
HAL Id: hal-01884960
https://hal.science/hal-01884960

Submitted on 1 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tactic Program-based Testing and Bounded Verification
in Isabelle/HOL

Chantal Keller

To cite this version:
Chantal Keller. Tactic Program-based Testing and Bounded Verification in Isabelle/HOL. Tests and
Proofs, Jun 2018, Toulouse, France. �hal-01884960�

https://hal.science/hal-01884960
https://hal.archives-ouvertes.fr

Tactic Program-based Testing and Bounded
Verification in Isabelle/HOL

Chantal Keller
Chantal.Keller@lri.fr

LRI, Univ. Paris-Sud, CNRS, Université Paris-Saclay, UMR8623
Orsay, F-91405, France

Abstract Program-based test-generation methods (also called “white-
box” tests) are conventionally described in terms of a control flow graph
and the generation of path conditions along the paths in this graph.
In this paper, we present an alternative formalization based on state-
exception monads that allows for direct derivations of path conditions
from program presentations in them; the approach lends itself both for
program-based testing procedures — designed to meet classical coverage
criteria — and bounded verification. Our formalization is implemented in
the Isabelle/HOL interactive theorem prover, where symbolic execution
can be processed through tactics implementing test-generation strate-
gies for various coverage criteria. The resulting environment is a major
step towards testing support for the development of invariants and post-
conditions in C verification environments similar to Isabelle/AutoCorres.

Keywords: White-box testing; Bounded verification; Symbolic execution; Cov-
erage criteria; Interactive Theorem Proving

1 Introduction

In this paper, we present a range of program-based (“white-box”) test generation
methods inside an interactive theorem prover. Conventional implementations
[3, 7, 8] convert the abstract-syntax tree of the source program into a control flow
graph (CFG for short) defining a set of paths, giving rise to various path-coverage
criteria. In contrast, we base our work on a shallow embedding of programs
in the state-exception monad. This presentation can be seen as a minimalistic
imperative core language tuned to program verification. As a side-effect, our
test-generation procedure meeting different coverage criteria is implemented by
a semantically neutral annotation process combined with tactical decomposition
based on derived rules; it is therefore a verified tool by construction.

The contributions are the following. First, we propose to perform a symbolic
execution of programs using the semantic rules of a state-exception monad. Com-
pared to conventional presentations, it provides a lightweight environment for
white-box test generation (around 1500 LOC, including proofs). Second, we em-
bed the process into the Isabelle/HOL proof assistant, to offer:

– a formal verification of symbolic execution, via the correctness of the state-
exception monad rules;

– reasonably efficient automatic engines for various coverage criteria, via Isa-
belle’s support for term manipulation;

– bounded model checking, via the possibility to formally prove the validity of
the abstract test cases.

Our paper proceeds as follows. After recalling the CFG-based approach for
white-box testing on a running example, we detail our novel approach based
on monads. We demonstrate the resulting symbolic execution rules by example,
and explain their use both for bounded verification and for testing by injecting
different forms of test-hypothesis. We conclude by tactics — implemented in the
Isabelle/HOL interactive theorem prover — achieving various coverage criteria
by construction, and illustrate the approach on a few examples.

All the material can be found at https://www.lri.fr/~keller/TAP18. For
readability reasons, the definitions in the paper are written in Higher Order
Logic (as defined by Church’s Simple Type Theory [5]), expressed in a ML-like
language with pre-defined symbols such as implication (=⇒), set comprehension
({ | }), . . . , and a type constructor theorem that can be applied only to valid
expressions (validity being proved interactively by Isabelle/HOL tactics). The
notation

assumes H: P
shows Q

means theorem P =⇒Q (giving the name H to hypothesis P).

2 The Classical Approach to White-box Testing

In order to contrast our approach to “the classical one”, we will briefly present the
latter using a running example: an algorithm for computing the integer square
root of an integer. We use a vanilla imperative language in order to represent
our example program:

1 int squareroot(int a):

2 -- pre : 0 ≤ a

3 -- post: result2 ≤ a ∧ a < (result +1)2

4 { int tm = 1; int sqsum = 1; int i = 0;

5 while sqsum ≤ a {

6 i := i + 1;

7 tm := tm + 2;

8 sqsum := tm + sqsum;

9 };

10 return(i)

11 }

The return command assigns its argument to the implicitly declared return
value result that is in the variable scope of the post-condition.

https://www.lri.fr/~keller/TAP18

Figure 1. The CFG for the integer squareroot program

The algorithm computes the sum of odd numbers and exploits the well-known
fact:

i−1∑
x=0

(2x+ 1) = 1 + 3 + 5 + . . .+ (2i− 1) = i2

Thus, the impairs are accumulated in the variable sqsum to a series of squares
(i+1)2. If sqsum becomes larger than the input a, i must be its integer square-
root.

In this article, we focus on program-based test methods, that make use of
both the specification and the program itself to automatically build concrete
tests in order to check if the program meets the specification on those tests,
preferably given various coverage criteria.

