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A linear-complexity second-order multi-object filter
via factorial cumulants

Daniel E. Clark and Flavio de Melo

Abstract—Multi-target tracking solutions with low computa-
tional complexity are required in order to address large-scale
tracking problems. Solutions based on statistics determined from
point processes, such as the PHD filter, CPHD filter, and newer
second-order PHD filter are some examples of these algorithms.
There are few solutions of linear complexity in the number of
targets and number of measurements, with the PHD filter being
one exception. However, the trade-off is that it is unable to
propagate beyond first-order moment statistics. In this paper,
a new filter is proposed with the same complexity as the
PHD filter that also propagates second-order information via
the second-order factorial cumulant. The results show that the
algorithm is more robust than the PHD filter in challenging
clutter environments.

Index Terms—Multi-target tracking, point processes, factorial
cumulants.

I. INTRODUCTION

Due to the practical demand and complexities of multiple
target tracking, there have been many different approaches
to addressing the problem. Methods for multiple hypothesis
tracking have attracted a great deal of attention since they
provide an intuitively appealing basis for designing an en-
gineering system, eg. [1]-[4]. Methods for managing joint
multi-target probabilities [5]-[7] represent a different way
of dealing with data association ambiguities. Methods based
on nearest neighbour assignments [8], [9] provide pragmatic
solutions to dealing with data association assignment. More
recently, closed-form solutions to a class of multi-target
tracking problems have been developed [10]-[12], which are
gaining attention for scenarios where there is a prioritisation
of estimation accuracy over computational complexity.

Methods based on point processes [13]-[17] and random
finite sets [18] have also attracted a lot of attention. In
particular, the applications of methodology developed in the
context of random finite sets have proved to be popular [19]-
[25]. Specifically, methods based on propagation of first-order
moment statistics of a point process, or intensity function, have
been developed for addressing tracking problems, eg. [19].

Methods for propagating higher-order information have
been proposed [20], [26], [27]. It has been shown that the
popular CPHD filter [20] can have undesirable behaviour [28],
which has been shown to be due to strong negative correlations
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being induced after Bayes’ rule [29]. More recently, second-
order filtering solutions have been proposed that propagate the
mean and variance in target number [29].

In the current paper, a new linear-complexity multi-target
filter is derived and implemented that propagates second-order
factorial cumulants. It is shown that the filter is more robust
than the PHD filter while maintaining the same run-time. This
is achieved by making a different approximation on the joint
target-measurement process before applying Bayes’ rule.

The paper is structured as follows: Point processes are
described in the next section in terms of functionals, namely
the probability generating functional the factorial cumulant
generating functional, and statistics in terms of factorial mo-
ments and factorial cumulants and their connections. Section
IIT describes point process models, including the Poisson
process and the negative binomial point process via the
Laplace-Stieltjes transform, and the extension to the Panjer
point process. Section IV presents the algorithm description
in terms of propagation of the first two factorial cumulants.
Section V shows some experimental scenarios comparing with
the PHD filter. The paper concludes in Section VI. The
appendix presents the mathematical proofs of the algorithm
specification. Algorithm 1 presents the algorithm pseudo-code
of a Gaussian mixture implementation based on a similar
approach to the Gaussian mixture PHD filter [21].

II. POINT PROCESSES

In this section we describe point processes [30], [31]
and their statistical descriptors, including factorial moments
and factorial cumulants. We denote by X C R9% the d,-
dimensional state space describing the state of an individual
object. A point process ® on X is a random variable on
the process space X = |J,~, A", i.e., the space of finite
sequences of points in X. A realisation of ¢ is a sequence
o= (x1,...,2,) € X™, representing a population of n ob-
jects with states z; € X. Point processes can be described
using their probability distribution Py on the measurable space
(%X,B(X%)), where B(X) denotes the Borel o-algebra of the
process space X [32]. The projection measure Pé”) of the
probability distribution Py on X™, n > 0, describes the
realisations of ® with n elements; the projection measures of a
point process are always defined as symmetrical functions, so
that the permutations of a realisation ¢ are equally probable.



