using two complementary imaging
techniques based on visible and infrared light. Specific image processing methods referred to as Constrained Dig-
ital Image Correlation (Constrained DIC) and Constrained InfraRed Thermography (Constrained IRT) are applied
to investigate the thermomechanical behavior at the microstructural scale. Constrained DIC is used to obtain
displacement and strain fields during the test, while Constrained IRT provides an estimate of temperature and
heat source fields induced by the mechanical loading. The proposed “constrained” methods allow to enforce an
adjustable level of constraints on a measured field (displacement or temperature) without referring to a specific
finite-element description. In that manner, it is possible to decouple the measurement model and the interpre-
tation model while keeping regularizing constraints (such as continuity of the fields). In this paper, we mainly
focus on the kinematic analysis of the experimental test. Electron Backscatter Diffraction (EBSD) is also used in
this case to experimentally characterize the microstucture of a 3 mm thick specimen with centimetric grain size.

1. Introduction

Polycrystalline metals usually possess a microstructure composed of
an aggregation of crystalline grains with varying size, morphology and
orientation. During a macroscopic tensile loading, the diversity of grain
orientations and the intrinsic anisotropy of crystal plasticity leads to
strong heterogeneities in the material plastic response, and consequently
to an inhomogeneous thermal distribution due to thermomechanical ef-
fects.

Recently, heterogeneous phenomena on mechanical and thermal
fields have been studied in metallic materials at the granular scale [1-
6]. All these works have shown the variety of micromechanical mod-
elling issues that can be addressed using classical DIC (Digital Image
Correlation) & IRT (InfraRed Thermography) method. Hereafter, a “Con-
strained” surface DIC or IRT method is proposed to enrich the kinematic
or thermal transformation of neighbouring elements (or grains) by im-
posing continuity (or discontinuity) conditions on the displacement (or
the displacement gradient component) or on the temperature (or the
temperature gradient).

Performing strain field and heat source measurements ultimately al-
lows to access to the evolution of the mechanical and calorimetric en-

ergies involved in the transformation. This assessment contributes to a
better knowledge of the local thermomechanical signature of the mate-
rial deformation mechanisms.

As mentioned, two data processing methods (Constrained DIC
[7,8] and Constrained IRT [9]) are required to perform kinematic and
thermal measurements that are both needed to conduct a local energy
balance within each grain during a mechanically-loaded test. In the light
of this general objective, we mainly focus in this paper on the kinematic
aspect of the aforementioned general methodology.

First, the principle of Constrained DIC method will be introduced.
Then, the numerical validation of Constrained DIC method will be per-
formed on numerical example associated to cracked polycrystalline ag-
gregates. Afterwards, this novel method will be applied to real experi-
mental images.

In fact, surface displacement field measurements of materials sub-
jected to various loadings (e.g. mechanical loading or thermal loading)
are an important task for experimentalists addressing challenges in the
field of solid mechanics.

In recent years, an increasing number of spectacular developments
in optical full-field measurement techniques has been witnessed [10],
including both interferometric techniques and non-interferometric tech-
niques. However, the interferometric techniques involve delicate proce-
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dures which are not always easily transferable to conventional testing
laboratories. Consequently, the Digital Image Correlation (DIC) method
widely considered as a representative non-interferometric optical tech-
nique, has been largely accepted and commonly used as a powerful and
flexible tool for surface displacement and strain measurement in the ex-
perimental solid mechanics field [2,4,6,11-14].

These measurements are particularly valuable in the sense that they
allow the interpretation of complex tests at different scales and that
they are naturally adapted to scale transitions. For these reasons, they
have been largely used to characterise the deformation mechanisms or to
propose and validate micromechanical models or scale transition laws.

From a microstructural viewpoint, polycrystalline materials are a
discrete structure that are composed of jointed grains with varying sizes
and orientations. The characterisation and measurement of grain struc-
tures is of great interest to Materials Scientists because they are directly
related to the physical properties of matter [15,16].

Our objective here is the understanding of the relationship between
the microstructural parameters and the mechanical behaviour of the
heterogeneous materials at the macroscopic scale, in particular at the
granular length scale [17-19].

Using the classical local approaches, the material microstructure is
not accounted for in the kinematic computation:

e Firstly, the introduced subsets (for DIC) are independently defined
from the microstructure

¢ Secondly, as the transformation of neighbouring subsets are sepa-
rately processed, so subsets may overlap.

This is an inherent disadvantage of these local methods when dealing
with heterogeneous structure problems.

Nevertheless, classical local DIC methods have been widely used to
highlight the heterogeneity in kinematic fields [2,6,12,20], in a large
range of situations dealing for instance, with the fracture mechanics
(intergranular or intragranular) problems.