The classical approach transforms our example program into a control-flow
graph (CFG) as shown in Figure 1. Except for the start-node S and the end-
node E, the nodes are labeled with corresponding program line numbers; these
nodes represent the state-set that is reachable after a program point. These
state-sets can be characterized by formulas associated to nodes; for example:
4 7→ {σ|σ.tm = 1}, 5 7→ {σ|σ.tm = 1 ∧ σ.sqsum = 1}, etc; the notation σ.tm
standing for “the value of tm in state σ”.

The node labeled 7 is a decision node where the left outgoing arc represents
the computations where the evaluation of the condition yielded false (F), while
the right outgoing arc represents the evaluation to true (T) leading to one more
traversal of the loop.

On the basis of a CFG, the notion of an execution path can be estab-
lished: the path [S,4,5,10,E] is the path that does not traverse the loop,
[S,4,5,6,7,8,5,10,E] the path that traverses the loop exactly once, etc. The
formula φπ characterizing the set of states that will lead to an execution along a
path π is called a path condition; for the case π = [S,4,5,10,E], for example,
φπ is σ.a = 0. Path conditions can be constructed automatically by a symbolic
execution process (a variant thereof will be presented later in the paper); how-
ever, a path condition can be unsatisfiable reflecting the fact that it does not
necessarily represent a computation that is actually possible. This may happen
due to conflicting conditions in decision nodes, for example. Whenever φπ is
unsatisfiable, π is called infeasible.

While the set of execution paths is infinite whenever the program contains
unbounded loops, CFG’s and the resulting notion of paths lend themselves nat-
urally to coverage criteria which are fairly easy to understand and which found

their way into industrial applications and technical standards for software qual-
ity such as ISO 25119 [13]. For example a coverage criterion could constrain the
set of all (if possible feasible) paths of a CFG to a path set covering all decision
nodes (allcond), a path set covering all transitions (alltrans), or the set of
paths that traverse all loops at most k times (allpathk). In particular, variants
based on allpath3 are used in many industrial development processes since they
have empirically shown a reasonably good compromise between cost and error
detection capacity.

3 Instead of CFG’s: Symbolic execution on Monads

3.1 Basic Definitions

We base this work on the Monad theory distributed with the HOL-TestGen
testing framework [4]. This presentation is geared towards testing (see Section 8
for a comparison to other monad theories).

We define the monad-type as a transition function from a state of type σ to
a successor state and some output of type ’o:

type (’o ,’ σ) MONSE = ’σ →(’o ∗ ’σ) option

The composition operator on monads bind and the neutral element unit are
standard:

let bindSE : (’o,’σ) MONSE →(’o →(’o,’σ) MONSE) →(’o,’σ) MONSE

= fun f g → (λσ . case f σ of None →None | Some (out, σ ’) → g out σ ’)

let unitSE : ’o →(’o ,’ σ) MONSE = fun e →(λσ. Some(e,σ))

We will use alternative notations for the bindSE combinator: the notation
x ←f ; g stands for bindSE f (fun x →g) and f;− g for ←f ; g . It is straight-

forward to prove the fundamental unit and associativity monad laws.

3.2 The Enriched Monad Infrastructure

As standard, in addition to these two basic blocks, it is convenient to declare
common constructions used to define and manipulate monadic programs.

It is possible to add combinators for exception raising and handling and other
usual programming constructs. We focus only on the conditional and the slightly
more tricky case of loop definitions:

let if SE : (’σ → bool) → (’o ,’ σ) MONSE →(’o,’σ) MONSE →(’o,’σ) MONSE

= fun c E F → (λσ . if c σ then E σ else F σ)

let whileSE : (’σ → bool) → (unit ,’ σ) MONSE →(unit,’σ) MONSE

= fun c B → (lfp (Γ c B))”

In the definition of whileSE, lfp is a least-fixpoint operator, and Γ b cd is a state
relation defined by:

let Γ b cd : ’ σ ∗ ’ σ
= fun cw →{(s , t) | if b s then (s , t) ∈ (cd O cw) else s = t}

where O is the relation composition (remind that { | } is set comprehen-
sion). Informally, it means that the initial and final states of a loop are equal
if the condition is false, and related by one more application of the loop body
otherwise.

The proof of the unfold theorem:

theorem while SE unfold:
(whileSE b do c od) = (ifSE b then c;−whileSE b do c od else return() fi)

is relatively complicated, but folklore (it is described in Winskell’s book [18]; a
first formal treatment in Isabelle we know of is [12]). Since our objective is to
perform symbolic execution, the while operator can be decorated with a natural
integer that limits the number of loops unrolling:

theorem while n unfold:
(while [Suc n] b do c od) = (ifSE b then c;−while[n] b do c od else return() fi)

where while [n] is defined as whileSE by ignoring the decoration n.
Note furthermore that we will embed assumeSE and assert SE to model pre-

and post-conditions, respectively. The construction assumeSE puts a program in
a initial state that satisfies some predicate P (if such a state exists), and assert SE

checks if the final state of a program satisfies some predicate (by returning the
program that succeeds if and only if its state satisfies P).

let assumeSE : (’σ →bool) → (unit ,’ σ) MONSE

= fun P → (λσ . if ∃ σ . P σ then Some((), SOME σ. P σ) else None)

let assert SE : (’σ → bool) → (bool ,’ σ) MONSE

= fun P → (λσ . if P σ then Some(True,σ) else None)

Here, the construction SOME σ. P σ returns a state σ that satisfies P (note that
it is guarded by the fact that P is satisfiable).