A. Generating functional representations

The probability generating functional (p.g.fl.) Gg of a point
process ® is defined by

Z/[Hm

n>0

" (dzrin), (D

respectively for test function h : X — [0,1]. The factorial
cumulant generating functional (f.g.fl.), is defined by

Ca(h) = In(Go(h)) . 2

We can construct the f.g.fl. through the definition of Khinchin
measures as follows. Let {Kén)}nzl be a sequence of mea-
sures and consider a point process defined through the p.g.fl.

Go(h) = exp (Ca(h)) @)

where

Colh) = KO +3 / (@1) - () K§ (dorn), (4)
n>1

and

n>1

ensures that Go(1) = 1 and therefore G is a p.g.fl.. The
Khinchin measures were recently used to determine results
for Bayesian estimation of multi-object systems with indepen-
dently identically distributed correlations [33] by considering
a bivariate version defined in an analogous way. We shall use
the bivariate Khinchin process to determine the key result in
the paper via application of the Laplace-Stieltjes transform.

B. Factorial moments and factorial cumulants
(n)

The n-th order factorial moment measure vy
process ® are the measures on X™ such that [32]
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of a point
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for any regions B; € B(X), 1 < ¢ < n. The notation 15
denotes the indicator function, ie., 1g(z) = 1 if x € B,
and zero otherwise. Factorial moments and cumulants can be
determined from the following derivatives using derivatives as
described in [38].

(n)(le
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XB,L) :(Snc(p(h;]lBl,...,]an)‘hzl. (8)

Setting the directions to be indicator functions 1p,,...,1p,
and evaluating at h = 1, noting that Go(1) = 1, we find
expression for the factorial cumulants in terms of factorial
moments,

c&")<le-~-xBn>:6“<1nogq>><h-1131, 15|
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where ng‘)(w) is taken to mean that the factorial mo-

ment is evaluated on the product of terms in w, which
are subsets of partition 7, in the set of all partitions of
the TI(By,..., By) of elements By, ..., B,. This result was
given in [30, p202] though without explicitly determining
via differentiation. Hence, we have the relation for nt*-order
factorial cumulants in terms of factorial moments determined
via derivatives of the generating functional. This will be used
to determine the results for different point process parameter-
isations. The inverse relation is found to be
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where Cp(1) = 0. Note that the second-order cumulant is
related to the mean and variance with
¢y (B, B) = vara(B) — pia(B).

which will be important for filter assessment.

(1)

III. POINT PROCESS MODELS

This section describes the models that will be used to form
approximations in the point process prior used before the
update. In particular, we describe the Poisson point process and
determine the over-dispersed negative-binomial point process
via application of the Laplace-Stieljes transform. We then
describe the relation between the negative-binomial process to
the Panjer point process [29] which encompasses the negative-
binomial, Poisson and binomial processes within the same
model.

A. Poisson point process

A Poisson point process with parameter A and spatial dis-
tribution s is a process with spatial distribution s, whose size
is Poisson distributed with rate A. Its Probability Generating
Functional (p.g.fl.) is given by

Gt () = exp ([ 100) = tae) ). 12)

where the intensity measure p of the process is such that
p(dz) = As(dx). It can be shown that the first-order factorial
moment and the variance of a Poisson process are equal when
evaluated in any region B € B(X), i.e., ua(B) = vars(B).
In other words, the random variable describing the number
of objects within B has its mean equal to its variance. The
factorial cumulant generating functional (f.g.fl.) is then

Craan(h) = [ (h(2) = 1) () (13)
This is a linear, functional so computing cumulants are zero
for orders greater than 1, and the first-order cumulant is equal
to the first-order factorial moment, i.e.
= pu(B).

) (B) (14)



B. The Laplace-Stieljes transform and the negative binomial
point process

This section follows the work by Bates and Neyman [34]
on accident proneness, with adaptation from probability gen-
erating functions to probability generating functionals. Let
us consider the multi-variate probability generating functional
describing a mixture of n Poisson processes that are condi-
tionally independent on the same parameter ), i.e.

