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STATISTICAL AND PROBABILISTIC MODELING OF A CLOUD OF PARTICLES
COUPLED WITH A TURBULENT FLUID

Ludovic Goudenège1, Adam Larat1,6, 2, Julie Llobell3, Marc Massot4,
David Mercier6, Olivier Thomine5 and Aymeric Vié1, 6

Abstract. This paper exposes a novel exploratory formalism, which end goal is the numerical simu-
lation of the dynamics of a cloud of particles weakly or strongly coupled with a turbulent fluid. Given
the large panel of expertise of the list of authors, the content of this paper scans a wide range of connex
notions, from the physics of turbulence to the rigorous definition of stochastic processes. Our approach
is to develop reduced-order models for the dynamics of both carrying and carried phases which remain
consistant within this formalism, and to set up a numerical process to validate these models. The
novelties of this paper lie in the gathering of a large panel of mathematical and physical definitions
and results within a common framework and an agreed vocabulary (sections 1 and 2), and in some
preliminary results and achievements within this context, section 3. While the first three sections have
been simplified to the context of a gas field providing that the disperse phase only retrieves energy
through drag, the fourth section opens this study to the more complex situation when the disperse
phase interacts with the continuous phase as well, in an energy conservative manner. This will allow
us to expose the perspectives of the project and to conclude.
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Introduction
Many applications involve the transport of a disperse phase (particles, droplets, bubbles) coupled with a

fluid: spray combustion, fluidized beds, soot dynamics... In the standard case, the evolution of the carrier phase
can be described by a deterministic system of equations such as the Navier-Stokes equations. However, in the
strongly coupled case the evolution equations are unclosed due to the exchange term with the particles [10,12].
Often, models proposed in the literature only consider the influence of the carrier fluid on the disperse phase
and neglect its retroactive consequences, or, at best, limit it to a global balance between the two phases [21].
In particular, these simplifying hypotheses allow to decouple the inaccuracies coming from the approximate
resolution of each phase.

But, one of the main difficulties in the derivation of a consistent model for the strongly coupled evolution
of a cloud of particles within a turbulent flow, is that inaccuracies arise both from the chaotic behavior of the
fluid [9, 24, 35], and from the initial properties of the particles, such as their starting positions and velocities.
Therefore, the proper level of “modeling” consists in making consistant assumptions about the properties of the
stochastic processes involved in the global dynamics of both phases. Even if some advances have been made in
the field [14], the problematic is far from being closed.

In order to better understand the coupling of the inaccuracies coming from both phases, we split the con-
struction of the fluid dynamic model into four main steps, corresponding to four spatial levels of modeling.
Step-by-step, we then express some links between these levels, in order to better understand the influence of the
small scales on the highest level of modeling. Here, one has to understand that this hierarchy of points of view
is worth both for the carrier fluid and for the disperse phase. Simply, each of the passing to the limit between
each levels does not occur at the same scale for the two phases. Although the carrier fluid is made of nanometric
particles, while the dispersed particles seldom reach a micrometrical size, the description of each phase starts
at the microscopic level (or molecular level). From there, one can reach reduced order large-scale models rather
continuously, by first looking at an intermediate mesoscopic scale, dealing with the law on the presence of the
microscopic phase (e.g. the Boltzmann equation), and then consider close-to-equilibrium regimes that we will
call the macroscopic scale (e.g. Euler or Navier-Stokes equations). These four different levels of modeling are
sketched level-by-level in the following items list:

• Microscopic: at the scale of atomes, molecules or particules. Generally speaking, one may say ”at the
scale of the indivisible”. The medium is here modeled by a very large number of ODEs.

• Macroscopic: at the scale of the continuum. Fluids (liquid, gaz, spray,. . . ) are now seen as a continuous
medium. It is modeled by a system of PDEs.

• Mesoscopic: the transition from the micro to the macro scale necessitates an intermediate scale, called
”mesoscopic”, at which the medium is modeled a statistical manner. At this level, the fluid is modeled
by the transport equation of a probability density function (PDF) of particles.

• Reduced-Order: despite all the complexity reduction already performed, the simulation of all the
macroscopic scales (Direct Numerical Simulation, DNS) is far from being reachable. An additional
order reduction is then performed by splitting the solution into a significant part φ and a residual φ′:
φ = φ + φ′. In general, the residual is removed and its action on the resolved part is modeled by a
chosen underlying random process.
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Throughout this paper the term significant part is kept general on purpose: it could denote one of the
numerous choice of decomposition of the macroscopic sought solution into a numerically resolved and an un-
resolved part, see subsection 2.2.2 for more details. To give an insight of historical context, the usual method
is traditionally referred to as a Large Eddy Simulation (LES) of the particulate flow, which means that only
the features of the flow at a scale greater than a characteristic cut-off size are computed. The smallest scales,
called subscales, need to be modeled from the computed variables in both carrying and disperse phases. As
proposed by Pope [25], we chose to place ourselves in a probabilistic formalism where the closure in performed
by the definition of a probabilistic process for the residuals. This closure can be seen as a probabilistic mapping
between the reduction of the non-linear terms of the solved macroscopic PDEs and the resolved variables, see
subsection 2.2.2. As a consequence, defining a subscale model is equivalent to making a choice for this mapping.
This is what we are looking for in this project.

An ideal model for the numerical simulation of a turbulent flow loaded with dispersed particles would be a
global reduced-order model for both phases, where the residual part would have to be able to take into account
the strong coupling between both phases (mass, momentum and energy are exchanged in a bidirectional manner
and globally conserved). We think that the formalism introduced in [25], and rapidly sketched in the previous
paragraph, is a good starting point. We also believe that the stochastic model of the unresolved fluctuations has
a root at the microscopic level in both phases. This is the reason why we then start our exploratory study by
considering an idealistic micro/micro modeling with additional stochastic processes on both phases, and then
try to derive a global large-scale reduced-order model for the dynamics of the strongly coupled system, which
remains reliable, accurate and consistant with the underlying micro/micro description of the physical system.

