
HAL Id: hal-01885117
https://hal.science/hal-01885117

Submitted on 1 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Probability estimation by an adapted genetic algorithm
in web insurance

Anne-Lise Bedenel, Laetitia Jourdan, Christophe Biernacki

To cite this version:
Anne-Lise Bedenel, Laetitia Jourdan, Christophe Biernacki. Probability estimation by an adapted
genetic algorithm in web insurance. LION 12 - Learning and Intelligent Optimization Conference,
Jun 2018, Kalamata, Greece. �hal-01885117�

https://hal.science/hal-01885117
https://hal.archives-ouvertes.fr


Probability estimation by an adapted genetic
algorithm in web insurance

Anne-Lise Bedenel1,2,3, Laetitia Jourdan2, Christophe Biernacki3

1 MeilleureAssurance, France
anne-lise.bedenel@meilleureassurance.com
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Abstract. In the insurance comparison domain, data constantly evolve,
implying some difficulties to directly exploit them. Indeed, most of the
classical learning methods require data descriptors equal to both learning
and test samples. To answer business expectations, online forms where
data come from are regularly modified. This constant modification of
features and data descriptors makes statistical analysis more complex.
A first work with statistical methods has been realized. This method
relies on likelihood and models selection with the Bayesian information
criterion. Unfortunately, this method is very expensive in computation
time. Moreover, with this method, all models should be exhaustively
compared, what is materially unattainable, so the search space is limited
to a specific models family.
In this work, we propose to use a genetic algorithm (GA) specifically
adapted to overcome the statistical method defaults and shows its per-
formances on real datasets provided by the company MeilleureAssur-
ance.com.
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1 Introduction

The objective of online insurance comparators is to propose to web users the
offer the most adapted to their expectations, according to their profiles. Most of
the online insurance comparators compare with only one criterion: the price. To
improve web users comparison, the company MeilleureAssurance.com wishes to
create a model allowing predicting the best offer according to web user profiles.
It is a classical objective in statistics but, with the functioning of an insurance
comparator, standard methods cannot be used. To do an online comparison, a
web user has to fill a form of questions. When the form is filled, data are sent to
insurer partners with a web service. So, they can send the real price of the offer
back to the company. An insurance comparator adapts and changes regularly its
forms:



– For insurers: Each insurer has his particularly pricing system, questions are
not homogeneous between all insurers partner.

– For web users: For more clarity and simplicity, questions are regularly adapted.

This adaptability is a specificity of insurance comparators. Due to this specificity,
building a supervised classification model with these features becomes complex.

A first work has been realized to solve this problem, using several statistical
tools as the likelihood, to estimate the parameters. In this first work, the mod-
eling realized shows many constraints and involves a problem of model selection
[1]. The model selection is realized with an exhaustive search. Indeed, with the
statistical process, the selection model is performed by comparing all available
models with an information criterion [2]. This method shows good results for
the estimation and the model selection. However, it is time-consuming and the
number of models to compare has to be limited. To avoid the exhaustive search,
an optimization approach is considered.

In the literature, many papers can be found where a genetic algorithm is
used to do a model selection [8], [9], [10], [11] and parameters estimation [12]. In
this work, we propose a new genetic algorithm to overcome defaults of statistical
methods and new operators to have the best metaheuristics. Section 2 describes
the statistical work with the modeling problem. Section 3 presents the algorithm
used and new operators proposed. Section 4 drives experiments and compares
results between statistical method and genetic algorithm on simulated and real
datasets. Section 5, gives some conclusions and perspectives for future works.

2 Modeling of the problem

2.1 Probabilistic modeling

To introduce the general modeling, a use case is studied where the question is:
“How web users react when data descriptors of feature change?”

To answer to this question, the feature Coverage levels is studied.
In a first time, this feature had four data descriptors {Third-party (T), Third-

party++ (T++), third-party, fire and theft (TPFT), comprehensive (C)}. This
feature denoted by X ∈ {1, . . . , I}, I designating the number of data descrip-
tors (I = 4 in our use case). In a second time, it has been decomposed into
seven data descriptors: {Third-party (T), Third-party+ (T+), Third-party++
(T++), third-party, fire and theft (TPFT), comprehensive (C), comprehensive+
(C+), comprehensive++ (C++)}. This feature is symmetrically denoted by
Y ∈ {1, . . . , J}, J designating the new number of data descriptors (J = 7 in
our use case).