G(h1,...,hnl)) = exp <>\Z / ) —1] s d@),
(15)

where, for instance, ., a; = 1. Then the unconditional
process after margninalisation over random variable A is found
via the following expectation

G(hi, ... .hn) =E[G (hy,...,

hn|A)]
[ (Aza, /
{Zal/ d:c)}

where the Laplace-Stieljes transform of a distribution F'()\) is
defined with

(16)

d@) dF()\)

Lr(t) = /OO e NE(N). (17)
0

If we take A to be Gamma distributed with o, 5 > 0, i.e.

B ar
— (03 xr 1
pa(z) T ¢ (18)
then the unconditional process becomes
G(h1,...,hy <1+62a2/ s;(dx)
(19)

This can be viewed as a kind of multi-variate negative binomial
distribution. Univariate and bivariate instances of this formula
can be found by restricting the number of terms in the
summation to be one or two. The reason for introducing this
approach here is that the same reasoning will be applied when
considering a bivariate p.g.fl. which has an exponential form
constructed with Poisson processes to determine an alternative
bivariate p.g.fl. that is able to retain second-order information.

The following section describes the Panjer point pro-
cess [29], based on the Panjer distribution [35], which extends
the negative binomial by considering negative « and .

C. Panjer process

A Panjer point process is a process whose size is Panjer
distributed with parameters v and 3 with spatial distribution
s [29], [35]. For finite and positive « and S, the Panjer
distribution describes a negative binomial distribution. For
finite and negative o and 3 we obtain a binomial distribution.
The limit case «, 8 — oo with constant ratio A = % yields a

Poisson process with parameter A [29], [36]. The p.g.fl. of a
Panjer process with parameters «, § is given by [29]

1 —Q
gPanjer(h) = (1 + E /[1 — h(CC)]S(dI)) .
The f.g.fl. of the Panjer process becomes,
CPanjer(h) =—aln (1 + = ﬂ / 1 — (d.’E)) 21

which takes a very similar form to the f.g.fl. of the Bernoulli
process. Hence, the cumulants become

(20)

«
e e (Bix - xBy) = (n — D! 5rs(Br) - s(Ba). (22)
Thus when By = By = X,
1 o 2 «
%’a)njcr = B’ C%’a)njcr = @a (23)
and hence
g) 2 ;1) )
anjer _ anjer
CPanJer CPaunjer

IV. ALGORITHM SPECIFICATION

In this section, the new linear-complexity filter and it
assumptions are presented. The multi-target model and general
assumptions are based on the work [19]. The key difference
is that correlations are maintained into the bivariate proba-
bility generating functional through the insight in Bates and
Neyman [34] that dependencies can be introduced in func-
tionals that take an exponential form through the application
of the Laplace-Stieltjes transform. The proofs are given in
the Appendix and the algorithm pseudo-code is described in
Algorithm 1.

A. Time prediction step (time k)

In the time prediction step, the posterior target process
@)1 is predicted to Pp,_; based on prior knowledge on
the dynamical behaviour of the targets. The assumptions of
the time prediction step can be stated as follows:

Assumptions IV.1.

(a) The targets evolve independently from each other;

(b) A target with state x € X at time k — 1 survived to
the current time k with probability ps (x); if it did so,
its state evolved according to a Markov transition kernel
trik—1(|2);

(c) New targets entered the scene between time k — 1 and k,
independently of the existing targets and described by a
newborn point process ®v, i, with p.gfl. Gy, .

The following theorem describes the prediction of the nt"
order cumulant.

Theorem IV.2 (Factorial cumulant prediction). Under As-
sumptions 1V.1, the nt"-order factorial cumulant of the pre-
dicted target process @y, is given by

(n) (le..

Chl—1 XB, )—c{)",z(le...xB )+c(k)(Bl>< XBy),

(25)



in any B; € B(X), where ¢y is the n'"-order factorial
cumulant of the process describing the surviving targets

cifz,)(le .. X By) =

[ T pestetinea(Brlad e, (o,
=1

(n)

(26)

In the algorithm factorial cumulants are computed as fol-
lows. The first-order factorial cumulant density c,(:l,)e_l(x) is
the same as prediction of the first-order factorial moment
density as calculated in [19]. The predicted second-order
cumulant is a scalar computed over the whole state space,

ie. c,(i)l(X x X).
B. Data update step (time k)

In the data update step, the predicted process @y p_1 is
updated to ¥, given the current measurement set Zj, col-
lected from the sensor. This is achieved through the following
assumptions:

Assumptions IV.3.