This paper is divided into four sections. In a first section, we give a statistical description at micro and
mesoscale which are the beginning of all macroscopic descriptions, with a theorem in the infinite population
limit. It explains the link between a system of a large number of ODEs at the microscopic level and a PDE
on a Probability Density Function (PDF) of existence of the particles. In section two we describe in a very
condensed manner the other levels of continuous description, while staying as consistant as possible. This leads
us to a very general definition of turbulence and to the probabilistic framework for the modeling of the subscales
in the context described by Pope [25]. In particular we explain the derivation of a reduced-order model for the
disperse phase only, when the underlying carrying continuous gas field is supposed to be perfectly known and is
not perturbed by the presence of the particles. Section three presents a numerical process intended to validate
the reduced-order models possibly created within this micro/micro to reduced-order context, by looking at
the statistics missed by the disperse field when the underlying gas velocity field has been reduced (for example
filtered). In particular, we show that it seems hard to build a reduced-order turbulent model for the dynamics of
a 1D spray, but that the situation improves with higher dimensionality. Finally, section four opens the discussion
on the construction of a consistent model for two-way coupled systems. This section being preliminary, this will
allow us to expose the perspectives of the current project and to conclude the paper.

1. Statistical description of the dynamics of a population: from micro- to
meso-scale

This section describes the dynamics of a population at micro and mesoscale. This is the beginning of all
work implying complex dynamics of turbulent particules-laden flows. This gathering represents a real team
effort, especially in finding a common vocabulary between those of us more physics-oriented and those more
used to the theory of probability and of stochastic processes. As already said in the previous paragraph, what
is written here is valid for both carrying and disperse phases, only the passing to the limit do not occur at the
same scales.

1.1. Microscopic scale
The studied domain X ⊂ R3 is filled with a cloud of N identical spherical particles, moving into void or

supported by a carrying gas. Assuming that the three degrees of freedom in rotation of each particle can be
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ignored, the dynamics of the system is described by the 6N parameters (velocity are in R3
CCC := R3):

ZZZ(t) = (XXX1(t),CCC1(t), . . . ,XXXN (t),CCCN (t)) ∈ ζN :=
(
X× R3

CCC

)N
, (1)

or equally by the empirical measure or normalized counting measure: µNt [ZZZ] = 1
N

∑N
i=1 δXXXi(t)δCCCi(t).

If the set of particles is immersed within an external field G(t,XXX,CCC), interacts with itself following a collision
kernel F (XXX,CCC) and each particle is possibly subject to an independent Brownian random process of intensity
σ, the phase space (1) evolves with the following system of 6N ODEs:

dXXXi = CCCi(t)dt,

dCCCi = G (t,XXXi,CCCi) dt+ F ∗ µNt (XXXi,CCCi) dt+
√

2σdWWW i(t),
i = 1, . . . , N. (2)

Then, given an initial condition ZZZ0 =
(
XXX0

1,CCC
0
1, . . . ,XXX

0
N ,CCC

0
N

)
, which may be deterministic or stochastic, the

empirical measure can be indexed by ZZZ0: µNt [ZZZ0] = 1
N

N∑
i=1

δXXXi(t,ZZZ0)δCCCi(t,ZZZ0), so that if VXXX × VCCC ⊂ ζ is a subset

of phase space,

nVXXX×VCCC := N.µNt [ZZZ0](VXXX × VCCC) =
N∑
i=1

1VXXX (XXXi(t,ZZZ0))1VCCC (CCCi(t,ZZZ0))

is the number of particles from the configuration ZZZ0 at time t = 0, situated within VXXX and with a velocity
belonging to VCCC at time t.

1.2. Mesoscopic scale
From now on, the configuration of each particle is denoted by zzzi = (XXXi,CCCi) ∈ X×R3

CCC , for all i = 1, . . . , N . The
collision kernel F simulates the interaction between the particles and it thus seems fair to have F (−zzz) = F (zzz),
which implies F (0) = 0.

Let us consider that the particles are changeable at initial time, which means that their initial distribution
µN0 ∈ R2d is invariant by permutation of the N variables. This invariance therefore remains satisfied at any
time t > 0 and in particular, the N particles must follow the same one-particle law in R2d, denoted µ(1)

t , which
is what we are looking for in this subsection. First, if A is a borelian in R2d,

E[µNt (A)] = E

[
1
N

N∑
i=1

δzzzi(t)(A)
]

= 1
N

N∑
i=1

P[zzzi(t) ∈ A] = P[zzz1(t) ∈ A] = µ
(1)
t (A).

Then, we recall ZZZ(t) = (zzz1(t), ..., zzzN (t)), later simply noted ZZZt, and we introduce the following function

H(t,ZZZ) =

ccc1,G(t, zzz1) + 1
N

N∑
j=1

F (zzz1 − zzzj), · · · , cccN ,G(t, zzzN ) + 1
N

N∑
j=1

F (zzzN − zzzj)

 ,

and the 2d×N diagonal matrix, denoted Σ, with zero (d times) and σ (d times), repeated N times along the
diagonal. Thus, equation (2) can be rewritten

dZZZ(t) = H(t,ZZZ(t))dt+
√

2ΣdWWW (t).