Another specificity for an insurance comparator is that there is no data his-
tory of web users. So, the available observations on X and Y are never matched.
More precisely, this property can be written like this:

Period before the modification N− Web users have filled the feature X, so there

are observed realisations X− = (X−1 , . . . , X
−
N−). The feature Y has never been

filled, so there are unobserved realisations Y− = (Y −1 , . . . , Y
−
N−).



Period after the modification Symmetrically, N+ Web users have filled the fea-

ture Y , so there are observed realisations Y+ = (Y +
1 , . . . , X

+
N+). The feature X

has never been filled, so there are unobserved realisations X+ = (X+
1 , . . . , X

+
N+).

2.2 Parameters estimation and models selection

We assume each couple (X∗n, Y
∗
n ) is an independent and identically distributed

realization of the couple (X,Y ) with n = 1, . . . , N∗ and ∗ ∈ {−,+}. The distri-
bution of the couple (X,Y ) can be written as:

P (X = i, Y = j) = pijpi (1)

where pij = P (Y = j|X = i) and pi = P (X = i), with i = 1, . . . , I and j =
1, . . . , J . The interest, here, is to show the transition probabilities pij between
data descriptors X and Y . The objective is to estimate the whole of transition
probabilities p.. = (pij). It can be noted p. = (pi), which is also an unkown
parameter.

Fig. 1. Graph of possible matching between X- feature before modification and Y-
feature after modification.

The set of transition (matching) probabilities p.. is introduced with the graph
displayed on Fig 1, where the oriented edges represent estimated parameters in
the use case. It can be noted that the number of parameters p.. is larger than
the number of parameters of Y distribution. So, the model is statistically over-
parameterized and therefore has multiple solutions whose range can be found
through repeated optimization from different starting points. More precisely,
in the use case, there are 28 matching probabilities (so 24 free parameters).
However, there are only 6 free parameters for Y distribution. So the model is
said unidentifiable. To have an identifiable model, some constraints have to be
imposed on p.. to limit the number of free parameters to 6 or less (dim(p..) ≤
J −1). To respect the identifiability constraint, it has been proposed to fix some
value of p.. to 0. This type of constraint will be a model noted m. So, it leads
to a set of models M = {m} and they will be challenged. For one model m,
parameters p.. are estimated with log-likelihood maximization of observed data
[3] defined by:

`m(p..,p.;X
−,Y+) =

J∑
j=1

N+
j ln

(
I∑
i=1

pijpi

)
+

I∑
i=1

N−i ln pi (2)



where N−i = #{X−n = i, n = 1, . . . , N−} and N+
j = #{Y +

n = j, n = 1, . . . , N+}.
With this maximization of log-likelihood, estimators of p. and p.. (respectively p̂.
and p̂..) are obtained. To choice the best model m in the setM, the conditional
BIC criterion (Bayesian Information Criterion) [2], given by:

BICm = −2`m(p̂.., p̂.;Y
+|X−) + νm lnN+ (3)

where νm = dim(m) is the number of free parameters for the model m, is used.
The model m̂ having the lowest value of BIC criterion is selected. This method
gives good results for the estimation and model selection [1]. However, it is an
exhaustive method that is time-consuming. Indeed, the exhaustive method han-
dles two problems. The first one is to find values of estimated parameters. The
second one is to select the best model. So, in the exhaustive method, there is a
continuous problem (estimation of parameters) for each model and a combinato-
rial problem (models selection). For example, in the use case, the feature X has
4 levels and Y has 7 levels. Therefore, there are

(
6∗4
6

)
= 134 596 possible models.