(a) The bivariate target-measurement process IS approxi-
mated by a Panjer process determined via the Laplace-
Stieltjes transform of a bivariate Khinchin process linear
in both arguments.

(b) A target with state x € X is detected with probability
pak(x); if so, it produces a measurement whose state is
distributed according to a likelihood 1i,(+|z).

(c) The clutter process is described by intensity function
e,k (%), and second-order cumulant 62213 (2,2).

Theorem IV.4 (Factorial cumulant update). Under Assump-
tions IV.3, the n*M-order cumulant of the updated target
process Dy, is given by

AM(By x ... x By) =

o 1y ([ (i 12D ()
. (ak\k—l+Mg(xvz)+)‘6,k(z))n

27)

Wi(By) . i (Ba)
57 (S pa@El2)el])(d2) + Aer(2)

in any By,...,B, € B(X), where the missed detection term
uf is given by

ul(B) = /B (1= pas(@)el))_, (dz).

and where we have the following terms relating to detection
statistics

4 (_1)71—1

(28)

ii(B) = [ pas(elioe]_, (@) 29)
B

(X, Z) = / / Par(@l(dzle)cl)_ (dx)  (30)

xJz
and the parameter o ,—y is computed with
2
(e (X, 2) +Ae(2))
O‘k}\k—l = (2) 2) (31)

Crj—1 T Cok

Similar to the prediction step, the first-order cumulant den-
sity c,(cl)(x) is calculated along with the second-order factorial

cumulant computed over the whole space, c,(f)(X x X).

Implementation issues

A closed-form solution to the algorithm developed is pre-
sented in Algorithm 1 in the appendix. It is based on the
solutions developed for PHD filter [19], CPHD filter [20], and
second-order PHD filter [29], eg. [21], [22], [29]. The filter
is the same complexity as the PHD filter with target-number
variance [37], if the variance is computed over the entire state
space. Compared with the Gaussian mixture PHD filter [21],
with linear-complexity analysis presented in Section III.C of
that work, in the prediction step, there are the following
additional calculation to compute the predicted second-order
cumulant,

(2) (2) ()

Chlk—1 = PikCio1 oy (32)

1
oot = (g T Aek)?/ (e, + e
and in the update, there is additional calculation of the
following terms defined in Algorithm 1,

. 2
() _ (,9)2; _ ( P ) 34
s (1) 12(9) z;k Wt den(®)) 34

01(8) = (a1 + |1 21)/ (apo—1 + 1) (35)
l2(¢) = (ovgjp—1 + | Z))/(Qkp—1 + 1l + Ae)®. (36)
V. NUMERICAL EXPERIMENTS

In this section, we present experimental results for an illus-
trative example, under parametric evaluations that vary either
the clutter model, number of targets, average number of false
alarms per frame, or probability of detection. These parametric
evaluations intend to show differences of performance of
the PHD, CPHD and linear-complexity cumulant-based (LC-
Cumulant) filters for different ranges of settings.

Let us consider a two-dimensional scenario within the
region [—1000,+1000] x [—1000,+1000] (m x m). Each
target is described by its state vector = (s, py, Vs, vy) 7T,
where (p;,py) is a pair that specifies a position in Cartesian
coordinates and (vg,v,) is the pair specifying velocity in
the same coordinates. Each target moves at nearly-constant
velocity, with transition matrix and state process covariance
matrix given respectively by

