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Large-scale network reduction towards scale-free structure

Nicolas Martin, Paolo Frasca, Member, IEEE, Carlos Canudas-de-Wit, Fellow, IEEE

Abstract—This paper deals with a particular problem of graph reduction. The reduced graph is aimed to have a particular structure,
namely to be scale-free. To this end, we define a metric to measure the scale-freeness by measuring the difference between the
degree distribution and the scale-free degree distribution. The reduction is made under constraints to preserve consistency with the
initial graph. In particular, the reduced graph preserves the eigenvector centrality of the initial graph. We study the optimization problem
and, based on the gained insights, we derive an algorithm allowing to find an approximate solution. We also show that, if the initial
network is a flow network, it is possible to design the algorithm such that the output remains a flow network. Experimental results are
then presented to optimally choose the parameters of the algorithm suggesting that, by tuning a parameter, it is possible to speed up
the algorithm with a comparable efficiency. Finally, the algorithm is applied to an example of large physical network: the Grenoble urban
traffic network.

Index Terms—Network theory, Network reduction, Scale-free network, Flow network
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1 INTRODUCTION

Many physical systems can be represented as networks and physi-
cal phenomena as processes over networks. Thus, the use of these
mathematical objects in modelling is becoming more and more
common as the computing power and the interest for big data
increases. Large networks (with thousands of nodes) are common
in several fields like transportation, power grid or biology among
others. See [1] for a collection of such large networks. The analysis
and control design of these large networks may remain out of our
capacities. This complexity motivates network reduction methods
also known as coarse-graining or summarization methods. Works
on the reduction of graphs are profuse (see [2] for an extensive
survey) and their objectives are different depending on the applica-
tion. However, the different purposes of graph reduction methods
have the following form: cutting the complexity (e.g. volume of
data, redundancy, visualization) of a graph while preserving some
properties (e.g. topological, dynamical, patterns). The techniques
used differ but essentially there are four categories: partitioning
(merging nodes in super-node and/or edges in super-edges), com-
pression (exploiting redundancy in the patterns of the graph) and
simplification (removing unimportant nodes and/or edges). This
taxonomy, as well as the approaches, may differ according to the
fields of study. For instance, the approach coming from the model
reduction community considers the networks as representations of
dynamical systems and aims to reduce networks by preserving a
consistency in the dynamics or the control properties [3], [4], [5],
[6]. In this work, we use the term graph reduction by analogy with
the model reduction terminology.
The approach in our work combines several objectives: starting
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with a directed, weighted and strongly connected1 initial graph,
we aim to reduce it into a graph preserving some relevant
properties such as connectivity and eigenvector centrality. See [7]
for a similar approach that focuses on the eigenvector centrality
preservation. Moreover, in the aim to provide useful properties to
the reduced graph, we want it to be scale-free, whereas the initial
graph is not necessarily such.

Scale-free networks are ubiquitous in a wide range of fields
like biological networks [10], social networks [11], the internet
network [12] or the world-wide web [13] among others. They are
characterized by the presence of few nodes (the so-called hubs)
with a large degree (number of connections) and a large number
of nodes with small degree: by definition, their degree distribution
is a power law. See Fig. 1(b) for an illustration. This type of
structure appears naturally in certain growing networks due to
preferential attachment processes [14]. These networks have first
been emphasized by Price in 1965 [15], but their study came into
fashion in 1999 with the work of Barabasi and his collaborators
[9]. Interesting properties emerge from the definition of scale-
free networks [16], such as small distances between nodes [17],
robustness to random failures, easiness to disconnect, hyperbolic
space embedding [18]. These properties allow to gain efficiency in
some applications such as network navigation [19], vaccination in
epidemiology [20], or control design [21]. In order to reap these
advantages, we wonder in this paper how is it possible to find a
network having a scale-free structure and abstracting an arbitrary
network. However, we do not question here in which measure the
computations made on the reduced network may be meaningful
for the initial network. We focus only on the design of a reduction
method whose output is a scale-free network.
The essential contribution of this work is the introduction of a
graph partition method whose output graph has a degree distribu-
tion close to a desired scale-free degree distribution and such that
the eigenvector centrality is preserved. Moreover, if the algorithm
is applied on a flow network2, the output will also be a flow
network. The sum of all weights in the network is also preserved

1. A graph G is said strongly connected, if for all pair of nodes (u,v) in G
there is a path from u to v.

2. A weighted network is said to be a flow network if for each node the
amount of weights going in equals the amount of weights going out.



(a) Graph with homogeneous distribution. For instance, the Erdos-Renyi model
[8] allows to generate such graphs.

(b) Scale-free graph. The distribution of degrees is heterogeneous. For instance,
the Barabasi-Albert model [9] allows to generate scale-free graphs.

(c) Theoretical degree distributions: the homogeneous graph distribution is
a Poisson law while the scale-free graph distribution is a power law. These
continuous degree distributions are valid in the infinite graphs limit, hence the
name asymptotic.

Fig. 1. Comparison between two types of graph: homogeneously dis-
tributed graph and scale-free graph.

through the algorithm. These three properties are particularly
relevant in applications involving flows such as traffic networks,
power networks or packet flow networks. The performance of
the algorithm and the tuning of the parameters are studied on
synthetic networks (Manhattan-like grids) and on a real network:
the Grenoble urban traffic network. This large network (almost
20000 nodes) is an example of flow network as the number of
cars is conserved through the nodes. The algorithm is applied on
this network highlighting the efficiency of the method even with a
large network.