2. Principle of constrained DIC method

Global DIC methods were proposed to determine the displace-
ment and strain fields on the whole image. These methods propose to
parametrize the kinematic fields using a limited set of degrees of free-
dom which tends to regularize the DIC problem. These methods were
firstly introduced to impose the continuity of measured displacement
on a finite-element mesh [21,22] or using B-splines [23,24]. Gobal DIC
methods were afterwards extended to allow some discontinuities in the
displacement fields to account for crack development [25,26].

The Constrained DIC method proposed here corresponds to an al-
ternative to global DIC methods. It relies on a mesh that respects the
material microstructure and it introduces shape functions that are ex-
pressed in the real space and not on the associated reference element
(as in classical finite elements). The shape functions can be any kind
(we generally use linear, bi-linear, quadratic, bi-quadratic polynomial
functions), and the shape function choice is independent of the shape of
the element. The most significant difference with global (finite-element
based) DIC methods relies in the fact that the level of restriction between
two adjacent elements can be modified by choosing the number (and the
location) of points where to enforce the continuity conditions on the el-
ement boundary. It is also interesting to note that the proposed method
allows to handle in the same framework classical local DIC methods
(which corresponds to a regular rectangular mesh with no continuity
condition between each elements) to global finite-element based meth-
ods on regular meshes (by imposing continuity conditions on the ends
of each element boundary).

As classical DIC approaches (whether local or global), the proposed
method also relies on the Brightness Conservation equation [27] mo-
tivating the use of a pattern recognition algorithm for the detection of
changes in the grey level distribution of targeted surface during loading.
Indeed, the main steps of Constrained DIC method are the following:

(a) Microstructure of a polycrystalline metallic material analysed
by EBSD

I1]

(¢) Unstructured mesh for this polycrystalline material

Fig. 1. Spatial description of the geometry of a polycrystalline aggregation. The
grain boundaries are in magenta and the element contours are in black. And the
three red dots are for spatial matching procedure [6]. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

e Spatial discretization of the geometry

Through an EBSD analysis, a two-dimensional array of data asso-
ciated with the microstructure is provided by microscopic devise
[28,29]. Afterwards, this microstructural map (Fig. 1a) can be used
to perform a spatial discretization (Finite Element type) in order to
respect as much as possible the real microstructure. The obtained
mesh is used for subsequent processing of the kinematic response.

In order to optimize the meshing procedure, the real grain bound-
aries (white contours in Fig. 1a) are simplified and polygonized so
as to keep the large grains and regroup the smallest ones, as shown
in Fig. 1b in magenta. By construction, the level of microstructural
simplification has to be adjusted depending on the spatial resolution
associated with the kinematic and/or thermal measurement. The in-
troduced uncertainty during the grain boundary extraction operation
is not quantified, which is supposed to be negligible in this paper.

Afterwards, an unstructured mesh is carefully applied on the “simpli-
fied” geometry (representing the microstructure) within each grain
in order to keep the representation of physical grain boundaries, as
shown in Fig. 1c. Inside each grain, the smallest mesh unit is called
an “element”, which is equivalent of the correlation subset for clas-
sical DIC methods. The element contours are accurately determined.



The computational mesh underlying the microstructure is defined
in the initial configuration. The kinematic variables associated with
each element describing the physical transformation of the material
will be introduced in the next section.

Description of the physics

The specimen might be subjected to different loadings (traction,
compression, shear or rotation). Depending on the mechanical situ-
ation under consideration, the displacement field can be continuous
(continuous medium) or discontinuous (granular medium or frac-
ture). The method developed here proposes to enrich the DIC formu-
lation in order to introduce constraints in the DIC algorithms com-
patible with the continuity or discontinuity of displacement field.
In order to describe the kinematic physics, a polynomial shape func-
tion is assigned to each element e of the mesh to represent the local
displacement variations (Eq. (1)).
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where, u and u§ are the components of local displacement field (u®)

for element e in the directions X and ¥, and (X¢p, Yecp) represents
the Lagrangian coordinates in pixels. Vector p¢ = (%, py) = (ag,;, by)
gathers the kinematic shape function parameters. The order and
the type of the kinematic shape function can be chosen accord-
ing to requirements. The displacement fields in each element are
thus described in the real space, and not through a “reference ele-
ment”, which is the case for classical Finite Element (FE) descriptions
[25,30].
Introduction of the restriction
In the previous section, kinematic transformations for each individ-
ual element have been introduced. We will now detail the possible
relationships between kinematic transformation of neighbouring el-
ements.
Three situations can be encountered:

e The transformations between neighbouring elements are com-

pletely independent.
e At least one component of the displacement vector is continuous
through the common boundary.