For any function Φ : (t,xxx) 7−→ Φ(t,xxx) such that

t 7−→ Φ(t, .) ∈ C1 and xxx 7−→ Φ(.,xxx) ∈ C∞c , (3)
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the Itô’s formula gives us:

Φ(t,ZZZt)− Φ(0,ZZZ0) = σ2
N∑
i=1

∫ T

0
∆ccciΦ(s,ZZZs)ds+

∫ T

0

∂

∂t
Φ(s,ZZZs)ds,

+
N∑
i=1

∫ T

0
∇xxxiΦ(s,ZZZs) · dZZZs +

N∑
i=1

∫ T

0
∇ccciΦ(s,ZZZs) · dZZZs

= σ2
N∑
i=1

∫ T

0
∆ccciΦ(s,ZZZs)ds+

∫ T

0

∂

∂t
Φ(s,ZZZs)ds

+
N∑
i=1

∫ T

0
∇xxxiΦ(s,ZZZs) ·H(s,ZZZs)ds+

√
2
N∑
i=1

∫ T

0
∇xxxiΦ(s,ZZZs) · ΣdWWW s

+
N∑
i=1

∫ T

0
∇ccciΦ(s,ZZZs) ·H(s,ZZZs)ds+

√
2
N∑
i=1

∫ T

0
∇ccciΦ(s,ZZZs) · ΣdWWW s,

where [∇xxxiΦ(s,ZZZs) · ] and [∇ccciΦ(s,ZZZs) · ] denote projection operators on the respective lines of xxxi and ccci.
Taking the expectancy we get:

E[Φ(t,ZZZt)− Φ(0,ZZZ0)] = σ2
N∑
i=1

∫ T

0
E[∆ccciΦ(s,ZZZs)]ds+

∫ T

0
E

[
∂

∂t
Φ(s,ZZZs)

]
ds

+
N∑
i=1

∫ T

0
E [∇xxxiΦ(s,ZZZs) ·H(s,ZZZs)] ds+

N∑
i=1

∫ T

0
E [∇ccciΦ(s,ZZZs) ·H(s,ZZZs)] ds.

Next, we introduce the following linear form on the measures of R2d, defined for any Φ such as in (3):

〈µ(N)
t ,Φ〉 =

∫ T

0
E[Φ(t,ZZZt)]dt =

∫ T

0

∫
R2d

Φ(t, zzz)dµ(N)
t (zzz)dt.

Here µ
(N)
t is the N -joint law followed by the N particules: it is the law followed by ZZZt. Using this dual

formulation, we can now extend the definition of the partial derivatives to the measures of R2d, and we have:∫ T

0
E[∇xxxiΦ(s,ZZZs) ·H(s,ZZZs)]ds = −〈ccci · ∇xxxiµ

(N)
t ,Φ〉,

∫ T

0
E[∇ccciΦ(s,ZZZs) ·H(s,ZZZs)]ds = −

〈
∇ccci ·

G(., zzzi) + 1
N

N∑
j=1

F (zzzi − zzzj)

µ
(N)
t

 ,Φ〉 ,
∫ T

0
E[∆ccciΦ(s,ZZZs)]ds = 〈∆ccciµ

(N)
t ,Φ〉.

Since Φ does not have a compact support in time, integration by part requires to keep the boundary terms and
the time partial derivative of µNt defines as:

∫ T

0
E

[
∂

∂t
Φ(s,ZZZs)

]
ds = −

〈
∂tµ

N
t ,Φ

〉
+ E[Φ(t,ZZZt)− Φ(0,ZZZ0)].
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To sum up, thanks to the Itô’s formula, we have obtained a weak form of the equation followed by the law µ
(N)
t

of ZZZ(t):

〈
∂tµ

(N)
t +

N∑
i=1

ccci · ∇xxxiµ
(N)
t +

N∑
i=1
∇ccci ·

G(., zzzi) + 1
N

N∑
j=1

F (zzzi − zzzj)

µ(N)
t

 ,Φ
〉

= σ2

〈
N∑
i=1

∆ccciµ
(N)
t ,Φ

〉
. (4)

So now, we have generalized the results given by Bolley in [5] to a time dependent transport term G.
However, equation (4) is a weak formulation of a PDE on the N -particles joint law, when what we are looking

for is the equation ruling the one-particle law µ
(1)
t , which is the marginal of µ(N)

t for particle 1. By integrating
Eq. (4) over all the particles but the first one, we get that, in the weak sense, µ(1)

t follows:

∂tµ
(1)
t + ccc∇xxxµ(1)

t +∇ccc ·
(
Gtµ

(1)
t +

∫
zzz2∈R2d
F (zzz − zzz2)µ(2)

t (zzz,zzz2)
)

= σ2∆cccµ
(1)
t . (5)

In this expression, µ(2)
t is the 2-particles joint probability. In order to close equation (5), we would like to

express it as a function of µ(1)
t .

To do so, we suppose that the initial data ZZZ0 are indistinguishable and all follow the same law f0 on R2d.
Then, we introduce an intermediate law, as the solution for t > 0 and (xxx,ccc) ∈ R2d, of the following equation
with initial data f0:

∂

∂t
ft + ccc · ∇xxxft +∇ccc · [(G+ F ∗ ft) ft] = σ2∆cccft, (6)

where F and G are now supposed to be Lipschitz functions with respect to the variable xxx ∈ R2d and G is
continuous in the time variable. Next, for i ∈ 1, . . . , N, let z̄zzi(t) be the solution of the following system with
initial data z̄zzi(0) = zzzi(0): {

dx̄xxi(t) = c̄cci(t)dt,

dc̄cci(t) = G(t, z̄zzi(t))dt+ F ∗ ft(z̄zzi(t))dt+
√

2σdWWW i(t).
(7)

Then, the fictive particles z̄zzi evolve in the field F ∗ ft generated by the distribution ft, while the zzzi particles
evolve in the F ∗ µNt field, generated by the empirical measure µNt . Itô’s formula gives once more the PDE
followed by z̄zzi in the weak sense, and we now wish to show that this measure converges to ft when the number
N of particles tends to infinity.

We denote |(xxx,ccc)| =
√
|xxx|2 + |ccc|2 and for p > 1 we define

Pp(R2d) =
{
µ borelian probabilistic measures on R2d such that p-momentum

∫
R2d
|(xxx,ccc)|pdµ(xxx,ccc) <∞

}
.