2 PROBLEM FORMULATION

This section is devoted to introduce formally the problem of net-
work reduction that we have introduced above. First, we introduce
some preliminaries and the physical model used; then, we present
the problem as a minimization problem. Finally, we give a formal
definition for each element of the minimization problem.

2.1 Preliminaries: scale-free graph and partitions

In this section we give, first, some graph-theoretical definitions
allowing to define scale-free graphs. Then, we define what we call
a graph partition and some related notions.
Consider a directed and weighted graph G, represented by the
triple (A,V,E) where A is the adjacency matrix, whose non-zeros
values indicate the edges and their weights: Ai, j = w > 0 means
that there is an edge i −→ j and that a weight w is assigned to
this edge. V is the set of vertices and E the set of edges. We
may denote G = ( · ,V,E) if only the structure of G (and not the
weights) is relevant. We denote by Γn the set of directed, weighted
and strongly connected graphs with n nodes (or Γ if the number of
nodes is not known or relevant). We also denote by ΠG the degree
distribution of G, i.e. ΠG(k) gives the number of nodes having
degree k:

ΠG(k) =
card{v ∈V,deg(v) = k}

cardV

where deg(v) is the degree3 of the node v.
We give now a definition of scale-free graph:

Definition 1 (Scale-free graph). A graph G is said to be scale-free
if its degree distribution is proportional to a power law, which
is:

ΠG(k) ∝ k−α , (1)

where α > 0 is called the scale-free coefficient (in most
applications α ∈ [2;3]). We denote α-scale-free distribution
a scale-free distribution with a coefficient α . In practice we
call scale-free graph any graph whose degree distribution is
relatively close to a power law.

A scale-free graph having an heterogeneous degree distribution, it
is natural to contrast it with graphs having an homogeneous degree
distribution. Figure 1 illustrates the differences between these two
structures of graph.
In this work we will focus on graph partitioning. We choose to
use this method as it preserves the structure of the network, which
is: two parts of the partition are connected if and only if there is
a connection between two nodes belonging to these parts. This
property is meaningful when dealing with physical networks. We
introduce now some notions about partitioning:

Definition 2 (Graph partition). A partition S = {S1,S2, ...,Sn} of a
graph G = ( · ,V,E), is a partition of the set of vertices V such
that, for each part Si, the subgraph G|Si (in which only the
nodes in Si are considered) is weakly connected: each pair of
nodes in G|Si is linked regardless of the direction of the edges.

Definition 3 (Graph coming out of a partition). Let G0 =
( · ,V0,E0) be a graph, let S be a partition of this graph. We
denote G1 = ( · ,V1,E1) the graph obtained by replacing parts
of S by super-nodes, and by linking super-nodes corresponding

3. as we consider directed graphs, the degree can be either in-degree or out-
degree. As the computations and the results remain the same for both cases,
the degree used is not precised
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to parts which contains linked nodes. The graph G1 is then said
to be coming out of the partition S of G0. Explicitly we have:

V1 = {1, . . . , |S|}
(i, j) ∈ E1 ⇔ (Si×S j)

⋂
E0 6= /0

(2)

We will denote this relation by G0 � G1 or by G0
S
� G1 to

emphasize the partition. Let us remark that since this relation
only determines the structure of the reduced graph and not its
weights, there is an infinity of weighted graphs coming out of
the partition S of G0.

Definition 4 (Merging). A merging is a particular partition where
only two nodes are combined together. Let V = {1, ...,n} be
the set of vertices, the merging of the vertices v and w is
denoted by Sv,w and:

Sv,w ={{1},{2}, . . . ,{v−1},{v+1}, . . .
. . . ,{w−1},{w+1}, . . .{n},{v,w}}

2.2 Physical model
With the aim to compare the behavior of two graphs, we associate
to every graph G = (A,V,E) the following equation :{

x(k+1) = P>x(k)
x(0) = x0

(3)

where P is is the adjacency matrix normalized by rows, i.e. each
element is divided by the sum of its row:

Pi, j =
Ai, j

∑
k

Ai,k
, (4)

and P> is the transpose of P. This normalization divides each
weight coming out of a node i by the amount of weights coming
out of i. Matrix P can be viewed as the transition matrix of
a Markov chain associated to the graph. As we have specified
that G is strongly connected, then the associated Markov chain is
irreducible and it always exists [22] a stationary distribution x?:

x? = P>x? (5)

We add the condition ‖x?‖1 = 1 to ensure the uniqueness [22].
The stationary distribution x? is also known in graph theory as the
eigenvector centrality.
We call Φ the operator associating a graph in Γ to its eigenvector
centrality:

Φ : Γn −→ [0,1]n

G 7−→ x?, s.t. x? = P>x? and ‖x?‖1 = 1

This centrality gives a value at each node corresponding to the
relative importance of the node in the graph. In particular, this
value corresponds to the ratio of time spent by a random walker on
each node of the graph. The PageRank algorithm used by Google
to rank websites by their importance is based on this eigenvector
centrality applied to the web network [23].
Let us note that strong connectivity is a necessary condition for
computing the eigenvector centrality and so to develop the rest
of our analysis. Traffic networks are always strongly connected
(one can picture that it is always possible to reach any point from
any point in a traffic network). However, in other cases it can
be challenging to determine the strong connectivity of a network.