For each model, probability values have to be found. So there are 134 596 con-
tinuous problems where probability values have to be found. All models have to
be compared to select the best one. Among these possibilities, some of them are
not allowed. Indeed, each X level and Y level has to be joined. Consequently, the
whole of possibilities is reduced. However, it is not enough to do the exhaustive
method. To do it, only a specific model family is compared which is defined by:

– The number of parameters is fixed and equal to the number of Y levels - 1.
– The parameters are probabilities, so for each Xi levels, the sum has to be

equal to one. This constraint imposes, for each Xi levels, the last level of
Y has to be equal to (1 −

∑J
j=1 pij). Figure 1 illustrates this. So the last

level of Y is fixed as no free parameters. It cannot be set to 0 and is not an
estimated parameter.

Even with these constraints, the exhaustive method stays time-consuming.
For example, in the use case, to do the estimation and the comparison of 4 095
models, the process needs 1h07. In a business context, it is very long. Moreover,
the firm MeilleureAssurance.com could have features with more levels, so with
more parameters to estimate and a larger combinatorial problem. The objective
is to reduce the computation time to do the estimation and the comparison. To
reach this objective, it can be interesting to perform a non-exhaustive search. The
problem involves having a flexibility according to constraints and the objective is
to have a high-quality solution. A stochastic method responds to these expecta-
tions. Moreover, according to the problem, a metaheuristic based on population
(P-Metaheuristic), and more especially an evolutionary method, is adapted. To
challenge the statistical method, we propose to use a genetic algorithm [16].

3 Algorithms

The use of a genetic algorithm will allow obtaining a good solution quickly.
Moreover, a genetic algorithm is particularly adapted to real problems. To have
a better speed of convergence, a steady-state algorithm (ssGA) [15] is also used.



3.1 Encoding and evaluation

A genetic algorithm is defined by a potential solution, a population, an environ-
ment (search space) and a fitness function.

Definition of the solution To define the solution, the probabilistic modeling is
used. A model m is a set of transition probabilities p.. where some of them
are estimated or fixed to 0. Work with probabilities involve: each estimated
probability p.. ∈ [0, 1] and is a real number. A solution corresponds to a model.
Figure 2 shows an example of representation of model m and Figure 3 his matrix
form. In the solution, to each X level, the sum of probabilities has to be equal
to 1. Figure 3 shows estimated probabilities of X for the level T which are 0.6
and 0.4.

Fig. 2. Graph of possible match-
ing between X- feature before mod-
ification and Y- feature after mod-
ification for a fixed model m.

X\Y T T+ T++ TPFT C C+ C++

T 0.6 0 0.4 0 0 0. 0
T++ 0 0.9 0 0 0 0 0.1
TPFT 0 0 0 0.7 0 0.3 0

C 0 0 0 0 1 0 0

Fig. 3. Matrix of transition corresponding
to the model m between the levels X and
Y.

Population The population is composed of available models in the search space:
the set of models M. Contrary to the statistical method, the set of models M
does not need to be reduced.

Fitness function To evaluate the solution (model), the BIC criterion defined by
Equation 3 is used as the fitness function which has to be minimized.

3.2 Operators

A genetic algorithm relies on three operators that are: selection, crossover and
mutation. The choice of these operators depends on encoding parameters and
for this problem a real encoding is used. The selection will be performed by a
classical operator. To perform the crossover and mutation, the choice is more



complex and these operators have to be adapted to the problem. Indeed, models
have many 0 and the statistical process shows that the place of all 0 is a real
information. The first objective will be to design operators adapted to manage
the 0 information.

Selection operator The selection will be performed with a classical operator:
the Binary Tournament Selection [6]. This operator selects randomly two solu-
tions of population M. In a second time, it evaluates solutions with BICm and
selects the best solution m̂ which is the solution with lowest BIC criterion. So,
we have :

m̂ = argmin BICm (4)

Crossover operators Two crossover operators relying on real encoding are
compared to find the most efficient:

– Uniform crossover [5]: The uniform crossover operator is very simple, ac-
cording to the crossover probability, each parameter can be crossed with a
probability 0.5.