¢ A displacement jump is allowed on the common boundary.
The first situation corresponds to classical local DIC methods. When
imposing continuity conditions on both displacement components,
the second situation is analogous to global DIC methods [31]. Here,
the continuity condition can be enforced on the whole boundary
(exact restriction) or in a limited number of nodes (partial restric-
tion). In the same spirit, continuity conditions can also be introduced
at boundary on the displacement derivatives. The third one corre-
sponds to unilateral condition (crack opening). This kind of restric-
tions will not discussed in this paper.
After the displacement shape function has been chosen for each el-
ement, restrictions can be introduced between the kinematic fields
associated with each pair of neighbouring elements. Fig. 2 schemat-
ically illustrates the situation for a given pair of adjacent elements
(element i and element j) of the kinematic mesh. As proposed, the
degrees of the polynomials for kinematic description in element i
and element j are not necessarily identical.
The boundary /”/ between elements i and j is modeled as a linear
relationship between X and Y, whose coefficients depend only on the
mesh geometry. For a relatively “horizontal” boundary, as shown in
Fig. 2, the boundary /" is expressed as

Yeep = o Xcep + by 2

Naturally, the case of a “vertical” boundary is deduced by inverting
the role of X and Y, expressed as Xccp = a,Yccp + f.-

Py = ajy
: b
element1

element j

X

Fig. 2. Description of the boundary /; between two adjacent elements i and j
and definition of the local Normal-Tangential coordinate system (N, T) of the
boundary /,/.

By construction, the coefficients {a,, §,} or {«, f,} of the boundary
expression are defined only by the geometrical mesh. The compo-
nents of the normal and tangentlal vectors of the boundary, N/ and
T/, are expressed from a,, or a) as follows:

e for the relatively “horizontal” boundary:

N = < _;l“ > and TV = ( ! ) 3)
au

o for the relatively "vertical” boundary:

!
Nij=< 1/ >andT’7:< % ) “)
—-a, 1

The restriction conditions are introduced along the element
boundary /7 using the local Normal-Tangential coordinate system
(N, T%) of the boundary. As mentioned above, different kind of
restrictions can be imposed:

o continuity restriction: equality of the variable (or its derivative) on

both sides of the boundary
e jump restriction: inequality of the variable (or its derivative) on
both sides of the boundary

In this paper, we only focused on describing continuity restrictions.
They correspond to the introduction of linear equations between
the parameters describing kinematic fields of two adjacent elements.
The continuity of the displacement field (u®) is imposed in the local
Normal-Tangential coordinate system of the boundary, in order to
impose either a normal or a tangential displacement continuity (or
both simultaneously).
Furthermore, restriction conditions can also be imposed on the dis-
placement gradient on the element boundaries.
Finally, taking into account these different restrictions leads to im-
pose the corresponding linear equations between the two adjacent
elements i and j, that can be expressed as a linear system:

8] {14 - o

where [Aijj] is the kinematic elementary restriction matrix between

element i and j, and {P'IJI} is the elementary vector containing

all the unknown kinematic parameters (p', p/) = (akl, s a{; " bil) for
these two adjacent elements. The linear relations between p' and pJ
(Eq. (5)) allows to decrease the number of independent parameters
to be determined by correlation for element i and j. The introduction
of this linear relations reduces the number of Degrees Of Freedom
(DOFs) required to describe the kinematic field.

By iterating this operation for all boundaries on which continuity
restrictions are applied, a global kinematic restriction matrix Ay is
built for the mesh, as well as a global vector Py containing all the
kinematic parameters.

[Au]{Pyu} = {0} ©)



The line number of Ay corresponds the introduced restriction num-
ber. The column number of this matrix is related to the number of
parameter for the kinematic description. The rank of the restriction
matrix is necessarily smaller than the number of parameter, so this
matrix can be triangularized to take out the “independent” parame-
ters for the kinematic description.

It is important to recall that, working in the Lagrangian framework,
all restriction matrices are determined in the initial configuration
and are calculated only once throughout the data processing.
Resolution of the enriched kinematic problem

As mentioned in the beginning of this section, this Constrained DIC
problem is solved under the principle of Brightness Conservation
[27].

A correlation criterion is chosen to quantify the luminance mismatch
difference between the initial and final images. Different correlation
criterion can be introduced as shown in the literature [14,32]. Here,
we used the SSD criterion (Sum of Squared Differences) to assess the
similarity between the reference image I, and the deformed image
I:

Cssp = Z[/S [Io(chmchp)
e e

-1 (XCCD +ui(Xceps Yoeps Py)s

2
Yeen +u;(XCCD’YCCD’p;))] dXcepdYeep (1)

where, S, represents the polygon associated with the element “e”, u§
and u;*, represent the shape functions which depend on parameters
P and pf.

The numerical resolution of this kinematic problem consists in mini-
mizing the functional (€ ¢ ;) under the above mentioned linear con-

straint.
PP = argmin{ G p)
Px Py ®)

with [Ay]{Py} = {0}

By construction, the global vector Py has been previously obtained
by assembling all the elementary vector of each element. Once this
global vector P%pt'mal is determined, all the elementary vector (P))
are determined, allowing to describe the local displacement fields

- ug
ut = < u’g > for each element.
y

The components of the local finite transformation gradient tensor Fe
for each element e is then expressed analytically:

. oug
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Strain fields are deduced in Lagrangian, Eulerian or small deforma-
tion framework.