Some works bring efficient methods to answer this issue [24], [25].
To compare a graph G0 with a graph G1 issued from the partition
S of G0 based on their eigenvector centrality, we associate to
any partition S an operator of projection σS. The projection
corresponds to the sum of the components within each part of
the partition. We give here a precise definition:
Definition 5 (Projection operator). Let x ∈ Rn and S a partition

of the set {1, ..,n}, we define the projection operator σS as:

σS : Rn −→ R|S|

x 7−→ y : ∀i, yi = ∑
j∈Si

x j
(6)

This operator can be written as a matrix operation: σS(x) = Ksx
where:

(Ks)i, j =

{
1 if j ∈ Si
0 else (7)

Now, we can compare the behavior of two graphs G0 and G1

such that G0
S
� G1 by looking at the vector ∆G0,G1 defined as:

∆G0,G1 = Φ(G1)−σS(Φ(G0)) (8)

The i− th entry of ∆G0,G1 represents how close the centrality
of the nodes i in G1 is to the sum of the centralities in the subset
Si in G0. We denote δG0,G1 = ‖∆G0,G1‖2 the eigenvector distance
between the graphs G0 and G1.

2.3 Graph reduction as an optimization problem
The problem is to find a partition S of an initial large network
G0 ∈ Γ, such that the network G1 coming out of the partition S
of G0 has a degree distribution that is closest to a given scale-
free distribution. We also want that G1 preserves some physical
properties of G0 and that the eigenvector distance between G0 and
G1 is null. This problem can be formally stated as follows:
Given an initial graph G0 ∈ Γ∩Ψ, find a graph G̃, solution of the
following minimization problem.

G̃ = min
G

JSFα
(G), subject to G0 � G

G ∈Ψ

δG0,G = 0

(9)

where:

• JSFα
is a scale-free cost function, indicating the α-scale-

freeness of the graph.
• Ψ is the set of graphs respecting the physical properties

imposed.

The constraint on the eigenvector centrality has been chosen
because is shows the capacity of our method to deal with structural
constraints and because the preservation of this centrality can be
essential for some applications. For example, to investigate the
most visited areas, the reduced network should have the same
centrality as the initial one.

2.4 Scale-free cost function
We present here an intuitive scale-free cost function.
Definition 6 (Scale-free target distribution). The α-scale-free

target distribution of size n is denoted ΠSF
α,n and is defined

as:

Π
SF
α,n =

1

∑
kcut
i=1 iα


1α

2α

...
kα

cut

 (10)
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where kcut is a cut-off calculated as the highest degree for
which the number of nodes having this degree is higher than 1
in a α-scale-free graph of size n:

kcut = argmax
k

{
kα

∑
k
i=1 iα

≥ 1
n

}
(11)

We define now the scale-free cost function:
Definition 7 (Scale-free cost function). For any graph G, we

define:

JSFα
(G) =

∥∥∥ΠG−ΠSF
α,|G|

∥∥∥
2∥∥∥ΠSF

α,|G|

∥∥∥
2

, (12)

where ΠSF
α,|G| is the scale-free target distribution defined as in

(10) and |G| is the number of nodes in G.
Let us note that ΠG and ΠSF

α,|G| are not necessarily of the same
size. In this case, zeros are added at the end of the smallest
vector so that the sizes match.

Remark 1. It is possible to impose a scale-free distribution both on
the in-degree and the out-degree with two different coefficients
αin and αout . In this case the scale-free cost function is:

JSFα
(G) =µin

∥∥∥Πin−Π
SF
αin,|G|

∥∥∥
2
/
∥∥∥Π

SF
αin,|G|

∥∥∥
2
+

µout

∥∥∥Πout −Π
SF
αout ,|G|

∥∥∥
2
/
∥∥∥Π

SF
αout ,|G|

∥∥∥
2

(13)

where µin,µout > 0 are two coefficients allowing to adjust the
relative importance of a distribution with respect to the other
one.

Remark 2. The mathematical results presented further are inde-
pendent of the scale-free cost function chosen. Hence, any
definition of the cost function could be used without question-
ing the validity of the results.

2.5 Physical property: flow network
In the the problem we treat, we assume that the initial network is a
flow network [26] (also called transportation network) and we aim
to preserve this property through the reduction. The preservation
of this property has a strong physical meaning because some
networks as electrical networks, water supply networks or gener-
ally every network representing transportation are flow networks
by their nature. For instance, in electrical network this property
corresponds to Kirchoff’s circuit law. Thus, by preserving this
property we ensure that the reduction method does not violate an
intrinsic property of these networks. We give here a definition of
the set of graphs having this property:

Ψ =

{
G = (A,V,E), ∀k, ∑

i
Aik = ∑

j
Ak j

}
(14)

We also define a flow matrix as a matrix representing a flow
network which is a matrix A such that ∀k, ∑i Aik = ∑ j Ak j.

We gave in this section specifications to problem (9). This
particular case of the problem can be reformulated as follows.
Given an initial network and a scale-free coefficient, we look for a
reduced network that comes out of a partition of the initial network
with the following three features: it minimises the scale-free cost
function defined in (12), it is a flow network as defined in (14), and
the eigenvector distance (8) between the initial and the reduced
network is null.

3 ANALYSIS OF THE OPTIMIZATION PROBLEM

In this section, we will see how the weights of the reduced graph
can be chosen such that: i) the eigenvector distance is null, ii) the
reduced graph remains a flow graph and iii) the sum of all weights
in the graph is preserved. These results will allow us to design an
algorithm giving an approximation of the solution.