– SBX crossover (Simulated Binary Crossover) [4] [13]: The SBX crossover is
an operator which adapts to the evolution algorithm according to the fitness
function of parents and their offspring. From two parents p1(i) and p2(i), this
crossover generates two offspring c1(i) and c2(i) by the following relation:{

c1(i) = 0.5[(1 + β)p1(i) + (1− β)p2(i)]
c2(i) = 0.5[(1− β)p1(i) + (1 + β)p2(i)]

where β is a spread factor given by:

β =

{
(2u)

1
η+1 if u < 0.5

( 1
2(1−u)

1
η+1 otherwise.

where u is random number uniformly generated on the interval [0,1] and η
a non-negative real parameter.

The constraints with parameters fixed to 0 in the probabilistic modeling
involve that these operators have to be adapted. Indeed, in the problem, there
are many 0. How handle them? Two solutions are proposed. In the first solution,
the crossover is applied if and only if parameters of two parents are estimated
else there is no crossover. In the second solution, the crossover is applied without
constraints, so a 0 can become an estimated parameter and vice versa.

The example Figure 4, shows the process of the first solution. An SBX
crossover is used and adapted to not to cross when the parameter is a 0. In
the table showing the offspring, parameters (in bold) has been crossed. On the
two first X levels (T and T++), there are no changes. On these two lines, only
two parameters can be moved with a probability equals to 0.5 because these are



X\Y T T+ T++ TPFT C C+ C++

T 0 0 0 0 0.9 0.1 0
T++ 0.19 0.07 0.73 0 0 0 0
TPFT 0 0.15 0 0.27 0 0 0.57

C 0 0 0.024 0.097 0 0 0
Parent 1

X\Y T T+ T++ TPFT C C+ C++

T 1 0 0 0 0 0 0
T++ 0 0.25 0.4 0 0 0 0.35
TPFT 0 1 0 0 0 0 0

C 0 0.46 0.17 0.21 0.32 0.15 0
Parent 2

?
X\Y T T+ T++ TPFT C C+ C++

T 0 0 0 0 0.9 0.1 0
T++ 0.19 0.07 0.73 0 0 0 0
TPFT 0 0.97 0 0.27 0 0 0.57

C 0 0 0.018 0.16 0 0 0
Offsprings generated after crossover without 0 changed

Fig. 4. Example of crossover keeping 0

estimated probabilities for both parents (1 and 2) at the same place. On the
line of X level TPFT of the parent 2, the crossover operator can be applied only
on the parameter equals to 1. In the last line (the X level C), two parameters
estimated have been crossed because they are in common. This example shows
when one of two parents has a 0, there is no crossover.

X\Y T T+ T++ TPFT C C+ C++

T 0 0 0 0 0.9 0.1 0
T++ 0.19 0.07 0.73 0 0 0 0
TPFT 0 0.54 0 0.15 0 0 0.31

C 0 0 0.1 0.9 0 0 0
Table 1. Offsprings generated after crossover and correction operator

For each level of X, the sum of probabilities has to be equal to 1. As shown
on Table 4, the crossover does not respect this constraint. Indeed, for the two
parents, if the sum on each X level is performed, it will be equal to 1. But, for
the offspring, the sum of probabilities of level TFPT or the level C is not equal
to 1. For the level FPFT, it is equal to 0.97 + 0.27 + 0.57 = 1.8. So to keep
the sum of probabilities equals to 1 for each level of X, a correction operator
(Algorithm 1) has been created.

For each X level, this operator sums probabilities. If the sum is equal to 1,
it does nothing, else it adjusts the estimated parameters to have a sum equal to
1. Table 1 shows the offspring after the application of the correction operator.
Parameters in bold are the parameters where a correction has been applied, so
for the levels TPFT and C. After the correction, the sum of the parameters
for the level TPFT is equal to 0.54 + 0.15 + 0.31 = 1. It is the same for the
level C. It can be noticed that each parameter is adjusted proportionally to his
initial value. Two solutions have been compared to find the most relevant in the
treatment of 0. The first one was to not cross the parameters equal to 0. On the
contrary, the second one was to let the possible crossing on all the parameters.