3.3 Symbolic Execution Rules for the Monad

Instead of the syntax-based concept “execution path”, we define the semantic
concept of a valid test-sequence as a valid monad execution of a particular format:
it consists of a series of monad computations m1 . . . mn applied to inputs i1 . . . in
and a post-condition P wrapped in a return depending on observed output.
Validity is formally defined as follows:

let valid SE : ’σ → (bool ,’ σ) MONSE →bool”
= fun σ m → (m σ 6=None) and fst(the (m σ))”

where the operator the is defined such that the (Some x) returns x

(again, it is guarded by the fact that m σ 6=None). We will write
σ |=m for valid SE σ m. Since each individual computation mi may fail, the con-
cept of a valid test-sequence corresponds to a feasible path in a non-deterministic

automaton, that leads to a state in which the observed output satisfies P . Us-
ing the notation introduced in Section 3.1, we will write an entire sequence as
follows:

σ |=o1 ←m1 i1; ...; on ←mn in; returnSE (P o1 ... on)

Note that since the mi can be conditionals or a while loop, a sequence represents
the stack of executions yet to be executed, and the oj the intermediate results
stored on way (if any).

The notion of a valid test-sequence has two facets. On the one hand, it
is executable, i.e., a program, if and only if m1, . . . , mn, P are. Thus, a code
generator can map a valid test-sequence statement to code. In particular, in
Isabelle/HOL, depending on the configuration, the code generator can map the
calls to the mi to Isabelle/HOL-defined operations or to external code, i.e.. some
code to be tested. On the other hand, and this is a major strength of this monadic
approach, valid test-sequences can be treated by a standard and simple family of
symbolic executions rules, characterized by the following schema (for all monadic
operations m of a system, which can be seen as its step-functions):

σ |= returnSEP = P (1)

m i σ = None =⇒ (σ |= s ← m i ; m’ s) = False (2)

m i σ = Some(b, σ′) =⇒ (σ |= s ← m i ; m’ s) = (σ′ |= m’ b) (3)

(σ |= (if SEb then c else d fi);−m) = (b σ ∧ σ |= c;−m) ∨ (¬b σ ∧ σ |= d;−m) (4)

(σ |= while [Suc n] b do c od ;− m) =
(σ |= (if SEb then c;−while[n] b do c od else returnSE()fi);−m)

(5)

(σ |= assumeSEP ;− m) = (∀σ′ ∈ {σ′|P σ′}.(σ′ |= m)) (6)

(σ |= assert SEP ;− m) = (P σ ∧ (σ |= m)) (7)

This kind of rules is usually specialized for concrete operations m; if they
contain pre-conditions Cm (constraints on i and state), or conditions, this cal-
culus will just accumulate them and construct a constraint system to be treated
by a solver (see next section for an example).

A technical improvement specific to Isabelle is to use its meta-logic (which
is based on an intuitionistic fragment of Higher Order Logic) instead of Is-
abelle/HOL connectives. It gives better performance compared to rewriting the
rules presented above. For example, the conditional rule is expressed as case-
splitting as follows, similar to a disjunction elimination rule:

σ |= if SEb then c else d fi ;− m

[
σ |= c ;− m, b σ

]
···
Q

[
σ |= d ;− m, ¬b σ

]
···
Q

Q

(8)

4 Representing Programs and Symbolic Execution

We are ready to undertake the final steps to actually represent imperative pro-
grams as a symbolic evaluation problem (that will be used in bounded verification
and testing scenarios later).

We will introduce a notation for the assignment, which is modeled to never
fail in our core language:

let assign : (’ σ → ’ σ) → (unit ,’ σ) MONSE = fun f σ→Some ((), f σ)

for which we derive the desired destruction rule:

σ |= assign f ;− m = f σ |= m

With respect to the representation of state, we follow the idea of Isa-
belle/SIMPL [14] to reuse records where the record fields represent the program
variables. For our running example, this means that we define the state as:

type state = {tm : int ,
i : int ,
sqsum : int ,
a : int}

Note that the variable a could also be modeled as a parameter not represented
in the state since it is not modified. As standard, from this record, one can
generate the accessor functions a, sqsum, i and tm; update operations like σ (|tm

:= E|); and a memory-theory with rules like tm(σ(|tm := E|))= E and sqsum(σ(|tm

:= E|))= sqsum σ. (In Isabelle, they are all generated automatically.) As standard,
we extend the notation for updates to chains of updates such as

σ (|tm:=1, sqsum:=1, i:=0|)

where the rightmost “wins” when applied to the same record field. Note that the
types of record fields can be arbitrary HOL types; here, we profit largely from
our compact shallow embedding representation. Moreover, other memory-models
could be used as well.