3.1 Cancelling eigenvector distance
We see here that with a certain choice of the weights of the reduced
graph we can ensure a perfect consistency, in terms of eigenvector
centrality, between the two graphs.
Theorem 1. Let G0 = (A0,V0,E0) ∈ Γn. For all edges (v,w) ∈ E0

there is a choice of the weights of the graph G1 coming out
of the merging Sv,w of G0, such that the eigenvector distance
between G0 and G1 is null, which is δG0,G1 = 0.
To do so, it is sufficient to take P1, the normalized adjacency
matrix of G1 as:

P1 = FP0H>, (15)

where F,H ∈ Rn−1×n are defined by:

Fi, j =


1 if i < n−1∧Si = { j}
βv if i = n−1∧ j = v
βw if i = n−1∧ j = w
0 else

(16)

Hi, j =

{
1 if j ∈ Si
0 else (17)

and βv =
x?0(v)

x?0(v)+x?0(w)
, βw =

x?0(w)
x?0(v)+x?0(w)

where x?0 is the eigen-
vector centrality of G0.

Proof: We have to show three points: the matrix P1 i) has
a structure compatible with a graph coming out of the merging
Sv,w of the graph G0, ii) is normalized and iii) has an eigenvector
centrality equal to the projection of the eigenvector centrality of
P0.
i) By definition of a graph coming out of a partition (see (2)), there
is an edge i −→ j in the reduced graph if and only if there exists
an edge l −→ k in G0 such that l ∈ Si and k ∈ S j. We want to
show that the position of the non-zeros values in P1 respects this
structure. We have:

P1i, j =
n

∑
k=1

n

∑
l=1

Fi,lP0l,kH j,k

and we know that Fi,l 6= 0⇔ l ∈ Si and that H j,k 6= 0⇔ k ∈ S j,
hence:

P1i, j = ∑
k∈S j

∑
l∈Si

Fi,lP0l,kH j,k

It comes out that:

P1i, j 6= 0⇐⇒∃(l,k) ∈ Si×S j s.t. P0l,k 6= 0 (18)

and this is what we were supposed to show.
ii) We want to show that the matrix P1 is normalized in the sense
that ∀i ∈ [1, ..,n−1], ∑ j P1i, j = 1. We have:

n−1

∑
j=1

P1i, j =
n−1

∑
j=1

∑
k∈S j

∑
l∈Si

Fi,lP0l,kH j,k

= ∑
k∈Sn−1

∑
l∈Si

Fi,lP0l,kHn−1,k +
n−2

∑
j=1

∑
k∈S j

∑
l∈Si

Fi,lP0l,kH j,k

4



We note that for j < n−1 there exists an unique k ∈ S j and so an
unique k such that H j,k = 1. We denote it by k j. We have then:

n−1

∑
j=1

P1i, j = ∑
k∈{v,w}

∑
l∈Si

Fi,lP0l,k +
n−2

∑
j=1

∑
l∈Si

Fi,lP0l,k j

We know that when j covers the set {1, ...,n− 2} then k j covers
the set {1, ..,n}\{v,w} and then:

n−1

∑
j=1

P1i, j = ∑
k∈{v,w}

∑
l∈Si

Fi,lP0l,k +
n

∑
k=1

k/∈{v,w}

∑
l∈Si

Fi,lP0l,k

=
n

∑
k=1

∑
l∈Si

Fi,lP0l,k

= ∑
l∈Si

Fi,l

n

∑
k=1

P0l,k

= ∑
l∈Si

Fi,l = 1 (because P0 is normalized)

Then, P1 is the normalized adjacency matrix of a reduced graph
G1 coming out of the merging Sv,w of G0.
iii) Let x?1 be the eigenvector centrality of G1. We want to show
σ(x?0) = x?1. We remark first that the definition of H is the same
as the definition of Ks in (7) and so we have σ(x) = Hx for all x.
Moreover we have:

H>F = In−1 +(αv−1)en−1
v,v +αven−1

w,v +(αw−1)en−1
w,w +αwen−1

v,w

where en
i, j is the square matrix of size n whose only non-zero entry

is a 1 in (i, j), and In is the identity matrix of size n. It follows that

(x?>0 H>F)i = x?0(i) ∀i /∈ {v,w}
(x?0
>H>F)v = x?0(v)αv + x?0(w)αv

= (x?0(v)+ x?0(w))
x?0(v)

x?0(v)+ x?0(v)
= x?0(v)

(x?0
>H>F)w = x?0(v)αw + x?0(w)αw

= (x?0(v)+ x?0(w))
x?0(w)

x?0(v)+ x?0(v)
= x?0(w)

Hence x?0
> = x?0

>H>F , and then:

x?0
>P0H> = x?0

>H>FP0H>

x?0
>H> = x?0

>H>P1

Hx?0 = P>1 Hx?0
σ(x?0) = P>1 σ(x?0)

Then, σ(x?0) is the eigenvector centrality of G1. And by uniqueness
of the eigenvector centrality σ(x?0) = x?1.

This result concerns only merging, which is a particular
partition, but it can be extended to any partition. For simplicity,
and since it is sufficient for the following, we have only shown the
case of the merging.

3.2 Preservation of the flow graph property

The flow network property defined in Section 2.5 is another
physical property that we consider. We see here that if the initial
graph is a flow graph we can ensure that the reduced graph is a
flow graph too.

Theorem 2. Let P be a normalized matrix as defined in (4), then
it exists a diagonal matrix X such that XP is a flow matrix.

Namely, X = κ Diag(x?), where κ 6= 0 and x? is the eigenvector
centrality associated with P.

Proof: Let x? be the eigenvector centrality of P, i.e. x?P =
x? and X = κ Diag(x?) for any κ 6= 0. We have that κx?P = κx?

and consequently 1
>XP = 1

>X = (X1)> = (XP1)>. Thus, the
vector whose entries are the sum of the column of XP is equal to
the vector which entries are the sum of the row of XP. Hence, XP
is a flow matrix.