P ( I, IL,At ) 0= ( At /3 T,At?/2 >a2

T\ 0 I T\ LA22 TAt @
where [, and O, are the identity and zero matrices with
dimensions 2 x 2, At = 1s is the sampling period, and the
standard deviation of velocity increments is characterized by
oq = 1m/s?, Probability of survival is set as p, = 0.99.
A sensor collects Cartesian position measurements character-
ized by the output matrix and measurement noise covariance
matrix, H = ( Iy 02 ) and R = Iy02, respectively, where
o, = 10m is the standard deviation of the measured positions.
False alarms can happen according to a Poisson point-process



with intensity M. (2) = Ac - sc(z), where A, is the average
number of false alarms per scan, and s.(z) is the spatial dis-
tribution of clutter, assumed uniform in the surveillance region
with “volume” V' = 2000% m2. The example is simulated for
T = 100s. Targets appear in batches at positions uniformly
sampled within the area [—800, +-800] x [-800, +-800] (mxm),
with random velocities uniformly sampled within the ranges
[—10,+10] x [-10,+10] (m/s x m/s).

By denoting V; as the total number of targets that appear in
the scene, the batches of target appearance are set as follows:

e 0.25N; targets are already in the scene at ¢t = 0 and will
remain up to ¢ = 100s with exception of 5 targets that
are set to disappear at ¢t = 80s,

e 0.25N; targets appear at ¢ = 20 s and remain,

o 0.25N; of targetsappear at t = 40 s and remain,

e 0.25NN; of targets appear at ¢ = 60s and remain,

« from NV, targets in the scene, 5 targets disappear at t =
80s and the remaining N; — 5 stay up to ¢ = 100s.

The birth process is a Poisson pomt-process with inten-
sity function pp(z) = 24 )/\/'( mb ,P(Z)), where
wi = N, /(4T /At), m{" = ( 500, —500,0,0)T, m? =
(=500, 4+500,0,0)T, m® = (+500, —500,0,0)7, &
(+500, +500,0,0)T, Pb&) = diag(500%I, 02112), for —
[1..4], where diag(A, B) is a block diagnoal matrix formed
whose blocks are the matrices A and B.

For all filters, pruning of Gaussian components is based
on the weight threshold 7, = 1077, merging is performed
with threshold of 7, = 4m, and the number of maintained
components is limited at Jy,,x = 100 (see [21] for details on
the pruning and merging procedure). Measurements are gated
with gate-size probability of pgye = 0.999. The cardinality
distribution for the CPHD filter is estimated to a maximum
of nmax = 2Ny terms. This maximum number of cardinality
terms has been chosen to keep the CPHD filter computational
effort competitive in relation to the other filters for difficult
scenarios. The LC Cumulant filter is evaluated in comparison
to the PHD and CPHD filters for four different cases.

Case 1: For N, = 50 targets that appear in the scene,
pa = 0.80, A\c = 10 number of false alarms per scan on
average, all filters are tested for three different clutter models:
a) Poisson process with . = A, = 10 and var, = 10, b)
binomial process with p. = A. = 10 and var, = \./20 =
0.5, ¢) negative binomial process with p. = A, = 10 and
var, = 20\, = 200.

Case 2: For pg = 0.90, A\, = 10 false alarms per
scan on average (Poisson distribution), filters are tested for
different numbers of targets that appear in the scene, N; €
{10, 20, 30, 40, 50}.

Case 3: For N; = 20 targets, A, = 10 false alarms per scan
on average (Poisson distribution), filters are tested for different
probabilities of detection, p; € {0.60,0.70,0.80,0.90,0.99}.

Case 4: For Ny = 20 targets, pg = 0.90, filters are
tested for different numbers of false alarms per frame (Poisson
distribution), A\, € {10, 20, 30,40, 50}.

For each case, 200 Monte Carlo (MC) runs are performed,

each with independently generated clutter, and independently
generated (target-originated) measurements for each trial. For
all filters, performance is evaluated in terms of:

« mean Optimal Subpattern Assignment (OSPA) metric for
cut-off cospa = 100 and norm order pospa = 1,

« root-mean-square error (RMSE) of the estimated number
of targets, and

e computation time (per time step).

All indexes are averaged over time steps and consolidated for
all values of the varying parameters.

A. Results

Case 1 : For this case, Figures 1a—3b present, the mean
OSPA over time, and the cardinality mean and standard
deviation over time for the PHD, CPHD and LC Cumulant
filters, where we can perceive the advantage of estimating
second-order information on the target number. The LC Cumu-
lant filter maintains second-order information about the target
number via the second-order factorial cumulant.