The right-hand side of assignments, assertions, and conditions in if SE and
whileSE are represented as state-transition functions or as state-to-bool pre-
dicates. However, we will use notations such as 〈sqsum ≤ a〉 for fun σ → (sqsum

σ) ≤ (a σ), i.e. 〈 〉 represents a parser that applies any record field name to a
bound variable (for the state) that is λ-abstracted at the topmost level. Similarly,
〈 i := i + 1〉 represents λσ . σ (| i := (i σ + 1)|).

To semi-interactively perform symbolic execution of our programs under test,
we state the pre- and post-conditions as Isabelle theorems (which will allow us
to apply manually or systematically the correctness rules of the state-exception
monad, as explained in the remaining of the article). Thus, we can represent our
squareroot example program in the following format:

assumes annotated program:
σ 0 |=assumeSE 〈0 ≤ a〉 ;−

〈tm := 1〉 ;−
〈sqsum := 1〉 ;−
〈 i := 0〉 ;−

(whileSE 〈sqsum ≤ a〉 do
〈 i := i + 1〉 ;−
〈tm := tm + 2〉 ;−
〈sqsum := tm + sqsum〉

od) ;−
assert SE(λσ. σ= σR)

shows σR |=assertSE〈 i2 ≤a ∧a < (i+1)2〉

Note that σR is a free variable in this goal denoting the “result state” after the
execution of our squareroot program; it is the purpose of the entire assumption
to construct this state (symbolically). However, in the conclusion, we require
that the post-condition is to hold in this state which expresses our verification
notion.

We will run a little simulation of our rule set in order to show how every-
thing fits together; we will automate the entire process in subsequent sections,
targeting different objectives.

Assume that we want to explore the program up to all paths of the depth 3.
Then we rewrite whileSE by while [Suc(Suc(Suc 0)))] and apply subsequently the
destruction of assumeSE (rule 6) and repeatedly the destruction of assign (rule 7).
This transforms our goal into:

∀ σ . 0 ≤a σ =⇒
σ (|tm := 1,sqsum := 1,i := 0|) |=

(while [Suc(Suc(Suc 0)))] 〈sqsum ≤ a〉 do
〈 i := i + 1〉 ;−
〈tm := tm + 2〉 ;−
〈sqsum := tm + sqsum〉

od) ;−
assert SE(λσ. σ= σR)

Further repetitive applications of destruction of while [] and if SE (rule 4, rule 5)
as well as assign (rule 7) leave us basically with a proof state of the following
form:

1. ∀ σ . 9 ≤a σ =⇒
σ (| i := 3, tm := 7, sqsum := 16|) |=
(while [0] 〈sqsum ≤ a〉 do
〈 i := i+1〉 ;−
〈tm := tm+2〉 ;−
〈sqsum := tm + sqsum〉 od) ;−

assert SE (λσ. σ= σR) =⇒
σR |=assertSE 〈i2 ≤ a ∧ a < (i+1)2〉

2. ∀ σ . 4 ≤a σ =⇒¬ 9 ≤a σ =⇒
σR = σ(|i:=2, tm:=5, sqsum:=9|) =⇒
σ (| i :=2, tm:=5, sqsum:=9|)
|= assert SE 〈i2 ≤ a ∧ a < (i+1)2〉

3. ∀ σ . 1 ≤a σ =⇒¬ 4 ≤a σ =⇒

σR = σ(|i := 1, tm := 3, sqsum := 4|) =⇒
σ (| i :=1, tm:=3, sqsum:=4|)
|= assert SE 〈i2 ≤ a ∧ a < (i+1)2〉

4. ∀ σ . 0 ≤a σ =⇒¬ 1 ≤a σ =⇒
σR = σ(|tm:=1, sqsum:=1, i:=0|) =⇒
σ (|tm:=1, sqsum:=1, i:=0|)
|= assert SE 〈i2 ≤ a ∧ a < (i+1)2〉

This proof state contains now by construction:

– in the last sub-goal, the path condition for never entering the loop (essentially
a σ = 0),

– in the third sub-goal, the path condition for entering the loop exactly once
(1 ≤ a σ < 4),

– in the second sub-goal, the path condition for entering the loop twice (4 ≤
a σ < 9),

– in the first sub-goal, the path condition for traversing the loop more than
twice (9 ≤ a σ).

In the first sub-goal, the remaining while [0] represents the class of all possible
remaining executions; therefore, for this class no elimination of the σR can be
achieved via application of the one-point-rule.

Note that the decoration on while [] allows one to unroll nested loops at
different depths.

In the remaining of the paper, sub-goals containing assumptions of the form:
σ |=(while [0] ... do ... ;− ...) will be called incomplete, and the others will
be called complete. Obviously, the latter represent execution paths through the
program where the resulting equation σR = E(σ) bounds σR to the result of the
symbolic execution.