From Theorems 1 and 2 we have the following corollary:
Corollary 1. Let G0 be a graph and P0 its normalized adjacency

matrix. Let S be any merging and F and H the merging
matrices associated to S. Consider the graph G1 defined by
the matrix A1 as:

A1 = κ Diag(x?1)FP0H>, (19)

where x?1 is the eigenvector centrality of P1 := FP0H> and
κ 6= 0. Then G1 is a flow graph and δG0,G1 = 0.

We have shown in this section that for every graph G0 and
for every merging Sv,w, it exists a graph G1 coming out of the
merging Sv,w of G0 such that G1 is a flow graph and such that the
eigenvector distance between G1 and G0 is null. Let us note that
the graph G1 is not unique as its adjacency matrix is defined up
to a multiplicative constant κ . In the following we fix κ such that
the sum of all weights in G1 is equal to the sum of all weights in
G0, which is:

κ =
|A0|0

|Diag(l)FP0H>|0
(20)

where | • |0 is defined as: |A|0 = ∑i, j Ai, j for all matrices A.
By this way, the reduced graph G1 is uniquely defined and we
denote it by G1 = G(v,w)

0 .

4 ALGORITHM

In this section we will see how the results of the previous
section can be used to design an effective algorithm to provide
an approximate solution of Problem (9).

4.1 Algorithm description
The results of Section 3 show that for any partition we can choose
the weights of the resulting graph such that the two last constraints
of Problem (9) are respected. Then, a solution to Problem 9 can
be found by solving the new problem:
Given G0 = (A,V,E) ∈ Γ∩Ψ, find the partition S such that:

G̃ = min
G

JSFα
(G),

where G0
S
� G

(21)

which is : find the best partition of G such that the graph coming
out of this partition minimizes the scale-free cost function. The
exploration of the set of partitions of a graph being computation-
ally unfeasible, we propose an iterative algorithm in which at each
step we look for the merging Sv,w minimizing the scale-free cost
function. Thus, we just need the result of Theorem 2 for merging.
As looking for the best edge within the whole set of edges still
requires relatively heavy computations, we will look for the best
edge only within a random subset of edges. The effect of this
random selection will be discussed later.
A description of the algorithm is presented in Algorithm 1:
Therein the graph Gk is represented by (Ak,Ek,Vk). The inputs are
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the initial graph G0 = (A0,E0,V0)∈Γn∩Ψ, a scale-free coefficient
αSF > 0 and an integer nrand ∈ N.
First, we compute the eigenvector centrality x?0 of the initial graph
(line 1), the normalized adjacency matrix P0 (line 2) and the
coefficient κ (line 3). A random subset Ē of nrand edges is drawn
(line 6). For each edge e, we compute the normalized adjacency
matrix Pe

k according to (15) where F and H are the merging
matrices of Se (line 8).The scale-free cost function of the graph
represented by Pe

k is computed (line 9). Among the nrand edges
tested, the best one is the one whose merging minimizes the scale-
free cost function (line 11). The new graph is chosen (line 12).
Finally the new centrality is computed as the projection of the
current centrality onto the merging Sebest (line 13). We restart
the algorithm with the new graph. When the algorithm stops we
compute Aend thanks to 19

Algorithm 1 Merge to scale-free,Input: G0, Parameters: nrand, αSF

Input: A0, αSF , nrand
Output: Aend

1: x?0 = Φ(G0)
2: P0 from (4)
3: κ from (20)
4: k = 0
5: while ¬stop do
6: Ē = rand(Ek,nrand);
7: for e ∈ Ē do
8: Pe

k from (15)
9: nSF(e) = JSFα

(Pe
k )

10: end for
11: ebest = argmine nSF(e)
12: Pk+1 = Pebest

k
13: x?k+1 = σSebest

(x?k)
14: k++
15: end while
16: Aend from (19) with P1 = Pk

Clearly, this algorithm does not provide the global minimum
of (9), but an approximation of it. The stopping criterion stop is
not discussed here, it may naturally be defined as the step where
it is no more possible to find a merging that decreases the scale-
freeness cost function, or as a fixed number of iterations.

4.2 Algorithm complexity
We discuss in this section the complexity of the algorithm in terms
of number of operations.
Proposition 1. Consider Algorithm 1 on an initial graph G0 with

Nv nodes, and with nrand the size of the random subset of edges
Ē. The algorithm can be divided in two phases:

• An initial phase in which the eigenvector centrality is
computed. The complexity of this phase is Θ(N3

v ) in the
worst case, but can be lowered to Θ(N2

v ) in the case of
sparse adjacency matrices.

• The reduction phase which consists in at the most Nv steps
having each a complexity of Θ(Nvnrand)

Overall the worst-case complexity is Θ(N3
v ).

Proof: For the first phase, the computation of Φ is the
computation of an eigenvector which needs Θ(N3

v ) operations.
However in [27] it is shown that if the maximum degree of the

graph is bounded the computation can be done in Θ(N2
v ).

As at each step of the algorithm the number of nodes decreases
by 1, the total number of iterations can not be larger than Nv. We
consider then that the number of steps is Θ(Nv). Let us denote C
the total number of operations at each step, we have

C =Crand +nrand(C(15)+CJSFα
)+Cargmin +Cσ

The different functions can be detailed as follows:

• rand consists in picking nrand values, so Crand = Θ(nrand).
• (15) is the computation of the new adjacency matrix, which

consists in the combination of the columns and row of the
previous adjacency matrix: Θ(Nv) operations.