The Wasserstein distance of order p between two measures µ and µ̄ of Pp(R2d) is defined by

Wp(µ, µ̄) = inf
ZZZ,Z̄ZZ

p

√
E
[
|ZZZ − Z̄ZZ|p

]
,

where ZZZ and Z̄ZZ are stochastic variables of law µ and µ̄ respectively. Then, following the lines of [5],

Theorem 1.1. we obtain the explicit convergence rates:

1) W2(µ(1)
t , ft)2 6 E

[
|zzz1(t)− z̄zz1(t)|2

]
6
C

N
,

2) W2(µ(k)
t , f⊗kt )2 6 E

[
|(zzz1(t), ..., zzzk(t))− (z̄zz1(t), ..., z̄zzk(t))|2

]
6
Ck

N
,
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3) Let Φ be a Lipschitz function in the second variable, then

E

[∣∣∣∣∫
R2d

ΦµNt −
∫

R2d
Φft
∣∣∣∣] 6 C

N
||Φ||21.

In other words, this means that:
1) The one-particle law µ

(1)
t converges to ft in the Wasserstein distance when N →∞,

2) At the limit of an infinite number of particles, the chaos propagates in time; the particles remain
uncorrelated during the whole dynamics: µ(k)

t = f⊗kt = ft ⊗ · · · ⊗ ft︸ ︷︷ ︸
k times

. In particular, one recovers the

famous molecular chaos assumption of Boltzmann:

µ
(2)
t = µ

(1)
t ⊗ µ

(1)
t . (8)

3) The weak convergence of the empirical measure µNt to ft.
Finally, equation (5) is now closed rigorously thanks to the molecular chaos propagation in the context of

Lipschitz-regular interactions (external G or between particles F ), [5, 33]. However, when the interactions are
less regular, which is the case for the Boltzmann equation (9) below, an increasing number of positive results
let us think that equation (8) remains correct, [20, 34]. Nonetheless, no rigorous demonstration is nowadays
available.

2. A population of particles in a turbulent fluid
In the previous section, a general kinetic equation has been derived for a population of “particles” (molecules,

droplets, solid particles). As this point, one can be interested in deriving a two-way coupled system of kinetic
equations for the carrying fluid and the particles. However, in [7], it has been shown in the context of nano-
particles that such a derivation cannot be performed. Instead, we use the classical strategy of first deriving
macroscopic equations for the fluid, and then coupling them to the particle equations, either microscopic or
mesoscopic. In the following, we first present the Euler and Navier-Stokes equations that can describe a carrying
fluid, with an emphasis on the underlying assumptions at the kinetic level. In a context where dealing with
the whole range of scales of the fluid is not accessible, we detail a general strategy for generating large-scale
reduced-order models, and we show how it can be taken into account for the description of the particle dynamics
at the microscopic level.

2.1. Classical theories for macroscopic equations for the fluid
In the context of gaz dynamics, in the limit of an infinite number of particles and when ignoring the stochastic

subscale Brownian perturbations for the moment, equation (5) becomes the Boltzmann equation:

∂tf + ccc · ∂xxxf + ∂ccc (FFF extf) = 1
KnQ(f, f), (9)

where Kn = λ
L is the Knudsen number, ratio between the mean free path λ and a characteristic size of observation

L, and where the quadratic collision operator Q writes:

Q(f, f∗) =
∫

R3
ccc∗

∫
S2
nnn

(f ′f ′∗ − ff∗) |(ccc− ccc∗) ·nnn|σ(|ccc− ccc∗| ,nnn) dnnn dccc∗. (10)

Remark 2.1. When considering a non self-interacting population of particles, its repartition function also
follows an equation of the (9) type, where the Knudsen number is infinite: Kn = +∞.
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2.1.1. Euler equations
For any PDF f , one can define its microscopic entropy by h = f log f . It can be understood as a local

uncertainty rate. Then, the macroscopic entropy reads: H(t,xxx) =
∫

R3 f(t,xxx,ccc) log f(t,xxx,ccc) dccc, and one can

show that when f is a solution of the Boltzmann equation (9), its macroscopic entropy decreases: dH
dt
≤ 0.

When the minimum Hmin is reached, log f must be a collision invariant and this implies that the velocity
distribution f is a Maxwellian:

feq(ccc) = exp
(
a0 + a1 · ccc+ a2

|ccc2|
2

)
= f0 exp

(
−|c
cc− uuu|2

2β

)
. (11)

The Maxwellian distribution being perfectly defined by its three first moments mk =
∫

R3
ccc
ccckf(ccc)dccc, k = 0, 1, 2,

the evolution of the Boltzmann equation (9) at isentropic thermodynamic equilibrium H = Hmin is given by
the system of its three first moments, which closes into the Euler equations:



∂ρ
∂t + ∇ · (ρuuu) = 0,

∂ρuuu
∂t + ∇ · (ρuuu⊗ uuu+ pI) = 0,

∂ρE
∂t + ∇ · ((ρE + p)uuu) = 0.

(12)

2.1.2. Navier-Stokes-Fourier equations
In the previous paragraph, we have clearly stated that collisions occur everywhere at all time, or, to refor-

mulate, that the Knudsen number remains null: Kn = 0. In reality, it is often very small but strictly positive.
Then, we look at near equilibrium regimes by stating ε = Kn and looking for an expansion of f in ε: the
Chapman-Enskog expansion. At first order, f = f0 + εf1 + ◦(ε), which, at orders 1/ε and 1, gives in (9):

Q(f0, f0) = 0 =⇒ f0 = feq and ∂tfeq + ccc · ∂xxxfeq = Q(feq, f1) +Q(f1, feq).

The latest equation is an integral equation in f1 which might be completely solved. For a monoatomic gas of
atoms of mass m and radius r, the three first moments of f verify the following Navier-Stokes equations [6]:



∂ρ

∂t
+ ∇ · (ρuuu) = 0,

∂ρuuu

∂t
+ ∇ · (ρuuu⊗ uuu+ P) = 0,

∂ρE

∂t
+ ∇ · (ρEuuu+ P · uuu+ qqq) = 0.