5 Verification vs. Testing

At this stage, we have obtained the result of symbolic executions up to a cer-
tain depth. Once again, the embedding into the Isabelle/HOL proof assistant
offers a lightweight framework to perform bounded verification or testing, or a
combination of the two.

To this end, the ideas of the Isabelle/HOL-TestGen system [4] can be reused.
HOL-TestGen exploits the concept that two types of hypotheses are used to
express the differences between a proof of a property P and its test [9]:

– the uniformity hypothesis assumes that if a test passes for one instance of a
partition of the input-output relation of a program specification P , then P
will hold for the whole partition, and

– the regularity hypothesis assumes that if a test passes with sufficiently ”deep”
or ”complex” input data for P , then P will always hold.

HOL-TestGen generates from test specifications of the format:

pre x→ post x (PUT x)

for the (black-box) program under test PUT, which is logically just an unin-
terpreted constant, a partitioning of the input-output relation, and explicit test
hypotheses which were added to test-property on the fly as a consequence of
the targeted test-criterion. In a last step, HOL-TestGen generates test-drivers
— basically test-oracles from post-conditions — that are linked to the actual
code of PUT. Note again that it is not necessary to construct an invariant in a
white-box testing approach, the precondition for filtering illegal input and the
post-condition for generating oracles suffices.

In this section, we explain how these ideas apply in our setting. For the
engineering part consisting in transforming goals into test hypotheses and test
cases, we refer the reader to the description of the HOL-TestGen system [4].

5.1 Strategy: Bounded Verification (also called Bounded
Model-Checking)

If we adopt this overall concept to white-box testing, we need only to find an
equivalent to the regularity hypothesis. The strategy for bounded verification
consists of:

– attempting to prove the complete goals automatically. For the case 2) in
squareroot, for example, this boils down to proving:

4 ≤a σ =⇒¬ 9 ≤a σ =⇒
σ (| i :=2, tm:=5, sqsum:=9|) |=

assert SE 〈i2 ≤ a ∧ a < (i+1)2〉

which falls into a fragment decided by many automated provers. (In Isabelle,
this goals is automatically discharged by the auto command.)

– admitting the incomplete goals. They would require an invariant for their
proofs. Rather than attempting to prove them, we turn them into an explicit
test hypothesis of the form:

THYP(∀σ. 9 ≤a σ →
σ (| i := 3, tm := 7, sqsum := 16|) |=
(whileSE 〈sqsum ≤ a〉 do
〈 i := i+1〉 ;−
〈tm := tm+2〉 ;−
〈sqsum := tm + sqsum〉 od) ;−

assert SE (〈i2 ≤ a ∧ a < (i+1)2〉))

where THYP(x)≡x just serves as a semantically neutral marker to control
the tactic process. This form of explicit test-hypothesis states “beyond our
analysis depth, we assume that the program is correct” and represents a
regularity hypothesis adapted to program-based testing.

Adding the explicit regularity hypothesis to the assumptions of the original goal
(thus weakening it logically) allows for a formal proof of the modified goal making
explicit under which assumptions our program (model) satisfies the specification.

5.2 Strategy: White-box Testing

Testing differs from bounded verification in basically two ways: first, we use
additionally the uniformity hypothesis, stating that for each partition of the
input-output relation (i.e. the path conditions), we assume that the program is
correct provided that we found one instance in this partition where it behaves
correctly (in ISO 25119 [13], this assumption is used for what is called “equiva-
lence class testing”). Second, the concrete instance of a partition, called concrete
test-case and usually constructed by a constraint solver, can be converted into
test driver code that is run against the real program, not just a model of it. This
turns testing into a validation method that covers also hardware, the underly-
ing operating system, the compiler, etc, of the program under test. Therefore,
evaluators in formal evaluation schemes like Common Criteria insist on tests val-
idating a (code) model against “the real thing”; verifications based on immanent
arguments over models are acceptable as complements, but not as a complete
replacement of tests.

In our running example, the uniformity test-hypothesis will be, for example:

THYP((∃ σ. 4 ≤ a σ ∧ ¬ 9 ≤ a σ ∧
σ |= squareroot ;− assertSE 〈i2 ≤ a ∧ a < (i+1)2〉) →
(∀ σ . 4 ≤ a σ =⇒¬ 9 ≤ a σ −→
σ |= squareroot ;− assertSE 〈i2 ≤ a ∧ a < (i+1)2〉))

where squareroot is an abbreviation for our program code.
A constraint solver might find the solution a σ = 7 for the path-condition

above, thus permitting us to construct automatically from the uniformity hy-
pothesis the concrete test:

σ (|a := 7|) |=squareroot ;− assertSE 〈i2 ≤ a ∧ a < (i+1)2〉

6 Support for Coverage Criteria

In the end of Section 4, we detailed how a manual application of the rules of the
state-exception monad (via Isabelle basic tactics) perform step-by-step symbolic
execution. In this section, we explain how to build new tactics that automate
the process, with support for various coverage criteria.