Afterwards, these local quantities can be analytically integrated to
obtain the average values per element. Similarly, by defining element
sets belonging to one grain, these quantities can be averaged for each
grain.

Using the method that has been presented above, the kinematic data
can be analysed with different restrictions. As the restrictions are im-
posed between two elements, we can naturally process intergranular or
intragranular crack data. In addition, instead of the restriction imposed
upon all the boundary points (exact restriction), it is possible to impose

100 50
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g 500 30
S 600 25
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800 L
900 1
1000 § s

Grain number

200 400 600 800
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Fig. 3. Microstructure of a polycrystalline aggregation used for FE simulation.

it on a limited number of nodes on the element boundary (partial restric-
tion), resulting in less constraint equations and thus a more compliant
kinematic description.

After having introduced the principle and some advantages of Con-
strained DIC method, the performance of this kinematic data processing
method will be demonstrated through numerical examples on polycrys-
talline aggregates in the next section. Concerning the thermal data pro-
cessing, the Constrained IRT method has been previously presented in
[9].

3. Numerical validation on a cracked specimen

The procedure is numerically validated on heterogeneous fields ob-
tained on computer-generated speckle images associated with com-
pletely known kinematic fields: here, the focus will be an intergranular
crack opening in a polycrystalline microstructure.

3.1. Synthetic image generation

Crystal plasticity is usually used in materials science as the consti-
tutive model to describe the response of crystal grains. The objective
of crystal plasticity is to introduce slip elementary features into the
description of plasticity [33]. At the same time, one major interest of
micromechanics of heterogeneous polycrystalline materials is to access
local mechanical fields in a given microstructure associated to surface
strain fields that can be measured [17-19], in order to contribute to
a better understanding of the microstructure dependence of yield be-
haviour during the mechanical loading at granular scales, and to assess
local stress fields in view of developing physically-based damage mod-
els.

For this numerical study, the kinematic field was obtained by di-
rect crystal plasticity Finite Element (FE) analysis for the crystal plas-
ticity law proposed by Cailletaud and Meric [34] and for a given set of
boundary conditions and grain orientations. An aggregate of 50 grains
was generated using a classical Vorono tessellation [35-38], which pro-
vides convex polyhedric grains as shown in Fig. 3. This microstructure is
representative of coarse-grained aluminum having relatively equiaxed
grains of convex shape. The size distribution of grains has been ran-
domly chosen but could be adjusted more precisely if needed. In order
to focus on intergranular cracking, an initial intergranular crack is in-
troduced in the middle of the specimen (colored in black in the middle
of Fig. 3).

The chosen material behaviour obeys the Méric-Cailletaud model,
described in [34] for FCC slip systems. The boundary conditions have
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been prescribed using uniform displacement at the upper and lower
edges of the mesh, and the grain orientations of the microstructure
are randomly chosen to obtain an isotropic texture (and therefore
an isotropic tensile response). Finally, the numerical simulation was
performed using the FE package Code_Aster with a mesh of 11,300
quadratic triangular elements (Fig. 3) in a bi-dimensional framework
under a plane strain assumption [39].

The aim of this FE computation is to provide realistic local kinematic
fields associated with equilibrated stress fields and corresponding to re-
alistic strain and stress heterogeneities.

The intergranular crack generates a discontinuity, in the displace-
ment field on both components, as shown in Fig. 4.

A 2% macroscopic strain is imposed for this numerical study. The
strain field is highly localized around the crack tip, with 2D plastic
equivalent strain' exceeding 12% (Fig. 5).

The simulated displacement field was introduced in a virtual image
generation procedure, as described in [12], to mimic the acquisition of a
serie of speckle images. The initial image with the superimposed initial
microstructure is presented in Fig. 6. It was chosen not to introduce any
artificial image distortion in the synthetic images procedure, in order to
focus solely on the DIC algorithm biases.

! The equivalent Von Mises strain is defined here by: =
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Fig. 6. Reference synthetic image.

To better illustrate the intergranular crack development in the syn-
thetic image, a magnified view of the cracking zone is presented re-
spectively for the reference image (Fig. 7a) and the deformed image
(Fig. 7b).

During the crack opening, the optical flow is not conserved between
the crack lips. To account for this phenomenon, a mask is superimposed
in the deformed image. This mask consists in a black line with a varying
width equals to the computed local crack opening displacement (see
Fig. 7b in the middle).

The robustness of DIC methods with respect to experimental noise is
always a key issue [32,40]. Here, by decreasing the number of indepen-
dent degrees of freedom used to describe the displacement fields, the
proposed method diminishes the sensitivity to measurement noise, but
it adds spatial correlations in the displacement fields due to the linear
constraints between the degrees of freedom. To study the noise prop-
agation in the method, we propose to introduce noise in these virtual
images in order to account for the different error sources in the acqui-
sition chain, as proposed in [32]. Such study will be the subject of a
forthcoming publication.