(13) where


P = pI− µ

2

(
∇uuu+ ∇uuut − 2

3∇ · uuuI
)
,

qqq = ε
∫

R3
ccc
m (c−u)2

2 (ccc− uuu)f1dccc = −λ∇T,

and µ and λ are respectively the viscosity and the thermal conductivity.

Remark 2.2. This last system can be obtained rigorously from the Boltzmann equation (9) in the restrictive
context of monoatomic gases with µ = 5m

6r2

√
kBT
πm and λ = 225

512r2

√
mkBT
π . However, a similar system of PDEs

can be obtained by considering the conservative principles of mass, momentum and total energy, added with
constitutive equations of the considered fluid, which provide heuristic laws of the viscosity µ and the thermal
conductivity λ.
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2.2. Large-scale reduced-order models
2.2.1. Properties of turbulence

Turbulence is a particular type of flows which can not be rigorously defined. The easiest way to define it is
by using the metric of the Reynolds number: Re = uf,0L0

ν , where uf,0 is a characteristic speed of the fluid, L0
is a characteristic length scale of the system and ν = µ

ρ is the kinematic viscosity of the fluid. We will say that
a fluid exhibits a turbulent behavior, when its Reynolds number is high. The limit Reynolds number depends
on the considered experiment and on the operating condition. However, the flow is generally turbulent when
Re >> 103.

Turbulent flows share in common their chaotic behavior. For deterministic systems, there are multiple
definitions of chaos, but in this context we choose to say that turbulent flows all are :

• highly sensitive to the initial conditions of the system. The present determines the future, but the
approximate present does not approximately describe the future. For instance, we say that x0 is a
highly sensitive initial conditions, if for all L0 > M > 0 and for all δ > 0, there exists another close
initial data y0 and an arbitrary time t > 0 such that

|x0 − y0| < δ and |x(t;x0)− y(t; y0)| ≥M.

• topologically transitive, in the sense that for every pair of non-empty open sets U ⊂ X and V ⊂ X,
there is an arbitrary time t > 0 such that

{x(t;x0) ∈ X : x0 ∈ U} ∩ V 6= ∅.

From an experimental point of view, some observations have been made on turbulent fluid flows. The main
ones are expressed by Kolmogorov [24, p.190].

• At sufficiently high Reynolds number, the small-scale turbulent motions are statistically isotropic. They
follow a universal form that is uniquely determined by the viscosity ν and the energy dissipation ε.

• The viscosity also defines a cut-off size ηK , called the Kolmogorov scale, below which all the inertia of
the flow is dissipated.

• Between the characteristic length L0 and ηK , there is an intermediate range of scales, called the inertial
range, where the statistics of motion have a universal form that is uniquely determined by the dissipation
ε and is independent of the viscosity ν. Through dimensional analysis, we get that within this range,
the turbulent kinetic energy decreases as: E (|k|) ∝ |k|−

5
3 , with k the wavenumber.

2.2.2. Reduced description of turbulence
It is commonly admitted that the macroscopic Navier-Stokes equations contain the turbulence defined above,

in the sense that these equations present solutions which have all the properties listed in paragraph 2.2.1.
Nonetheless, in practice the domain size, denoted by |X|, and the dissipative cut-off scale ηK , may be separated
by many orders of magnitude. In this context, the Direct Numerical Simulation of the Navier-Stokes equations
is rapidly unreachable, since the number of needed computational cells will be at least of the order of (ηK/|X|)3,
not speaking about the generally necessary high number of degrees of freedom per cell.

Therefore, while staying very generic, we consider a decomposition of the solution into a significant part and
a residual: if φ is a quantity of interest, we consider its reduction φ on the space of significant data and thus
write φ = φ+φ′. This significant part could be an ensemble average, a filtering, a spatial or a temporal average
or even a modal decomposition. The goal is always to reduce the size of the information needed to entirely
represent the chosen significant part, hence the name reduced-order model.

Now, the reduction operator · is applied directly on the macroscopic equations Eq. (12)-(13). For example,
when considering the incompressible version of the Navier-Stokes equation, assuming commutativity between
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all implied linear operators, one gets:

∇ · uf = 0,
∂t (uf ) + (uf · ∇)uf − ν∇2uf = − 1

ρf
∇p, (14)

with uf the fluid velocity, ρf its density (constant for incompressible fluids), ν its kinematic viscosity and p the
pressure field.

The main difficulty now lies in the reduction of the non-linear terms. Indeed, nothing indicates that there
exists an application giving (uf · ∇)uf as a function of uf . Thus, Eq. (14) is not meaningful in term of the
significant unknown uf . To overcome this difficulty, the main idea is to define a more complex application
which gives multiple possibilities to the relation between (uf · ∇)uf and uf . This is done by adding a hidden
variable ω, which encodes all the complexity of (uf · ∇)uf inside an application F and a space of possibilities
Ω in the following way

F :
{

Ω× R3
uuu → R3

uuu

(ω,uf ) 7→ (uf · ∇)uf (ω). (15)

Of course, the definition of F strongly depends on the choice of the reduction operator · . Next, an elegant
way to move forward is now to define Ω as a probability space, see [25]. Then, two main techniques emerge :

• by drawing many particular ω, thus giving a random modeling of the unknown term (uf · ∇)uf through
F , compute many trajectories of the process uf ,

• considering the statistics or moments of the random variable F , and solve for the evolution of the
moments of the random variable uf .

The advantage of the first approach is to preserve the properties of a trajectory of the process uf , which
is still the solution of a PDE. Thereby, the random variable uf lies in a large dimensional probability space,
which requires a very large number of such succession of draws to hope for some meaningful statistics. On the
contrary, solving for the evolution of the means of uf does not preserve the trajectories of the process, but it
gives correct estimators and statistics on the general behavior of the gaseous velocity field.

2.2.3. Closures
The obtained reduced-order system as in Eq. (14) is closed by making a calculable choice on F . Three

strategies can be found in the literature for this choice, as depicted in [24,29]:

• the functional approach: starting from the fact that the regularized version of the flow field will dissipate
less energy than the real turbulent flow field does, the unresolved scales can be modeled in a first
approximation by an additional diffusion process, consistently with the theory of turbulence described
in paragraph 2.2.1:

(uf · ∇)uf − (uuuf · ∇)uuuf ≈ −µturb∇2uuuf .