These tactics are based on the following observations. Repeated applications
of the rule for symbolic execution of if SE (rule 4) guarantee branch coverage,
since each branch of each control structure is covered. In our small imperative
language, this is equivalent to decision coverage, since we do not handle function
calls yet [15]. Similarly, repeated applications of the rule for whileSE loops (rule 5)
immediately followed by the rule for if SE guarantee loop coverage up to a certain
depth.

The Isabelle tactical language, called Eisbach [11], allows us to design vari-
ous tactics that apply and combine the symbolic execution rules, together with
simplifications of the goal:

– the tactic branch and loop coverage simply relies on the two coverage criteria
described above;

– the tactic mcdc and loop coverage covers more: it also performs Modified Con-
dition/Decision Coverage (MC/DC for short), meaning that each condition
(i.e. Boolean sub-expression) appearing in a decision affects the decision out-
come independently;

– conversely, the tactic loop coverage positive branch covers less: it performs
loop coverage but, for branches, always chooses the first branch (other
choices, such as random, could as well be implemented). This may be useful
if one wants to explore loop unrolling without a combinatorial explosion (see
e.g. Section 7.1).

For instance, applied to the annotated program of Sec. 4, the tactic

apply (branch and loop coverage ”Suc (Suc (Suc 0))”)

directly leads to the proof state presented in the end of the section.
The Eisbach tactical language defines new tactics by combining existing ones

using the syntax of regular expression. For instance, the first two tactics are
programmed from a single parametric method defined as follows:

method loop coverage for n::nat methods simp mid simp end =
(bound while n)?, loop coverage steps simp mid, simp end?

The syntax means the following. loop coverage is the name of the tactic, parame-
terized by a natural number n and two other tactics named simp mid and simp end.
This tactic sequentially performs:

1. (bound while n)?: every occurrence (if there is any, represented by the ?) of
whileSE is replaced by while [n], justified by the definition of while [n].

2. loop coverage steps simp mid: the equations of Sec. 4 are repeatedly applied:
the auxiliary tactic loop coverage steps is a simple loop that, as much as
possible, applies those equations, and simplifies intermediate results by the
(abstract) tactic simp mid. Note that, at each step, at most one equation can
be applied, depending on the first instruction remaining in the program.

3. simp end?: if possible, the result is simplified by the (abstract) tactic simp end.

The choice of the simplifications leads to the first two variants.

– In the case of branch coverage, only basic simplifications are performed:

method branch and loop coverage for n::nat =
loop coverage n memory simp simp all

where memory simp is the memory-theory presented in Sec. 4 and simp all is
the standard Isabelle simplifier.

– As for MC/DC, simplifications should also split conjunctive and disjunctive
hypotheses according to their elimination rules. To this end, we can use the
Isabelle auto tactic1:

1 A specific tactic that only calls the simplifier and applies elimination rules of con-
nectives would work as well and be less powerful.

method mcdc and loop coverage for n::nat = loop coverage n auto auto

The third tactic loop coverage positive branch is similar but the rule for if SE

is applied only after loop unrollings. Other branches are symbolically executed
using a weaker rule:

(σ |= (if SEb then c else d fi);−m) = (b σ∧σ |= c;−m)∨(opaque(¬b σ∧σ |= d;−m))

where opaque is a tag that forbids further application of rules.

These prototype tactics are already reasonably efficient: it takes less than 30s
to unroll the loop 100 times with MC/DC on our running example, searching
counter-examples up to 10000.

7 Examples

This section illustrates the flexibility and expressivity of the monadic approach
(Section 7.1) and the tactics we just presented (subsection 7.1 and 7.2). These
examples and more have been implemented in Isabelle/HOL and are fully auto-
mated using the tactics; they can be found in the online material.

7.1 Maximum of an array

Symbolic execution of programs manipulating usual data types can be faithfully
performed using standard functional representation. We give here the example
of a function computing the maximum of an array: the array can be represented
as a function whose domain is non-negative integers together with a length. The
state thus contains

type state = {arr : nat → int, (∗ The array is represented as a function ... ∗) ,
l : nat, (∗ ... and a length ∗)
i : nat, (∗ The loop index ∗)
res : int (∗ The result ∗)
}

and the program is the usual one:

assumes annotated program:
σ 0 |=assumeSE 〈1 ≤l〉 ;−

〈 res := arr 0〉 ;−
〈 i := 1〉 ;−
(whileSE 〈i < l〉 do

(if SE 〈res < arr i〉 then 〈res := arr i 〉 else skipSE fi) ;−
〈 i := i + 1〉

od) ;−
assert SE(λσ. σ=σR)

shows σR |=assertSE 〈(∀ k < l. res ≥arr k) ∧(∃ k < l. res = arr k)〉

The post-condition is also standard, stating that the result is greater or equal
than all the elements of the array, and equal to one of them, under the pre-
condition that the length is at least 1. Such a property is well-suited for testing
or bounded checking.

On this example, full bounded symbolic execution presented in this article
(and performed by the branch and loop coverage and mcdc and loop coverage tactics)
unrolls the loop a given amount of time and explores both branches inside the
loop, leading to an exponential blow-up where the maximum could be anywhere
in the array. Under the regularity hypothesis though, it may be sufficient to
test only one or a few possible cases for the maximum at each length, which is
obtained by the tactic loop coverage positive branch (or any variant that executes
only one branch at each step). We refer the reader to the online material for an
executable comparison.