3.2. Numerical results

This section presents results obtained using various combinations
of processing parameters. Working with images with perfectly known
deformation allows to quantify the processing error by comparing the
kinematic fields obtained by Constrained DIC to that derived from FE
simulation.
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Fig. 8. Regular mesh for DIC processing.

3.2.1. Kinematic validation

In this part, three processing results are presented. The three combi-
nations of parameters associated with these three processing cases are
precised below:

e processing parameters for study-I:
e Regular mesh (with 1640 elements), as shown in Fig. 8.
¢ No continuity restriction between any element.
e Bi-linear shape function (with respect to both variables, X and
Y) for kinematic description of each element (8 parameters per
element), as introduced in Eq. (10).

u (X,Y,py) =ap + aj X +ag Y +a XY

(10)
w, (X, Y, py) = bog + bigX + by, Y + by XY

e The associated number of DOFs introduced to describe the kine-
matic field is then 8 x 1640 = 13120
¢ processing parameters for study-II:
e Microstructural mesh (with 1513 elements), as shown in Fig. 9.
This mesh is consistent with the material microstructure.
¢ No continuity restriction between any element.
e Bi-linear shape function as introduced in Eq. (10).
e DOFs =8x1513 = 12104
e processing parameters for study-III:
e Microstructural mesh, as shown in Fig. 9.
e Exact continuity restriction applied to all adjacent elements
within each grain. These restrictions impose intragranular conti-

L]

100¢
200+
300

400¢

1\
IYTrrrrTi

500~

Y (pixel)

600:
700¢
800

900-
1000

n L

200 400

600
X (pixel)

800 1000

Fig. 9. Microstructural mesh for DIC processing.

nuity, but they allow the development of intergranular disconti-
nuity (cracking).

¢ Bi-linear shape function as introduced in Eq. (10).

e DOFs = 1372

The study-I is equivalent to a classical local DIC. The study-II is a
equivalent to a classical local DIC using a non regular mesh consistent
with the microstructure. The study-III is a Constraint DIC analysis with
imposed intragranular continuity restriction.

Naturally it is important to quantify the data processing error with
the proposed method. The error is defined as the difference between the
calculated results and their imposed “theoretical” values. In order to fa-
cilitate the interpretation of error maps, we will only focus on equivalent
Von Mises strain field (seq), averaged on each element.

The reference field for both regular and microstructural meshes
are obtained by integrating the FE-computed equivalent strain on each
mesh. They are represented in Fig. 10.

Figs. 11-13 show the error distributions for the aforementioned three
studies. The Mean Error (ME) and its Standard Deviation (SD) are re-
ported in Egs. (11)-(13).

dy- -
ME (egq ¥ = eBter) = —0.59 x 10~ an
SD (62;udy4 _ Ezekéter) =6x 1073
Study-IT _
ME (g5, — ehster) = —1.581 x 1074 .
SD (Ezaudydl _ Eze\;ter) =6x1073
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The error distributions are very different from one analysis to an-
other, but they correspond to very similar global levels in Mean Error
(ME) or Standard Deviation (SD).

It is important to point out that, for an equivalent level of perfor-
mance, Study-III uses ten times less DOFs than the two others. Conse-
quently, Study-III will be much more robust against the noise.
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Fig. 13. Element-averaged error map(e sg\é‘e') for Study-IIL
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The strain errors are highly localized around the crack tip for the
three studies. The first reason is due to the non conservation optic flow
in this region. The second one is the presence of strong strain gradients
at the rear of crack tip. Everywhere else, the error level is smaller and
is randomly distributed.

The Study-III gives the highest error levels because of the reduced
number of DOFs, that generates a coarser kinematic description.

3.2.2. Crack description

A local analysis will now be conducted focusing on the crack lips. The
displacement jump profiles computed for the different methods will be
used to quantify their performances in capturing discontinuities.

Indeed, the displacement jump is defined in the local Normal-
Tangential coordinate system of the crack as the difference between the
measured displacement in the lower side of the crack and in the upper
side.

Fig. 14represents the evolution of the normal displacement jump for
the different processing along the crack. In this figure, the FE-simulated
displacement jump profile (Aster) gives the reference in red.

The results obtained for Study-I (green one in Fig. 14) are very dif-
ferent from the reference ones. Indeed, in this case, the mesh is regular
and is not consistent with the microstructure, so the crack crosses the
elements used for DIC processing. Furthermore, the shape functions are
continuous within each element, but they are discontinuous from on el-
ement to another (i.e. on each element boundary). Consequently, the
discontinuity remains very challenging to capture in this case.