Here, µturb is an additional turbulent viscosity. In the case of filtering procedures, this viscosity depends
on the filter size such that it vanishes for full-resolution [23,32]. As such models can depend on empirical
constants, dynamic procedures were also proposed to get the better estimate of theses constants (see
[13]).

• The structural approach: instead of simply recovering a global property of the unresolved information,
structural methods aim at capturing the SGS tensor structure (see [2]).

• the ”pragmatic” approach: starting from the idea that it is hard to distinguish unresolved scales effects
from numerical dissipation, some authors propose to integrate effects of unresolved scales through the
numerical schemes (see [15]).
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2.3. Particles in turbulence
2.3.1. Reduced LES models

The fluid velocity at the location of the particle appears in the expression of the particle acceleration modeled
by Stokes drag law:

dCCCi = uuuf (t,XXXi)−CCCi
τp

dt, (16)

i ∈ [[1, N ]], and τp being a characteristic relaxation time of the particule toward the underlying velocity field.
However, in every LES model existing up to now, only a regularized version of the fluid velocity is computed.
Thus, a closure on the fluid velocity seen by the particle is required in order to provide a consistant LES model
for the disperse phase. Ideally, this model has to be in agreement with the probability space of the random
variable F seen by the inertial particles on the fluid flow.

Up to now, very similarly to the models developed for the fluid flow, the main strategies have been to
compensate second order moments of the the particle density distributions by the adjunction of energy in the
form of Wiener processes (see [4,11,22,27,30,31]). In its general from, this can be represented by the stochastic
differential equation (17):

dZZZt = µtZZZtdt+ σtdWWW t, (17)
with WWW t a Wiener process, ZZZt the state vector of the particle, µt the drift and σt the diffusion coefficient. It
is to be noted that in most models, the Wiener process only acts on one variable of the particle : either its
position, or its velocity, or an other intermediate variable like the velocity seen by the particle. The next section
shows that in the context of equation (17), where the closure has been chosen in the form of a Wiener process,
the derivation of a mesoscopic equation for the disperse phase is not a major difficulty.

3. Consistency of modeling approaches with numerical cases
Sections 1 and 2 were mainly focused on providing a meaningful formalism for reduced multiphase flow

simulations in agreement with mathematical consistency and physical literature. In this context, we conclude
that an appropriate formalism to describe a fluid in a Large-scale reduced order in section 2.2 is the self-
conditioned structure proposed by [25] and formalized Eq. (15). In a nutshell, the evolution of the large scale
of the flow must be obtained as the expectation of all possible unresolved scales of the flow compatible with the
resolved large scales.

Applying this formalism with the full resolution of Navier-Stokes is not easy because it is not straightforward
to control large scales and unresolved scales separately. An interesting alternative that has been widely used
in the literature is to rely on synthetic turbulence: by means of a summation of analytic modes, and under the
constraint of specific spectral distribution and representation, one can expect to reproduce the main character-
istics of the turbulence, even without verifying Navier-Stokes equations. In this section, we investigate the use
of such analytic representation from 1D to 3D, and we show what is the minimal representation that can be
envisaged.

3.1. Synthetic turbulence
The synthetic flow field has been designed in order to reproduce somehow the dynamics that could be expected

from a self-conditioned LES flow field simulation ([17,18]). It is represented by a sparse matrix of spectral modes
(Eq. (18)) chosen according to the energy density given by Pope’s spectrum in Eq. (19) (see [24, p.232]) with
Eq. (20).

uf (t, z) =
N∑
n=0

an cos (ωnt+ kn · z + ϕn) (18)
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E (|k|) = 9
4
ε

2
3

|k|
5
3

 |k| /k0[
(|k| /k0)2 + 6.78

]1/2


11
3

exp
(
−5.2

(
4
√

(|k| η)4 + 0.44 − 0.4
))

(19)

∫ |k|n
0

E3D(|k|)d |k| = 3
2u

2
0

(2n− 1)
2N . (20)

The amplitude of the modes is chosen according to the distribution |an| ∼ N
(

0, 2u2
0

N

)
.

Following [17], the spectral components of the energy spectrum are chosen in order to respect the numerical
simulations performed in [16], which show that it seems sensible to approximate E (|k| , ω) by :

Eω (|k|) = E (|k|)√
2π (a |k|u0)

exp
(
− ω2

2 (a |k|u0)2

)
, (21)

with a ∈ [0.4, 0.51] depending on the wavenumber and the integral length scale (see [16]). For the numerical
simulations, the random number generator chosen is ran2 presented in [26]. The numerical values are chosen
such that a = 0.5, u0 = 1 m.s−1 and k0 = 1 m−1. The particle evolution is computed using Runge-Kutta
scheme of order four.

The evolution of the particles on the fluid is computed by the linearised Stokes drag law in Eq. (16), with
the expression of uf given in Eq. (18).

For numerical simplicity, we first start by performing one-dimensional simulations. In one dimension, a
realization of the evolution of the particles submitted to a random fluid is given in Fig. 1. Although the initial
positons of the particles are random and uniformly distributed on a segment, their trajectories seem very limited.
They look more like oscillations around a mean drift rather than dispersion. Furthermore, when observing the
evolution of the variance in a one-dimensional space for 104 particles, see Fig. 2(a), we see that it seems bounded
for this case and that it is highly dependent on the underlying fluid fluctuations.

This kind of behavior is not consistent with the properties of turbulence and the expected behavior of particles
in a turbulent flow: we would rather expect a dispersion behavior similar to diffusion (see for instance [28]).
Since the stochastic models of the literature have a first order effect on the second order moments of the
measure of the disperse phase, it is essential to work on a numerical setup which preserves the basic properties
of turbulent flows for realizations of the second order moments of the measure of the disperse phase. Hence, it
is of prime importance to understand why such a behavior is observed on the simple fluid model we have chosen
if we want to use it for reproducing and understanding the dynamic of inertial particles on fluids described by
Navier-Stokes kind of equations.