Algorithm 1: Correction algorithm

Data: integer sup, i, j;
float difference, sum;
float value;
for Each X levels do

sum=0;
for Each Y levels do

sum += Value of solution to the index(i+j*Y);
end
if (sum ≥ 1) then

sup=1;
else

sup=0;
end
difference = Math.abs(sum-1);

end
for Each X levels do

value = Value of solution to the index(i+j*Y);
if (sup == 1) then

set the value by (value-difference*value/sum);
else

set the value by (value+difference*value/sum);
end

end

Figure 5 shows the process of the second solution. As for the first solution,
an SBX crossover is used but for this solution, it is allowed to apply on all
parameters. The bold parameters in the table representing the offspring obtained
correspond to the parameters where the crossover operator has been applied.
The first parameter of level T of the feature X shows the difference with the first
solution. Indeed, whereas the parameter is a 0 for the parent 2, the crossover
operator has been applied and so this parameter becomes a 0 for the offspring.
It is the same for the other parameters. In this solution, the information on
the place of the parameters equal to 0 is not kept. As for the first example, a
correction operator is applied to have the sum of probabilities of each X level
equals to 1.

Mutation operator For the mutation operator, a polynomial mutation [13],
[14] is used. In this operator, a polynomial probability distribution is used to
perturb a solution in a parent’s vicinity. The probability distribution in both left
and right of a variable value is adjusted. So that no value outside the specified
range [a, b] is created by the mutation operator. In the polynomial mutation the
offspring is generated as follows:

x′i = xi + (xui − xLi )δi (5)



X\Y T T+ T++ TPFT C C+ C++

T 0.011 0 0.97 0 0.002 0.016 0
T++ 0 0 0 0.62 0.14 0 0.23
TPFT 0 0.67 0 0.33 0 0 0

C 0 0 0 1 0 0 0
Parent 1

X\Y T T+ T++ TPFT C C+ C++

T 0 0.29 0.48 0.21 0 0.02 0
T++ 0 0 1 0 0 0 0
TPFT 1 0 0 0 0 0 0

C 0 0.002 0 0.03 0.87 0 0.093
Parent 2

?
X\Y T T+ T++ TPFT C C+ C++

T 0 0.29 0.95 0.013 0.002 0.016 0
T++ 0 0 0 0.021 0.15 0 0.23
TPFT 0 0.01 0 0.016 0 0 0

C 0 0 0 1 0.07 0 0.1
Offsprings generated after crossover with 0 changed

Fig. 5. Example of crossover with chaging 0 allowed

where xui (resp. xLi ) represents the upper bound (resp. lower bound) for xi.
The parameter δi is computed from the polynomial probability distribution:
p(δ) = 0.5(ηm + 1)(1−|δ|ηm)

δi =

{
(2ri)

1
ηm+1 if ri < 0.5

1− (2(1− ri))
1

ηm+1 otherwise.

where ηm is the distribution index and ri is a random number in [0,1].

4 Experiments

4.1 Experimental protocol

To compare 8 genetic algorithms obtained with different crossover and mutation
operators, each meta-heuristic is run on the same simulated dataset. The simu-
lated dataset is generated with the programming language R and the function
Rmultinom(see Section 4.2). Each metaheuristic is implemented in JAVA with
JMETAL platform [7] on a Linux machine with processor Intel Core i5-4590
CPU 3.3GHz*4 and 4 GO of RAM. Each genetic algorithm is stopped after the
same maximum number of iteration and is run 25 times. For each execution of
the genetic algorithm, the best solution found is saved and stored. The average
of 25 best solutions stored is calculated for each meta-heuristic. A statistical
test of average comparison (Kruskal Wallis) is performed to compare the perfor-
mance of these metaheuristics. This test has been chosen because the samples
are small (25) and independent. If the test is significant, a left unilateral test
of Mann Whitney will be performed to have the metaheuristics that have an
average significantly lowest. A boxplot of each meta-heuristic is also realized.
The meta-heuristics with the lowest average and the most efficiency is selected
to be compared with the results of the statistical process.