In any case, this example actually generates abstract test cases that precisely
determinate the position of the maximum of the array.

Other standard data-structures can be modeled such as hash tables, or lists
(using Isabelle/HOL lists).

7.2 Median of three integers

To illustrate MC/DC vs. branch coverage, we take the example of a program
computing the median of three integers:

assumes annotated program:
σ 0 |=(ifSE 〈(b ≤a ∧a ≤c) ∨ (c ≤a ∧ a ≤b)〉 then 〈res := a〉 else

(if SE 〈(a ≤b ∧b ≤c) ∨ (c ≤b ∧ b ≤a)〉 then 〈res := b〉 else
〈 res := c〉 fi) fi) ;−
assert SE(λσ. σ=σR)

shows σR |=assertSE 〈(res = a ∨res = b ∨res = c)
∧ (res > a −→ res ≤b ∧ res ≤c)〉

The post-condition only consider one case but can be completed by adding the
second conjunct for every permutations of a, b and c.

The branch and loop coverage tactic generates only three abstract test cases
whose premises are:

– (b ≤a ∧ a ≤c) ∨ (c ≤a ∧ a ≤b)

– (a ≤b ∧ b ≤c) ∨ (c ≤b ∧ b ≤c)

– the negation of the first two

whereas, as required, the mcdc and loop coverage tactic generates six abstract test
cases corresponding to the possible modified conditions, of the shape (b ≤a ∧ a

≤c) for every permutation of a, b and c.

8 Related Work

Using monads is a standard technique for representing stateful computa-
tions. Leaving aside existing implementations in HOL4 and Coq, the Is-

abelle/HOL library alone defines a standardized monad-syntax for both a non-
deterministic (Kleisli-like) and a deterministic monad. Other libraries include Is-
abelle/Simpl [14], Isabelle/ORCA [2] and Isabelle/AutoCorres [10]. These infra-
structures are geared towards program-proofs or program refinement proofs, in-
clude bool’s to capture termination, and, in the case of Imperative HOL, a very
specific heap-memory model used in the AutoCorres Tool for verifying C Pro-
grams. Besides having improved syntax support, the used monad here is geared
to pure partial program semantics and optimized forms of partial evaluation
therein. In particular, it is agnostic to a particular memory model. The presented
loop-unfold theorem is not available in neither of mentioned monad theories.

Generating tests by counterexample generators is an active research area.
There are basically two approaches. One is to take an input formula, try to con-
struct a family of finite models, usually by bit-blasting into SAT problems, and
to construct a counter-example on this basis [1, 16]. The other one is to interpret
the input formula as a filter, i.e. to compile it to program for a Boolean function,
and stimulate it by random values until a hit is found. This concept going back
to [6] is known as QuickCheck and leads to a wealth of implementations for
various languages meanwhile. Both approaches suffer from their generality when
it comes to the generation of counterexamples for programs with pre-conditions.
Moreover, they cannot compete with white-box testers with respect to the depth
of program exploration as well as the coverage of given criteria imposed by stan-
dards such as [13].

As currently most developed white-box testers we mention Pex [7] and Path-
Crawler [17]. They present direct algorithmic implementations working on CFG’s
and scale well for realistic sizes of programs. In contrast, our approach is based on
a shallow representation of a semantics and derived rules. It enjoys the following
two advantages:

– the code is very small (around a 1500 LOC, including proofs of correctness)
but first experiments show that it is reasonably efficient (Section 6);

– our implementation is based on derived rules and can therefore guarantee
correctness.

Regarding expressivity, the programming language handled by our approach is
Turing complete; we leave for future work to handle convenient paradigms such
as local states (e.g. by replacing the memory model by a stack), function calls
and recursion.

The aforementioned state-of-the-art testers have been combined with tech-
niques for borderline analysis, regular expression constraint-solvers and test-
execution environments supporting virtual system calls. The approach presented
in the paper is being integrated in the HOL-TestGen2 [4] framework, to make
use of its concrete test generator and code extraction. In addition, it explicitly
constructs the test hypotheses.

2 See https://www.brucker.ch/projects/hol-testgen for more details, in particular
the TestSequence theory.

https://www.brucker.ch/projects/hol-testgen

9 Conclusion

We have shown an approach to model white-box testing of block-structured im-
perative programs. We used a shallow, monad-style embedding of the language.
We believe this allows for a particularly concise and elegant formalization of the
symbolic execution process, which is traditionally described on a control-flow
graph: the trick is done by just eight rules with little deductive cost (first-order
matching). We have shown that the process can be easily wrapped up in a tactic
process.

The approach lends itself to precisely study the borderlines between deductive
verification, bounded verification and testing in a uniform setting. By re-using
HOL-TestGen’s concept of explicit test-hypothesis, the approach allows us to
establish a precise link between test and proof.