• JSFα
can be decomposed as follow:

– Update of the degree distribution from the adja-
cency matrix. The number of operation needed is
the number of different degrees in the network.
Thus, the number of operations is smaller than Nv.

– Computation of the scale-free cost function: it is
the norm of a difference of two vectors which sizes
are always smaller than Nv. Thus, the number of
operations is also smaller than Nv.

Finally CJSFα
= Θ(Nv).

• argmin require Θ(nrand) operations.
• Merge is equivalent to the first step of JSFα

. As we have
seen, we have then CMerge = Θ(Nv)

• σ consists in the combination of the coordinates of x?k .
Hence Cσ = Θ(Nv)

Finally we have:

C = Θ(nrand +nrand(Nv +Nv)+nrand +Nv +Nv)

= Θ(Nvnrand)

proving the statement.
This complexity is polynomial with respect to the size of

the initial graph, whereas the naive way to find a partition of a
graph by testing all possibilities would have had an exponential
complexity. Even by improving the partitioning algorithm, the
complexity is lower-bounded by the complexity of the eigenvector
centrality which can not be lowered. However, this algorithm is
not supposed to be run in real time, but once to find a reduced
network which can be used then to different purposes. Thus a
relatively high complexity is not crippling for the application.
The complexity of the reduction phase is linear with respect to
nrand. We will investigate in the next section the influence of this
parameter on the performance of the algorithm.

5 EXPERIMENTAL RESULTS

In this section, we set up some experiments to emphasize the
influence of nrand on the algorithm. Precisely, we investigate the
influence on the speed of convergence and on the variability
between different outputs of the algorithm. Based on these results,
we can choose a value for the parameter and show the result of the
simulation on a synthetic network. Finally, we investigate how
the algorithm modifies the topological properties of the initial
network. For these simulations we will consider a synthetic family
of networks: the Manhattan-like grids. The first subsection aims
to introduce these graphs.
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5.1 The Manhattan-like grid

Manhattan-like grids, lattice graphs or simply grids, is a family of
directed network inspired by the topology of the urban network
of Manhattan and other cities [28]. It consists simply in a grid of
size N×N in which each of the N2 intersections is a node. In our
case, in view to get heterogeneous networks we add some random
irregularities: some nodes are removed, some diagonal shortcuts
are created and some edges are unidirectional. The weights on
the edges are generated randomly while ensuring that the grid is
a flow network. The advantages of running our algorithm over
this type of network are the following: i) the degree distribution
is far from a scale-free distribution, so it can shows the ability
of the algorithm to get close to a scale-free distribution, ii) it
is easy to build this type of network, even with an arbitrarily
large size, making the results presented easily reproducible and
iii) it is a good representation of some physical networks [29] as
urban traffic networks or brain networks [30]. Figure 2 presents
an example from this family of network.

Fig. 2. Example of a Manhattan-like grid 25× 25. Thicker edges repre-
sents double-way edges.

5.2 Influence of nrand (size of the random subset of
edges)

Before analyzing the properties of the output graph, we discuss
how the size of the random subset of edges influences the output
of the algorithm. We look at its effect on several points:

• The speed of convergence towards a scale-free network.
• The similarity of the properties of different graphs gener-

ated by the algorithm
• The similarity of different partitions generated by the

algorithm

5.2.1 On the convergence of the algorithm

In Fig. 3 we observe the evolution of the scale-free cost function
at each iteration of the algorithm for different values of nrand.
Let first remark that for every value of nrand the error initially
decreases, even in the case nrand = 1, where the edge to merge
is randomly selected. This shows that a graph (at least this type
of grids) naturally tends towards a scale-free structure when it is
recursively merged. The figure shows that there is no significant
advantage in having a large value of nrand. Thus, increasing nrand
does not increase substantially the performance while it increases
linearly the computation time as seen in Proposition 1.

Fig. 3. Comparison of the evolution of the scale-free cost function
through the algorithm for different values of nrand. The initial graph is a
Manhattan-like grid of size 45×45 and with 1962 nodes. The simulation
is stopped when the size of the current graph is equal to 5% of the size
of the initial graph.

5.2.2 On the reproducibility of the algorithm

We want now to examine if the graphs obtained via several
instances of the algorithm are close to each other and how the
value of nrand influences this consistency. To answer this question,
we have executed several times our algorithm with the same
initial graph, and we compare topological properties of the graphs
obtained. Precisely, we consider an initial Manhattan-like grid
25×25 and we run the algorithm until there is no more merging
that increases the scale-freeness. We have executed the algorithm
50 times with nrand = 3, 50 times with nrand = 30 and once with
nrand =+∞ which is at each step all edges are tested (as the output
is deterministic one instance is enough). We compute then four
properties for each output graph: number of edges, number of
nodes, radius (minimum eccentricity of any node), and scale-free
cost function. Let us note that, to have a fair comparison, the radius
is divided by the number of nodes in the graph. In Fig. 4 the results
are presented in the form of histograms. We remark that the values
are arranged around an expected value in an almost bell-shaped
distribution. When nrand is higher, this Gaussian behavior is more
marked. It appears also that, in this case, the mean deviation is
lower and the mean is closer to the case nrand = +∞ (which can
be considered as a reference value). As expected, a large value of
nrand reduces randomness.
In addition to the question of the consistency of the properties,
we wonder if the partitions obtained with several simulations
are close together. For this purpose, we compare the partitions
obtained when nrand = 3 and nrand = 30 with the partition of
reference obtained with nrand = +∞. An useful way to compare
two partitions is to use the normalized mutual information [31],
[32] whose definition is quickly recalled here:
Let us consider two partitions X = {X1, ...,Xm} and Y =
{Y1, ...,Yp} over a graph4 of size n. The joint distribution of Xi and
Yj is P(Xi,Yj) =