It is clear from the figures that, the performance of the LC
Cumulant filter is similar to that of the CPHD filter, but at
a computational cost that is practically the same as that of
the PHD filter. In all three subcases, with Poisson, binomial
and negative-binomial clutter models, the PHD filter under-
estimates the correct number of targets due to the difficulties
imposed by a relatively low probability of detection pg = 0.80,
non-Poisson clutter, and closely spaced targets.

Case 2 : The consolidated performance indexes for case
2, averaged over all time steps for different numbers of
targets, N; € {10,20,30,40,50}, are shown in Figures 4—
6. In general, the performance of the LC Cumulant filter is
not much different from that of the CPHD filter, but at a
lower computational complexity. In terms of average mean
OSPA metric, the LC Cumulant filter shows a performance that
approaches that of the CPHD filter as the number of targets
increases owing to that the LC Cumulant filter seems less
sensitive (on average) to the increase in target number. The
average cardinality RMSE of the CPHD and LC Cumulant
filter seems to increase sub-exponentially with the number of
targets, at a small rate than that of the PHD, which is more
sensitive to the scenario complexity.

Case 3 : The consolidated performance indexes for case
3, averaged over time for p; € {0.60,0.70,0.80,0.90,0.99},
are presented in Figures 7-9. Once again, the performance of
the LC Cumulant filter is very similar to that of the CPHD
filter in terms of average mean OSPA and average cardinality
RMSE, but its computational cost is much smaller than that of
the CPHD filter, being rather comparable to that of the PHD
filter. As expected, the error indexes and cardinality variance
decrease as the probability of detection increases, for all filters.

Case 4 : Figures 10-12 present the consolidated per-
formance indexes for case 4, averaged over time for each
A € {10,20,30,40,50}. Corroborating with the previous
cases, the average cardinality RMSE and average MOSPA
of the LC Cumulant filter is close to that of the CPHD
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Fig. 1: Case la: MOSPA and cardinality, Poisson clutter

filter overall, with marginally better performance for higher
numbers of false alarms. In this case, all filters take almost the
same time to perform the computations, but it remains clear
that the LC Cumulant filter requires less computational effort
than the standard CPHD filter implementation, presenting
runtimes that are comparable to the PHD filter. Note that
the average cardinality RMSE of all filters seem to increase
sub-exponentially with the number of false alarms per frame,
suggesting a dependency of the signal-to-noise ratio that is
polynomial in the number of measurements.

APPENDIX: PROOFS
B. Proof of Thm. 1V.2
In the following, we denote by G; ;. the p.g.fl. of the point
process describing the evolution of a target from the previous

time step, which might have survived (or not) to the present
time step. The p.g.fl. Gy 1 of the predicted target process
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Fig. 2: Case 1b: MOSPA and cardinality, binomial clutter

takes the form [19]
Gkjk—1(h) = Gr(h)Gr—1(Gs(hl)),
hence the c.g.fl. C,—1 of the predicted target process is

Crpp—1(h) = In (G (h)Gr—1(Gs(h]-)))
=1n(Gp(h)) +In (Gr—1(Gs(h])))
= Cb(h) + Ckfl(gs(hl'))'

(37)

(38)

The nt"-order factorial cumulant requires the n'"-order deriva-
tive of Cyr—1(h), ie.
822“){:_1(31 X ... X Bn) = 5”C,€‘k,1(h; 1131, ceey ﬂBn)’h:l'
(39)

The survival process for a target with state x at the previous
time step can be described with a Bernoulli point process with
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o
o
=

4 parameter ps(x) and spatial distribution ¢(-|x),

=4
o
S
a

Gu(hl) = 1 pu(a) + pula) / hy)t(dylz).  (40)