However, the Study-II (local DIC with microstructural mesh) pro-
vides a slightly closer displacement jump profile (in cyan) to the refer-
ence one. In fact, the crack physically contains 5 elements. And the im-
portant displacement jumps are found at each element changing, since
no continuity restriction is imposed along the crack between the ele-
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Fig. 15. Identification of the intergranular crack via the normal displacement
jump.

ments. As expected, the displacement jump evolves quadratically inside
each element by using the bi-linear shape functions.

With the study-III, a rigorously continuous displacement jump pro-
file is obtained (in blue), which is even closer to the reference curve.
But the trend is not exactly similar. This observation is likely the con-
sequence of a too high number of kinematic restrictions. In fact, the
continuity restriction is imposed on all the boundary points (exact con-
tinuity restriction), so there is not enough DOFs for an accurate local
kinematic description.

In order to increase the number of DOFs for the kinematic descrip-
tion, the level of the imposed continuity restriction is decreased. Instead
of imposing the continuity condition for all the points along each ele-
ment boundary within each grain, a partially relaxed continuity restric-
tion is applied. This condition consist in enforcing continuity only on
the two extremes points of the boundary instead of the full boundary.
The relaxed continuity allows to have more DOFs number (= 4290 com-
pared to 1372), resulting in a better local crack description as shown in
black in Fig. 14, which is referred to as Study-III-Partial.

Using the result of the last study (with partial continuity condition),
we can additionally investigate the normal displacement jump (u,) for
all the grain boundaries (according theirs local Normal-Tangential co-
ordinate system) inside of ZOI and draw all of them in the Fig. 15.
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Fig. 16. Initial microstructure analysis of specimen (60 x 20 mm?).

Table 1
Main camera characteristics.

Image size (pixel) Scale factor (um /pixel) Frame rate (Hz)

512x 640 97 40
1280 x 800 45 80

Cedip Titanium
Phantom V12

As expected, the displacement jump is only found in the introduced
cracking zone. In the Fig. 15, the width of the segment corresponds to
the amplitude of the displacement jump, and the width corresponding
the maximum displacement jump is represented in the legend of figure.
And the blue color is for negative jump and the red color is for positive
jump. With such investigation, only the introduced intergranular crack
is clearly identified and localized, so, the discontinuity capturing ability
of Constrained DIC method is obviously demonstrated.

For this numerical validation section, the comparison of kinematic
fields (displacement and strain) calculated by Constrained DIC and ob-
tained by FE simulation is conclusive and validates our methodology. In
the following paper, this Constrained DIC data processing method will
be applied on experimental test, which can potentially be coupled with
the local thermal measurement method [9] for the grain-scaled energy
balance establishing.

4. Experimental procedures and results
4.1. Microstructure analysis

In this experimental study, the as-received material used consists in a
3 mm thick aluminium sheet, grade A1050. The chemical composition
of this material and the sample preparation procedure is reported in
[6].

The initial microstructure is analysed by EBSD before mechanical
testing and the microstructural map is represented in the following fig-
ure:

Each color in the Fig. 16 corresponds to a crystal orientation (inter-
preted here as a grain) and the white line materializes the high disori-
entation zone associated with grain boundaries. The green frame in this
figure corresponds to the Zone Of Interest (ZOI) defined in the CCD and
IR coordinate systems (see Fig. 17) but transported in the EBSD coordi-
nate system.

4.2. Experimental setup

In this study, mechanical (load-unload) tensile tests are performed
at room temperature with a hydraulic testing machine (MTS-810) in
a displacement-controlled mode. A simultaneous observation of both
sides of the sample is performed by the CCD and IR cameras. The main
characteristics of the cameras are reported in Table 1.

Thanks to a spatial matching procedure [6], the grain boundaries
(white in Fig. 16) are respectively transported in the CCD and IR coor-
dinate systems (in Fig. 17a and b).

In Fig. 17, the contour of the grain boundaries given by EBSD analysis
are represented in black. In the ZOI (green frame), this microstructure
is then “simplified” in order to obtain meshes with a “reasonable” size
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for the image correlation and the calorimetric analysis. According the
different spatial resolution of the CCD and IR cameras (Table 1), the
mesh sizes used here for the kinematic and the thermal analysis are
respectively 18 pixels and 40 pixels.

4.3. Macroscopic response

The macroscopic response of the aluminum sample for this load-
unload tensile test (in Y direction of Fig. 17) until failure is reported
in Fig. 18. The mechanical loading is represented in blue, the macro-
scopic kinematic and thermal responses (i.e. averaged over the ZOI) are
respectively represented in green in the Fig. 18a and b.

4.4. Full field analysis

After the macroscopic temporal evolutions, the grain-scaled result
will be presented in this section. The Constrained DIC method is used in
order to perform the full field analysis. In this paper, the results at the
loading state specified by the D loading step (in Fig. 18a) are presented
at first.