3.2. Simplified one-dimensional case
As explained above, Fig. 1 enlightens an unexpected behavior in one dimensional case. Let us start by looking

if it is possible to understand this behavior on a simplified case where the fluid is only represented by one sine.
We have the particle evolution in Eq. (22) and the reduced evolution in Eq. (23). dXi = Cidt,

dCi = a sin (2π (ωt+ kXi) + ϕ)− Ci
τp

,
i = 1, . . . , N. (22)

 dX ′i = C ′idt,

dC ′i = a′ sin (2πX ′i) + ω − C ′i
τp

,
i = 1, . . . , N. (23)

We will prove the following result :
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Figure 1. Position Xi in meters (m) of particles according to time in seconds (s) and colored
by their number i ∈ [[0, 9]]. Time step of dt = 0.001s for particle time relaxation constant of
τp = 1s.

Proposition 3.1. Particles under dynamics described in Eq. (22) will follow an increasing signal, incompatible
with an expected diffusive behavior.

Proof. In order to prove this result, we can first study the system (23). This system is autonomous in dimension
2, so by the Poincaré-Bendixon theorem, only three cases are possible :

• The trajectories are unbounded,
• The trajectories converge to a point,
• The trajectories converge to a limit cycle.

Let us now try to characterize these behaviors more precisely.
Let i ∈ [[1, N ]]. Define Cmax = |a′| + |ω| + 1. Suppose that at time t∗ we have C ′i(t∗) > Cmax, then by

continuity during a time δ we have C ′i(t∗ + t) ≥ Cmax for all t ∈ [0, δ]. Thus

Cmax ≤ Ci(t∗ + δ) = C ′i(t∗) +
∫ δ

0

a′ sin (2πX ′i(t∗ + s)) + ω − C ′i(t∗ + s)
τp

ds

≤ C ′i(t∗) +
∫ δ

0

|a′|+ |ω| − Cmax

τp
ds

≤ C ′i(t∗) + δ
|a′|+ |ω| − Cmax

τp

or simply δ ≤ (C ′i(t∗) − Cmax)τp. It proves that in finite time, the solution falls under Cmax. Then we have
proved that for all trajectories, there exists a time tmax where C ′i(tmax) < Cmax.
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(b) 2D

Figure 2. Evolution of the variance in position of 104 particles of relaxation time constant of
τp = 1 s in different dimensionalities on one fluid flow realization according to time (s).

Denote Cmin = −Cmax and use again the time t∗ with symmetric definition, we obtain

Cmin ≥ Ci(t∗ + δ) = C ′i(t∗) +
∫ δ

0

a′ sin (2πX ′i(t∗ + s)) + ω − C ′i(t∗ + s)
τp

ds

≥ C ′i(t∗) +
∫ δ

0

−|a′| − |ω| − Cmin

τp
ds

≥ C ′i(t∗) + δ

τp
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(a) 3D

Figure 2. Evolution of the variance in position of 104 particles of relaxation time constant of
τp = 1 s in different dimensionalities on one fluid flow realization according to time (s).

and δ ≤ (Cmin − C ′i(t∗))τp. It proves that in finite time, the solution rises above vmin. Then we have proved
that for all trajectories, there exists a time tmin where C ′i(tmin) > Cmin.

Finally we can suppose that for all trajectories, the speed C ′i ∈ [−Cmax, Cmax] after some transitory time. In
fact -with the same procedure- we can prove that C ′i ∈ [ω − |a′|, ω + |a′|].

Thus if ω > |a′| then it proves that the speed stays strictly greater than ω − |a′| > ε > 0, and thus the
trajectories cannot be bounded. In order to prove that the particles will follow an increasing signal, we have to
study the difference with this linear growing.

Denote Y ′i (t) = X ′i(t)− ωt then V ′i (t) = C ′i(t)− ω = dY ′i
dt ∈ [−|a′|, |a′|].

dY ′i = (C ′i − ω)dt = V ′i dt, (24)

dV ′i = a′ sin (2πY ′i + 2πωt)− V ′i
τp

dt. (25)

We can see that V ′i cannot converge to a constant V̄ , because there is no solution to V̄ = a′ sin(2πt(V̄ + ω))
(except ω = V̄ = 0). Since V ′i cannot converge to a constant while staying in a compact, it is non-monotonous.
Denote T+ a moment where dV ′i

dt changes its sign (without loss of generality, suppose it changes from > 0 to
< 0), i.e.

a′ sin(2π(Y ′i (T+) + ωT+)) = V ′i (T+) =: V+.

Thus
τp
d2V ′i
dt2

(T+) = 2πa′ cos (2πY ′i (T+) + 2πωT+) (V ′i (T+) + ω)− dV ′i
dt

(T+)

and in particular
d2V ′i
dt2

(T+)

a′ cos (2πY ′i (T+) + 2πωT+) = 2π
τp

(V+ + ω)
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Suppose a′ > 0 to simplify.
The quantity dV ′i

dt changes from > 0 to < 0, thus the second derivative is negative, so at a given time, there
is a local maximum, and during a period [T+, T+ + T ], V ′i is decreasing and we have also 2π(Y ′i (T+) + ωT+) ∈
[π/2, 3π/2] mod 2π. Or simply 2π(Y ′i (T+) + ωT+) = 2kπ + π/2 + επ with ε ∈ [0, 1].

If V+ > 0 we have ε ∈ [0, 1/2]. And since V ′i is decreasing, and Y ′i increasing unbounded, there is a moment
where 2πY ′i (t) + 2πωt = 2kπ + π = 2πY ′i (T+) + 2πωT+ + π/2− επ. At this moment, V ′i becomes negative and
Y ′i becomes decreasing. Since V ′i is bounded, it will reach a minimum (since it cannot converges). Denote this
time T− and we are in the symmetric case than previously.