It follows that

o
o
5

o
=3
=1
o

o
=3
=3

] 5<gs<h\x);13)yh:1:ps(x)/5(hy;13>t(dy|x)yh:1 @1
-PHD
Lo CPHD

] = ps(x) /1B(y)h(y)t(dy|x)|h:1’
=LC-Cumulant | | s .
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Fig. 9: Case 3: average runtime vs. prob. of detection The n'"-order derlvatlve. 6"Gs(hl+; ]%B 1. 7.]an) = 0 for
second-order and above since Gs(h) is linear in h. Hence the
= result follows by Faa di Bruno’s formula [38].
=CPHD
w  ef=LC-Cumulant C. Proof of Thm.IV.4
)
= Now consider the f.g.fl. of a bivariate Khinchin process [33],
%’ “ Cyi(g,h), ie
§ Co.(9 ) = Co.(0,0) +Cax(0.1) +Con(9, O (4)
§1.5 Z /Hg Zj Hh xl (nm dmln,dzlm)
n>1m>1
0 s = 2 35 = w0 4‘5 % where the zero terms are calculated with
Number of false alarms per scan
Fig. 10: Case 4: average cardinality RMSE vs. number of false C5.1(0,0) = — Z /KJn m) (21, d21im), (43)
alarms n,m>0|n+m>1
n,0
e Cy.1(0, ) Z/ (@1) . A(aa) K30 (dar),  (44)
32 fle-CPHD m>1
30 /= LC-Cumulant m
Cr(9,0) =3 / (21) - g KO (o). (45
< i n>1
o
826 4
= | We can determine an alternative bivariate p.g.fl. through the
2 Laplace-Stieltjes transform i.e.
22 4
20 7 CJ k(ga h)
Jh) = L% ¢ S ———= 46
. L gt o {gEed o
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Fig. 11: Case 4: average mean OSPA vs. number of false ) )
The p.gfl. of the updated target process P, is obtained from

alarms
the differentiation of the joint p.g.fl. using Bayes’ rule [19]
10° ‘ with the following
—PHD
<-CPHD Z .
=LC-Cumulant Gr(h) = dl k‘gJ,k(ga h; (52)z€Zk)|9:0 (47)

81261Gy (9,15 (82) se2,.)) |l g=0

07‘/‘@//? Noting that we can set ayjp—1 = —Brr—1 Ci1,£(0,0), and
given the assumption that C(g, h) is a linear functional in g
which means that there is only one remaining partition after

application of Faa di Bruno’s formula [38], the updated p.g.fl.
becomes

107210 1‘5 25 2‘5 3‘0 3‘5 46 Js 50 ak|k—1 +CJ,k(07h) (k-2 tHZ]) 5Cl],k(0ah§5z)
Gr(h) =

Number of false alarms per scan ik T CJ,k(O, 1) . m
Fig. 12: Case 4: average runtime vs. number of false alarms (48)
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and consequently, the f.g.fl. becomes

_ agjk—1 +Cix(0,h)
Colh) = (a1 +12]) In (akwc 1+C5,%(0,1) )
+) I

<6CM (0, h; 6, ))

= 0Cx(0,150,)

Noting that the joint p.gfl. in [19, pl1174] is a bivariate
Khinchin process [33] linear in g and h, with

Cilg.h) = / (9(2) — 1] Aea(d2)
/ / 2(@)1(dz]2)g(=) + qa@)) — 1 s (),

we can use this directly in the derivation. Set A =
—C3.1(0,0) = pipj—1(X) + Aex(Z) in the Laplace-Stieltjes
transform. and hence the f.g.fl. becomes

(50)

(S

(z) — 1 pgp—1(dz) + )\c,k(Z)>
Jikjk—1(dz) + Ac i (2)

— (p—1 +121)
< In (Oék|k—1 + [[P(x)qa

ak|k 1 +prd(a:
(z)p ( &)l (2|2) gy =1 (dz) + Ae i (2)
Jr;l ( prd (Z|x)ﬂk|k—1(d3ﬂ)+>\cyk(z) >’

where aj,i—1 is defined with the intensity and second-order
cumulant of the joint process,

(Ngw_l(')(v Z)+ A k(Z))2

Ag|lk—1 = 0(2‘) 1 (2)
klk—1

(52)

Differentiating the f.g.fl. with respect to h and setting the
argument to be equal to 1, leads to the factorial cumulants
as stated.
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