1
n |Xi∩Yj| and the partial distributions are P(Xi) =

1
n |Xi| and P(Yj) =

1
n |Yj|. The entropy of the partition X is defined

as H(X) = −∑i P(Xi)log(P(Xi)) and translates how much the set
{1, ..,n} is fragmented in X (if X = {{1, ...,n}}, then the entropy is

4. We consider here partitions over a graph, but the definition remains the
same for partitions over any set.
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Fig. 4. Histograms of the properties of the different graphs obtained with different instances of the algorithm and with the same initial graph. For
each property, the x-axis represents the values and the y-axis the frequency of apparition of each value. The red bars shows the values obtained
when nrand = 3, the blue bars when nrand = 30, the yellow bar when nrand =+∞. The superimposed lines fits the histograms.

null; if X = {{1}, ...,{n}}, then the entropy is maximal). The joint
entropy is defined as H(X ,Y ) =−∑i, j P(Xi,Yj)log(P(Xi,Yj)) and
translates how much the set {1, ..,n} is fragmented in the inter-
section partition {X1∩Y1,X2∩Y1, ...,Xm∩Yp}. Finally the mutual
information is defined as Ĩ(X ,Y ) = H(X)+H(Y )−H(X ,Y ). In a
word, it translates how much the intersection of X and Y is more
fragmented than X and Y are. To calculate the normalized mutual
information, we add a normalization factor: I(X ,Y ) = 2Ĩ(X ,Y )

H(X)+H(Y ) .
Thanks to this tool coming from information theory, we are able to
attribute a value I(X ,Y ) ∈ [0;1] to measure the similarity between
two partitions X and Y . In particular, if X = Y then I(X ,Y ) = 1.
We consider a Manhattan-like grid of size 35×35. To test the con-
sistency of the partitions, we compare 50 partitions obtained with
nrand = 3 with the reference partition (obtained when nrand =+∞).
We also make the comparison between the 50 partitions obtained
with nrand = 30 and the reference partition. Figure 5 shows the
result obtained. Once again we observe a bell-shaped distribution
of the values. We observe that the mean value is closer to 1 when
nrand is larger. It means that, as expected, when the random effect
is reduced, the partitions obtained are closer to the reference
partition. We have shown here that the partitions tend to be
structured in the same way, and that this effect grows with nrand .
In conclusion, we have seen that when nrand increases: the run time
increases linearly, the scale-free error decreases slowly and the
variability of outputs decreases. In view of the numerical results,
it appears that a relatively small value of the number of edges
tested at each step (nrand ≈ 20) is a good balance.
The choice of a small subset of edges tested being justified, we
can exhibit the output of a simulation on a Manhattan-like grid.

5.3 Simulation on the Manhattan-like grid
In this section we consider an initial Manhattan-like grid and we
apply the reduction algorithm to it. The tuning of the different
parameters is presented in Table 1.

Fig. 5. Histograms of the normalized mutual information between the
partition of reference and the 50 partitions obtained with nrand = 3 (in
blue) and the 50 partitions obtained with nrand = 30 (in red).

TABLE 1
Parameters of the simulation on the Manhattan-like grid

Size |G| αSF nrand Degree
65×65 3824 −2 10 in

The output of the simulation is presented in Fig. 6. It appears
clearly that the algorithm achieves to get the graph very close to
the scale-free target distribution. In the next section we wonder
how the algorithm also modifies other topological properties.

5.4 Modification of topological properties
The main effect of the algorithm is to modify the degree distri-
bution of an arbitrary graph. However, one can wonder how the
other structural properties of the initial graph are changed. The
direct comparison between the initial and the final graph may be
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(a) The initial graph. Double-way links are thicker than one-way ones. (b) The reduced graph issued from the partition. The size of the nodes
represents their degree and the color matches with the color of the partition
in (c).

(c) Final partition of the initial graph. The color matches with the colors of the
nodes in the reduced graph (b).

(d) In-degree distribution of the initial graph, of the reduced graph and the
target distribution in log-log representation.

Fig. 6. Result of the Manhattan-like grid simulation. (a) shows the initial graph, (b) shows the final graph, (c) shows the final partition and in (d)
the in-degree distributions. The last sub-figure emphasizes well the ability of the graph to drive the degree distribution highly close to the desired
distribution

biased by their difference of size. Hence, to compare fairly the
properties, we generate a small-scale version of the initial graph
build the same way as the initial graph but with a size similar
to the final graph. In Table 2 we show the structural properties
of the initial graph, the mean values for 50 graphs resulting of
the algorithm and the values for the small-scale version of the
initial graph, named reference graph in the Table. The structural
properties compared are the following: Number of nodes, number
of edges, radius, diameter (greatest distance between any pair of
node), number of hub (we defined a hub as a node connected
with at least 5% of all nodes), clustering coefficient (measure
the tendency that two linked nodes share a common neighbor),
maximum in-degree and mean in-degree.