To compare the performance of the best meta-heuristic selected to the statis-
tical method, several simulated datasets have been generated. They are gener-
ated by the same process that for the comparison of the 8 metaheuristics. 2 real
datasets are also used to compare the results. On each dataset, metaheuristic
selected is run once and is stopped after a number of maximum iterations. The
best solution is saved and the BIC value is compared to the BIC value found
by the statistical process. Moreover, the place and the value of the estimated
parameters is also studied to verify the simulated solution is found for both sta-
tistical method and genetic algorithm. In the simulated datasets, the place and
value of the parameters are known, as the model to find is simulated. Contrary,
to the real datasets where only the data in X and Y are known, and the model
to find is unknown.

4.2 Description of instances

Experiments are computed using 10 simulated datasets and 2 real datasets. Sim-
ulated datasets are generated with the software R and the function Rmultinom.
This function allows generating datasets according to their multinomial distribu-
tion. Table 2 shows an example of data representation for simulated dataset. In
this example, there are 10 000 couples (X,Y ). As it is a simulated model, tran-
sition probabilities and the place of 0 are known. Table 3 shows probabilities
associated to Table 2.

X\Y 1 2 3 4 5 6 7

1 2122 1260 0 0 0 0 0
2 0 0 961 0 0 0 0
3 0 0 0 1975 0 0 0
4 0 0 0 0 3529 143 10

Table 2. Matrix of simulated
datasets.

X\Y 1 2 3 4 5 6 7

1 0.63 0.37 0 0 0 0 0
2 0 0 1 0 0 0 0
3 0 0 0 1 0 0 0
4 0 0 0 0 0.96 0.038 0.002

Table 3. Matrix of probabilities of
simulated datasets.

Table 4 details information about the different datasets used for experiments.
The dataset DS3 is used for the comparison of 8 metaheuristics. In these exper-
iments, there are two real datasets (CoverageLevels, DriverStatut) that come
from the company MeilleureAssurance.com. The dataset CoverageLevels cor-
responds to the use case used for the modeling.

4.3 Parameters

Different parameter settings were studied before deciding which one to use for
the final experiments.

All parameters have been chosen experimentally. To choose the number of
maximum iteration a study of the convergence of the algorithm has been per-
formed. The maximum iteration number and the size of the population differ
according to the size of the search space. Table 5 shows parameters involved in
this study.



Table 4. Instances description. The size of the feature X |X| and Y |Y | (i.e.,
number of observations), the number of levels of X (#Xi) and Y (#Yj), the number of
parameters to estimate (#p..) and the number of models compared with the statistical
process #Ms

.

Name |X| |Y | #Xi #Yj #p.. #Ms

DS1 15000 15000 4 7 6 4095
DS2 11035 10035 4 7 6 4095
DS3 10000 10000 4 7 6 4095
DS4 5000 5000 4 7 6 4095
DS5 15000 15000 3 5 4 81
DS6 10000 10000 3 5 4 81
DS7 5000 5000 3 5 4 81
DS8 15000 15000 3 4 3 26
DS9 7880 7880 3 4 3 26
DS10 5000 5000 3 4 3 26
CoverageLevels 11441 8668 4 7 6 4095
DriverStatut 7438 8238 3 5 4 81

Parameters Value

Number of maximum iteration for the comparison of metaheuristics 50 000
Number of maximum iteration for datasets (DS1,DS2,DS3,DS4 and CoverageLevels) 100 000
Number of maximum iteration for the other datasets 10 000
Size of population for datasets (DS1,DS2,DS3,DS4 CoverageLevels) 15 000
Size of population for the other datasets 500
Crossover probability 0.8
Mutation probability 0.8
Crossover index distribution 20
Mutation index distribution 20

Table 5. Genetic algorithm parameters

4.4 Sensitivity analysis of the operators

The 8 metaheuristics compared are described as follows:

– C1Ua: A uniform crossover, with the first solution where the crossover is
allowed only on estimated parameters, the polynomial mutation is realized
on all estimated parameters according to the mutation probability.