It was not our objective to develop in this paper a full-blown tool (for that, we
would have to integrate it into, say, Isabelle/SIMPL which necessitates to cope
with much more features and machinery). Still, the shown experiments indicate
that our approach does scale fairly well. Therefore, we believe that our technique
has the potential for a tool that effectively tests pre- and post-conditions as well
as invariants for realistic program verification attempts.

Acknowledgments The author would like to thank Burkhart Wolff for setting
up the foundations of this work. She also thanks the anonymous reviewers for
valuable and detailed comments on how to improve the article.

Bibliography

[1] J. C. Blanchette and T. Nipkow. Nitpick: A counterexample generator for
higher-order logic based on a relational model finder. In M. Kaufmann and
L. C. Paulson, editors, Interactive Theorem Proving, First International
Conference, ITP 2010, Edinburgh, UK, July 11-14, 2010. Proceedings, vol-
ume 6172 of Lecture Notes in Computer Science, pages 131–146. Springer,
2010.

[2] J. A. Bockenek. An Extension of Isabelle/UTP with Simpl-like Control
Flow. PhD thesis, Virginia Polytechnic Institute and State University, 2017.

[3] B. Botella, M. Delahaye, S. H. T. Ha, N. Kosmatov, P. Mouy, M. Roger,
and N. Williams. Automating structural testing of C programs: Experience
with pathcrawler. In Proceedings of the 4th International Workshop on
Automation of Software Test, AST 2009, Vancouver, BC, Canada, May
18-19, 2009., pages 70–78, 2009.

[4] A. D. Brucker and B. Wolff. On Theorem Prover-based Testing. Formal
Asp. Comput. (FAOC), 25(5):683–721, September 2013.

[5] A. Church. A set of pustulates for the foundation of logic (1). Annals of
Mathematics, 1932.

[6] K. Claessen and J. Hughes. Testing monadic code with quickcheck. SIG-
PLAN Not., 37(12):47–59, Dec. 2002.

[7] J. de Halleux and N. Tillmann. Parameterized unit testing with pex. In
B. Beckert and R. Hähnle, editors, TAP, volume 4966 of Lecture Notes in
Computer Science, pages 171–181. Springer, 2008.

[8] A. Filieri, C. S. Pasareanu, and W. Visser. Reliability analysis in symbolic
pathfinder: A brief summary. In Software Engineering 2014, Fachtagung
des GI-Fachbereichs Softwaretechnik, 25. Februar - 28. Februar 2014, Kiel,
Deutschland, pages 39–40, 2014.

[9] M. Gaudel. Testing can be formal, too. In P. D. Mosses, M. Nielsen,
and M. I. Schwartzbach, editors, TAPSOFT’95: Theory and Practice of
Software Development, 6th International Joint Conference CAAP/FASE,
Aarhus, Denmark, May 22-26, 1995, Proceedings, volume 915 of Lecture
Notes in Computer Science, pages 82–96. Springer, 1995.

[10] D. Greenaway, J. Lim, J. Andronick, and G. Klein. Don’t sweat the small
stuff: Formal verification of C code without the pain. In ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages
429–439, Edinburgh, UK, June 2014. ACM.

[11] D. Matichuk, M. Wenzel, and T. Murray. The Eisbach user manual. Isabelle
Community, 2015.

[12] T. Nipkow. Winskel is (almost) right: Towards a mechanized semantics
textbook. Formal Aspects of Computing, 10:171–186, 1998.

[13] W. G. . W. of the ISO/IEC JTC1/SC7 Software and S. E. committee.
ISO/IEC/IEEE 29119 Software Testing: The international standard for soft-
ware testing., 2007-2014.

[14] N. Schirmer. Verification of Sequential Imperative Programs in Is-
abelle/HOL. PhD thesis, Technische Universität München, 2006.

[15] F. Team et al. What is a ”decision” in application of Modified Condi-
tion/Decision Coverage (MC/DC) and Decision Coverage (DC). Technical
Report position paper, 2002.

[16] E. Torlak and D. Jackson. Kodkod: A relational model finder. In O. Grum-
berg and M. Huth, editors, Tools and Algorithms for the Construction and
Analysis of Systems, 13th International Conference, TACAS 2007, Held as
Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2007 Braga, Portugal, March 24 - April 1, 2007, Proceedings, vol-
ume 4424 of Lecture Notes in Computer Science, pages 632–647. Springer,
2007.

[17] N. Williams, B. Marre, P. Mouy, and M. Roger. Pathcrawler: Automatic
generation of path tests by combining static and dynamic analysis. In
M. D. Cin, M. Kaâniche, and A. Pataricza, editors, Dependable Comput-
ing - EDCC-5, 5th European Dependable Computing Conference, Budapest,
Hungary, April 20-22, 2005, Proceedings, volume 3463 of Lecture Notes in
Computer Science, pages 281–292. Springer, 2005.

[18] G. Winskel. The Formal Semantics of Programming Languages. MIT Press,
Cambridge, Massachusetts, 1993.

	Tactic Program-based Testing and Bounded Verification in Isabelle/HOL