TABLE 2
Modification of the properties of the network through the reduction

Initial graph Reduced graphs Reference graph
Num. of nodes 1165 516.42 508
Num. of edges 4426 2236.80 1911

Radius 29 9.16 20
Diameter 57 17.22 37

Num. of hub 0 35.14 0
Clust. coeff. 0.1 0.43 0.1

Max in-degree 6 23.3 6
Mean in-degree 3.80 4.33 3.76

The comparison seems fair as the reduced graphs and the
reference graph have a similar size and because the initial graph

and the reference graph are consistent (no hubs, same clustering
coefficient, same max and mean degree).
One can remark that the characteristic distances (radius and
diameter) of the reduced graph are significantly lower than the
reference graph, while the clustering coefficient is significantly
higher. Scale-free networks are known to exhibit ultra small-
world property [17]. This property means that the characteristics
distances scales as log(log(n)) and the clustering coefficient is
relatively high. The values obtained confirm that the reduced graph
endows this scale-free property. The other topological modifica-
tions, presence of hubs and higher maximum in-degree, can be
explained directly by the power law degree distribution of scale-
free graphs.

6 APPLICATION ON A REAL NETWORK

In this section, we will present the result of the algorithm on a
physical example: the Grenoble urban traffic network. At first, we
present how we obtained this network and why it is a meaningful
example.
Situated in the south-east of France close to the Alps, Grenoble is
the 16th largest city in France. The situation of the city, surrounded
by three ranges of mountains, constraints the urban traffic network
making Grenoble the fourth most congested city in France [33].
See Fig. 7 for a satellite picture of the city. In the framework
of the ERC-Project ScaleFree-Back, the collection of the traffic
data and the monitoring of the traffic condition over the whole
city is studied and will be part of the GTL-ville experimentation
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(following the GTL experimentation started in 2009 [34]). As large
networks are hard to control, we wonder how an abstracted version
of the network could help to design a control strategy and how the
scale-freeness of this abstracting network can be an advantage. It is
within this frame that the study of the reduction of the urban traffic
of Grenoble takes place. The network, provided by TomTom, is an
exhaustive representation of the Grenoble metropolis as it contains
all roads and intersections within an area of about 60 km2. In this
graph, the nodes correspond to the roads and it exists an edge
between two nodes ni and n j if there is an intersection linking
road ni to road n j. The network possesses 19232 nodes and 49600
edges; see Fig. 8. While the structure of the graph comes from
the real world, the weights are generated randomly, as in the
Manhattan-like grid case, while ensuring the graph to be a flow
graph. If these weights represent the mean flow of cars from a
street to another, the network is naturally a flow network. The
preservation of the flow network property is then essential to
ensure that, in the reduced network, the number of cars coming
into an area equals the number of car going out. The preservation
of the sum of all weights ensured by (20) guarantees that the
number of vehicles is the same in the initial and the reduced
networks. In the context of traffic network, the computation of
a scale-free network abstracting a physical network allows, for
example, to identify areas highly connected (corresponding to
hubs in the reduced networks) and then potentially vulnerable,
or to design a boundary control to rules the in-flow and out-flow
in the different areas of the network.

Fig. 7. Satellite picture of Grenoble. We can see the Vercors range in the
west, the Chartreuse range in the north and the Belledonne range in the
south-east constraining the development of the urban traffic network.

We apply the reduction algorithm on this network and we
impose a scale-free distribution both for in-degree and out-degree
to show the ability of the algorithm to drive both degree distribu-
tions towards different power laws. For example, as suggested in
[35], a different scale-free coefficient for in-degree and out-degree
distribution can be useful to improve controllability. The choice of
the different parameters of the algorithm is presented in Table 3.

TABLE 3
Parameters of the simulation on the Grenoble urban traffic network

|G| αSF,in αSF,out nrand µin µout
19232 −2.5 −1.8 20 0.5 0.5

The result of the simulation is presented in Fig. 9. For such
a large network the execution lasts for about 160 minutes. The

Fig. 8. The Grenoble urban traffic network.

ability of the algorithm to get close to the desired distribution
is clear: the match is almost perfect for small degrees and more
irregular for higher degrees. The irregularities are due to the small
number of nodes having this degree. We observe also that for
high degree, the in-degree and out-degree distributions tends to go
away from their targets to get closer to each other. This fact shows
the difficulty of the algorithm to obtain a scale-free network with
different in-degree and out-degree coefficients.

7 CONCLUSION

We have formulated a problem of graph reduction towards a scale-
free distribution as an optimization problem: we seek to optimize
the scale-freeness of the graph under similarity constraints. We
have shown that it is possible, for a type of partition called
”merging”, to compute the weights of the reduced graph such
that these constraints are respected. Thus, we define a partition
algorithm which takes advantage of these results and allows to
find a sub-optimal solution. Experimental results brought strong
clues on the choice of a free-parameter of the algorithm, and
show that we can speed up the execution with almost the same
efficiency. Finally, the algorithm is applied on a physical network:
the Grenoble urban traffic network showing the ability of the
algorithm to reduce large-scale network (about twenty thousand
nodes), and to drive both in-degree and out-degree distributions
towards different desired power laws in a reasonable time. Let us
remark that the algorithm could be used to drive a graph towards
any desired structure and still verify the similarity constraints.
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(a) The initial graph. Background colors indicate the final partition obtained via the algorithm

(b) The reduced graph issued from the partition. The size of the nodes represents the in-degree of each node and the color matches with the color
of the partition in (a).

(c) Initial, final and target in-degree distributions in logarithmic scales. (d) Initial, final and target out-degree distributions in logarithmic scales.

Fig. 9. Output of the Grenoble urban traffic network reduction. A video showing the evolution of the algorithm step-by-step of a similar simulation is
available at [36]
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