– C2Ua: A uniform crossover, with the second solution where the crossover is
allowed on all parameters, the polynomial mutation is realized on all esti-
mated parameters according to the mutation probability.

– CSBX1a: An SBX crossover, with the first solution where the crossover is
allowed only on estimated parameters, the polynomial mutation is realized
on all estimated parameters according to the mutation probability.

– CSBX class a: An SBX crossover, with the second solution where the crossover
is allowed on all parameters, the polynomial mutation is realized on all esti-
mated parameters according to the mutation probability.

– CSBX1: An SBX crossover, with the first solution where the crossover is
allowed only on estimated parameters, a one-point polynomial mutation is
used.



– CSBX class: A uniform crossover, with the second solution where the crossover
is allowed on all parameters, a one-point polynomial mutation is used.

– C1U: A uniform crossover, with the first solution where the crossover is
allowed only on estimated parameters, a one-point polynomial mutation is
used.

– C2U: A uniform crossover, with the second solution where the crossover is
allowed on all parameters, a one-point polynomial mutation is used.

Fig. 6. Boxplot of 8 meta-heuristics compared.

The boxplot Fig 6 shows the 8 compared metaheuristics. The metaheuristics
C2Ua, C2U, CSBX class and CSBX class a correspond to the metaheuristics
which use the proposition where the crossover is allowed on all parameters (0
and estimated). The boxplot shows their results seem worse than the results of
the other metaheuristics. The metaheuristics which seem to have better results
correspond to the metaheuristic where the crossover operator is applied only to
estimated parameters. The first idea will be to use this crossover. Metaheuristics
with a multi-point polynomial mutation (C1Ua, CSBX1a) seems slightly better
than the results with a one-point mutation.

Many statistical tests have been performed to compare these metaheuristics
and to know if the difference is significant. The first test applied is a Kruskal
Wallis test. This test allows to compare the 8 metaheuristics and to know if
there is really a significant difference between all these metaheuristics results.
The Null hypothesis is the following:{

H0 : All metaheuristic results are similar
H1 : There are differences between metaheuristics results.

With a p.value < 2.2e−16 the null hypothesis is rejected. So, there is a significant
difference between the metaheuristics results.

To know which metaheuristics have significantly different results, a Mann
Withney test is performed. It is a test where the metaheuristics results are com-
pared (in pairs). In a first time, a bilateral test has been applied. The assumptions



are: {
H0 : Metaheuristic results (1) = metaheuristic results (2)
H1 : Metaheuristic results (1) 6= metaheuristic results (2).

This test shows, metaheuristics can be grouped in 3 subsets, which are:
{C1Ua, C1U, CSBX1a, CSBX1}, {C2Ua, C2U} and {CSBX class a, CSBX class}.
The first subset group metaheuristics that have the smallest results, left unilat-
eral tests of Mann Withney are performed on this subset to know if one of the
metaheuristics is better. However, results show that there is not a significant
difference. So, this comparison shows the choice of crossover is important and
we have to use the metaheuristics with the crossover applied only to the esti-
mated parameters. For the polynomial mutation, use a one-point mutation or a
multi-point mutation does not have a significant impact on the results.

4.5 Comparing statistical results and genetic algorithm results

We choose to use the metaheuristic CSBX1 to compare the genetic algorithm
results to the statistical results. Table 6 shows the results of BIC criterion for
the statistical process and the GA. The execution time of each process is also
shown in Table 6. On the different simulated datasets, the GA finds a result

Dataset Best BIC
GA

Best BIC
SM

Time GA Time SM Average time
ratio GA-SM

DS1 87 018.41 87 008.41 2.46min 35min 14.17
DS2 62 640.8 62 637.1 2.74 min 1h17 28.1
DS3 57 105.8 57 101.31 2.5min 1h13 29.2
DS4 30 770.08 30 766.48 2.47 min 26min 10.52
DS5 64 084.99 64 084.99 1.95sec 10sec 5.13
DS6 49 875.41 49 875.41 2.12sec 30 sec 14.15
DS7 23 604.8 23 612.49 1.95sec 11sec 5.64
DS8 67 325.2 67 325.20 1.9sec 4sec 2.1
DS9 32 836.38 32 836.38 1.8sec 8sec 4.44
DS10 21 358.85 21 358.85 2.09sec 3sec 1.43