4.4.1. Displacement fields

As illustrated in Fig. 17a, there are 8 grains inside of ZOI. The data
processing applied here involves a displacement continuity for all the
adjacent elements within each grain, and no continuity relation on the
grain boundaries, which is equivalent to an intragranular displacement
continuity inside of each grain. A bi-linear shape function is used for
the local kinematic description for each element. And the SSD criterion
(Sun of Squared Differences) is used for DIC processing, as mentioned in
Eq. (7).

In this stage of the post-processing, the grain-scaled displacement
fields in the two directions are obtained with the Constrained DIC
method. These displacement fields are represented in the Lagrangian
configuration, as shown in Fig. 19. We can naturally represent the dis-
placement fields in their Eulerian configuration.

4.4.2. Initial and deformed measurement mesh

Using the obtained displacement fields (in Fig. 19), the initial kine-
matic mesh (Fig. 17a) can be deformed to obtain the current one in the
CCD coordinate system (Fig. 20a). Using the spatial matching proce-
dure, the initial and deformed thermal mesh can be also represented in
the CCD coordinate system (Fig. 20b) and then in the IRT coordinate
system.

In Fig. 20, the initial and deformed computational mesh (DIC and
IRT) are presented, together with the corresponding deformed visible
image. Using this procedure, the microstructure evolution can be mon-
itored in real time during the test.

4.4.3. Equivalent Von Mises strain field

The deformed mesh and the deformed image corresponding to the
same loading step D are presented in Fig. 21, and the color of mesh (ex-
cept the mesh contour in yellow) are represented the equivalent strain
level in the current configuration.

This figure illustrates the heterogeneous development of plasticity
between and within grains (strain localisation).

Apart from the strain localisation in different grains, a kinematic
jump is clearly identified in the area surrounded in magenta (in Fig. 21).
In fact, this area is corresponded the location where the initial crack is
identified.

4.4.4. Initial crack

In Fig. 22a, the equivalent strain field for loading step C (in Fig. 18a)
with the corresponding deformed image has been presented in Eulerian
configuration.

The distribution of strong strain localization and the kinematic jump
are clearly identified in the same area as shown in Fig. 21. In addition,
kinematic jump is better highlighted in Fig. 22b, from which the initial
crack can be remarked.
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Fig. 20. Initial and deformed mesh represented in the CCD coordinate system
for loading step D.

4.4.5. Ultimate fracture

For the loading step 2 in Fig. 18a, the corresponding equivalent strain
field with the deformed image is presented in Fig. 23a. And, the zoom
of this representation is shown in Fig. 23b.

With the tracking operation of the microstructure, the initial crack
can be always localized until the last stage of test, despite the coating
is well degraded. This phenomena demonstrates that the displacement
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Fig. 21. Equivalent strain field in Eulerian configuration for loading step D.

fields obtained by Constrained DIC, used then for the computational
mesh monitoring operation, are suitably corresponded the real defor-
mation during the experimentation.

Simultaneously, the ultimate fracture is also clearly identified with
Constrained DIC method. For a better illustration, the ultimate crack is
highlighted by a white dashed line in the Fig. 23b. The ultimate frac-
ture has occurred exactly at the most deformed locus as revealed by the
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Fig. 22. Kinematic field obtained at loading step C in the Eulerian configuration.
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Constrained DIC processing. Moreover, an incremental strain computa-
tion is used for this data processing, so a strain exceeding 100% was
obtained in this final stage of experimentation.

5. Conclusion

Through this paper, a kinematic data processing method is pro-
posed, which is possible to take into account directly the microstruc-
ture for the computation of the displacement field and the strain field.
Using this method, the more or less complex kinematic description
can be performed with the different shape functions. And, the in-
tergranular and/or the intragranular effect can be explicitly consid-
ered in the data processing procedure, via the different type of re-
striction and the different level of restriction. The material effects can
be explicitly introduced in the data processing procedure, while re-
specting the physical microstructure given by EBSD analysis, is the
key feature of this proposed method, which fit the polycrystalline
problem.

The validation procedure of the proposed method is performed on
a numerical example, which is associated with a complex situation
corresponding a cracked polycrystalline aggregates. Despite the im-
posed kinematic fields are very heterogeneous with strong gradient,
however, for a 2% measured macroscopic strain (more than 10% lo-
cally), the obtained results show a quantitatively correct estimate with
the Mean Error and the Standard Deviation being respectively in or-
der of magnitude of 103 and 107*. All of these results are conclusive
to validate our methodology. Furthermore, for completely enclosing
this numerical validation stage, the robustness of the proposed method
with respect to superimposed noise should be investigated in more
detail.

Afterwards, this proposed method was applied to a real experimental
application. If we focus only in the kinematic part, a very early crack
detection is shown with the obtained result. Then, we can also follow
the specimen deformation until the ultimate fracture with the kinematic
analysis.

In a general way, using the Constrained methods (DIC and TIR [9]),
the local distributions of strain and temperature fields can be measured
in the coarse-grained aluminium polycrystal. Therefore, the different
local thermomechanical variables can be characterised specifically for
each grain (without introducing correlations with the response of adja-
cent grains).

By construction, such measurements can potentially be confronted
to EBSD analyses which giving the grains initial orientation, in order
to estimate the local stress fields within each grain that are needed to
determine the deformation energy locally developed [41]. This is the

last step required for the proposition of a complete energy balance at
the scale of grain.

Appendix A. Appendix : analytical example for restriction matrix
construction

We propose here to illustrate this Constrained DIC method in the an-
alytical case that the continuity restriction is imposed on the displace-
ment vector between two elements (elements i and j) in Fig. 2 with a
relatively “horizontal” boundary.

Two analytical examples will be presented to introduce normal con-
tinuity and tangential continuity on the boundary [ between the ele-

ments i and j. For both cases, a bi-linear shape function is chooses for
both elements i and j:

e Bi-linear shape function for element i:

W, (Xceps Yeeps Py) = Gy + a0 Xcep + g Yeep + ), XcepYeen
“ly(XCCDs Yeeps Py) = byy + b0 Xcep + by Yeep + b XcepYeen
(14)

¢ Bi-linear shape function for element j:

j N — J J J
u,(Xcep, YCCDvij) =ay, +a,Xcep + a5 Yeep + a XeepYeep
j AN J j J
uy(Xcep, YCCD7pjy) = by, + by Xcep + bf)l Yeep + by, XcepYeep
(15)

Hence, it is noted that the two displacement vectors of the element
i and j are expressed as follows:

i u; i [ w
u_<uiy )andu1—<ll ) (16)

For a relatively “horizontal” boundary likes in Fig. 2, by combing
Egs. (3) and (16), the continuities on displacement in the normal and
tangential direction could be written:

(5 TNS o TN

¢ Normal continuity restriction of displacement
i NU =W NIVX.Y) el
soit( uoou )( _;1” >—( u W )( _{I“ >=0 a7
= —auu;+auuj;(+u§,—ujy =0
e Tangential continuity restriction of displacement
i TV = TUV(X.Y) el

soit( i ul )(; >_( d )<a1

u u

) =0 (18

i J i J—
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¢ Introduction of the Normal continuity restriction on displacement -
In order to take into account a normal continuity restriction on displacement on the relatively ”horizontal” boundary [/ likes in Fig. 2, we
introduce the Egs. (14) and (15) in the expression of the restricton (17):

2 at i J 2 i J j
{ o, ay, +otuaI1 +a,b), - aub”} ccp +{(—aua|0+aua;0+b b]0)+ ( @, ay, +otuao1 +aub0] ub{“)
i J i J i J i J i J —
+ (b, + ol + By = B, ) PXeen + { (—auahy + aualy + by = by ) + (b, + abuhy + By = By ) } =0

Thus, we obtain a polynomial expression of degree 2 in X.cp. For this condition to be respected, each coefﬁcent of the monomials of
i

Xcep must be equal to zero, which gives 3 linear equations with respect to the unknown parameters p' (aOO, 10 01’“11’1700’ blo’bor 11) and

p/(aOO, ”10’ 01, “, b{m, b’l o b{n, 1 l) These linear equations could be presented in matrix form as follow:
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Note that a similar system can be obtained if the continuity is enforced “only” on a set of points on the boundary /7.
o Introduction of the Tangential continuity restriction on displacement
In the same way, taking into account of the tangential continuity restriction on displacement on boundary I,/ gives:

i 2 i 247 i 247
{“uall wal, + b, — ubll} CD+{< 40~ +0‘ub10 aubm) (“uam a,ay, + by — ub01>

+ (ﬂuai” - ﬂuajll + auﬁubil - auﬁubjll ) }XCCD + { ((léo + aub()() a, 00> (ﬁu 01 ﬂuaél + auﬂubi)l - auﬂub{n )} =0

This system is written in matrix form as follow:

o

0 1 ay, ﬁu 0 a, a2 auﬁu 0 -1 oy _ﬂu 0 -y - _auﬁu }1 ¢ =
1 0 § 0 a O ap O -1 0 -4 O -, 0 -a,f, O 90

(20)
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The two systems (Egs. (19) and (20)) correspond to the separate introduction of normal and tangential continuities on the boundary. It is possible
to simultaneously introduce these two continuities on the same boundary, by assembling the normal restriction matrix (A%N) and the tangential

restriction matrix (AiljJT) to construct the normal-tangential restriction matrix AiljJ which takes into account these two types of continuity at the same
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] is the kinematic elementary restriction matrix between element i and j, and {P'IJI} is the elementary vector containing

b{d) for these two adjacent elements i and j.
By iterating this operation for all boundaries on which continuity restrictions are applied, a global kinematic restriction matrix Ay is built for the

mesh, as well as a global vector Py containing all the kinematic parameters, like in Eq. (6).

Supplementary material

Supplementary material associated with this article can be found, in

the online version, at 10.1016/j.optlaseng.2018.08.003
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