Real dataset 1 58 287.7 58 306.6 2.10min 33min 15.71
Real dataset 2 25 558.9 25 560.9 1.9sec 30 sec 15.78

Table 6. Result of CSBX1 on simulated and real datasets.

very close to the result of the statistical method. A test of Mann Whitney has
been realized and gives a p-value = 0.9396. It means, the assumption H0 is
accepted and there is no significant difference the statistical results and results
of the genetic algorithm. Moreover, with the real dataset and the dataset DS7,
the result of the BIC criterion found by the GA is better than the result found by
the statistical method. The GA compares more models, so it can do better than
the statistical method. For example, Figure 7 shows the results of parameters
estimation for DS7. Because of the constraint to reduce the set of models M in
the statistical method, the statistical method can not find the true estimation
of parameters. As the GA can cover the whole set of model M, it can find the
true estimation of parameters. Concerning the execution time, for each dataset,



the GA is much smaller than the MS. Indeed, according to the dataset used, the
GA is 30 times faster than the MS. Moreover, for the two real datasets, the GA
is 15 times faster than the MS.

X\Y 1 2 3 4 5

1 0.1 0 0 0 0.9
2 0 0.3 0.7 0 0
3 0.2 0 0 0.8 0
Simulated datatset

X\Y 1 2 3 4 5

1 0 0 0 0 1
2 0 0.3 0.7 0 0
3 0.22 0 0 0.78 0

Results of SM

X\Y 1 2 3 4 5

1 0.11 0 0 0 0.89
2 0 0.29 0.71 0 0
3 0.199 0 0 0.801 0

Results of GA

Fig. 7. Estimation parameter results for DS7.

With the real dataset, the best model is unknown, so the set of models of
the statistical method can be too small and the genetic algorithm can find more
quickly a better model which is not in the set of models of the statistical method.

5 Conclusion and perspectives

In the insurance comparison domain, data constantly evolves. Indeed, to answer
business expectations, online forms where data comes from are regularly modi-
fied. This constant modification of features and data descriptors makes analysis
more complex. A first work has been realized to solve this problem, using sev-
eral statistical tools as the likelihood, to estimate the parameters. In this first
work, the modeling realized shows many constraints and involves a problem of
model selection. In the statistical process, the model selection is an exhaustive
search realized by comparing all models according to the BIC criterion. Accord-
ing to the feature studied, the combinatorial problem can quickly become huge
and the method time-consuming. In this work, we propose to use a stochastic
optimization method to overcome the statistical method defaults. According to
the objective and the problem, a steady state genetic algorithm is used. In the
genetic algorithm, a solution corresponds to a model which is composed of esti-
mated parameters which are transitions probabilities and parameters fixed to 0.
To handle parameters fixed to 0, a new crossover has been proposed to keep some
information. It is compared with classical crossover applied on all parameters.
Finally, to have the best results, 8 metaheuristics have been compared. As each
solution is a probabilistic model, a new correction operator is applied after each
crossover and mutation operator. This correction operator allows keeping a sum
of probabilities equal to 1. The results of the comparison show that the GA with
the new crossover is more efficient than a GA with the classical crossover applied
to all parameters. The main objective of this work is to challenge the statistical
method results. The results for BIC criterion with the GA and the SM are similar
on the simulated datasets. So, with the simulated datasets, the simulated model
and BIC criterion is found by both SM and GA. Moreover, as the GA compares
more models, it can find a better model than the models found by the SM. It is
the case with the real datasets. Concerning the execution time, the GA is much
faster than the SM. On real datasets, GA is 15 times faster than SM. In this
work, we show the GA can give good results for the estimations of parameters



and very quickly. These results are very interesting and encouraging. Currently,
operators chosen are basics so a perspective is to add more intelligence to these
operators. For example, by using statistical knowledge to create new operators
and to improve results.
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