We have proved that there exists two sequences (Tn+)n∈N and (Tn−)n∈N such that Tn+ < Tn− < Tn+1
+ for all

n ∈ N. We can bounded the time (Tn− − Tn+) above and below independently of n ∈ N roughly proving that
the solution is close to a periodic one. Finally the solution X ′i is close to a increasing signal having periodic
oscillation around its drift, which is incompatible with an expected diffusive behavior. �

In this particular case of only one sine, we have performed a transformation which leads to an autonomous
system, and hard conclusion with only a discrete set of final positions. With more exciting sines the behavior
could be different. But -as it is represented in Fig. 2- even with more exciting sines we do not obtain in 1D a
dispersive behavior as expected. It makes a 1D model very dubious.

But, dispersion of particles is greatly influenced by the dimensionality of the underlying space chosen. Al-
though the dynamic in the one dimensional case is very different from the physic we aim at modeling, we expect
that when dimensionality is increased, this behavior will change and be most likely similar to diffusion (see Fig.
2), as envisioned by the physic, and as described by the models currently in use in the literature. Let us check
this assumption in the following section.

3.3. Higher dimensionality
It is possible to observe numerically that by increasing the dimensionality to more than one physical dimension

(Figs. 2(b) and 3(a)), the second order moment of ft has a better behavior, i.e. it increases quite monotonously
with time, and the particles do not seem to be overly constrained by the underlying fluid flow. The higher the
dimensionality, the better the dispersion of the particles. Indeed, one observes in Fig. 2(b) that the dispersion
of the particles appears to be much less influenced by the characteristics of the underlying fluid flow than in the
1D case (see Fig. 2(a)), and that the third dimensionality brings even more smoothness (see Fig. 3(a)). The
change of behavior between 2D and 3D can also be partly understood by the addition of new topologies for the
three-dimensional stationary points as described in [3].

Given these results, it seems relevant to keep on pursuing the simulation effort focusing on the three dimen-
sional configuration.

4. Towards two-way coupled systems
The next step towards the modeling of particulate flows is to account for the impact of the disperse phase

on the turbulent carrier phase, which has strong implications. Let us consider the empirical measure µNt (ZZZ) =
1
N

∑N
i=1 δXXXi(t)δCCCi(t) and the following evolution equation

dXXXi = CCCi(t)dt,

dCCCi = uf (t,XXXi)−CCCi
τp

dt
i = 1, . . . , N. (26)

In a one-way coupled context the gas phase velocity at the particle location does only depend on the particle
position itself and is independent of the others particles as they share the same gas phase. In this context,
we satisfy the conditions of Theorem 1.1, i.e. G (t,XXXi,CCCi) = uf (t,XXXi)−Ci

τp
. We can thus state a theorem of

convergence towards the law of the process.
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In a two-way coupled system, all particles affect the gas phase evolution such that the gas velocity is condi-
tional to the full particle configuration. It can be parametrized by the empirical measure at time t = 0:

uf (t, x) = uNf (t, x, µN0 [ZZZ]) (27)

In this case, the drag term now depends on all particle history, i.e. GN
(
t,XXXi,CCCi, µ

N
0 [ZZZ]

)
= uNf (t,XXXi,µNt [ZZZ])−Ci

τp
.

Now, we are not in the context of Theorem 1.1 anymore. The open question is then to determine if it is possible
to characterize a convergence of the particulate system towards a one-particle law:

∂

∂t
ft + v · ∇xft +∇v ·

(
Glimft

)
= 0 (28)

∂t (uf ) + (uf · ∇)uf − ν∇2uf = − 1
ρf
∇p+

∫
mpG

limdftv (29)

where Glim is the forcing of the gas velocity field for a large number of particles, i.e. when the particulate phase
behaves as a continuum, and mp is the mass of each particle.

4.1. Example of the Burgers equation
To investigate if there is an Eulerian continuum limit to the two-way problem, we set up a simplified case

that considers the 1D Burgers equation on the gas velocity u:

∂u

∂t
+ ∂

∂x

(
u2

2

)
= Fp→g(t, x)

ρf
(30)

Giving a meaning to Fp→g is not trivial (see [1, 8, 19]). Here we will use the numerical cells as a regularization
for the particle field. The equation is solved using a 1st order finite volume scheme.

4.1.1. Solution with homogeneous distribution of particles
First we study the asymptotic limit in which the particles are perfectly uniformly distributed at time t = 0

at the same velocity. The gas velocity also starts at a uniform velocity. In this limit the Eulerian continuum
limit is valid and the particles can be represented by their eulerian equations. We then state that the forcing
term in the kinetic equation is Glim = ug−v

τp
. Coupling gas phase and liquid phase equations, we get:

∂mpnl
∂t

+ ∂mpnlul
∂x

= 0 (31)

∂mpnlul
∂t

+ ∂mpnlu
2
l + Pl

∂x
= nlmp

u− ul
τp

(32)

∂u

∂t
+ ∂

∂x

(
u2

2

)
= mpnl

ρf

ul − u
τp

(33)

where mp is the (constant) mass of one particle, nl the number of particles per unit volume and Pl the pressure
of the dispersed phase. In the following we make the assumption of monokinetic disperse phase, i.e. Pl = 0.
The gas density ρf is also assumed to be constant. Starting from an homogeneous conditions, we can easily see
that the solution will still be invariant by translation at any time and the problem to be solved reduces in the
following ODE:

dul
dt = u− ul

τp
(34)

du
dt = mpnl

ρf

ul − u
τp

(35)
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Figure 3. 1D burgers problem. Left: ensemble-averaged gas velocity for different number of
particles from 1 to 256, to compare with the homogeneous limit (black). Right: convergence
rate of the difference with the homogeneous solution with respect to the number of particles.

which solution is:

ul(t) = − 1
κ

(
u0 − κu0

l + u0

1 + κ

)
e
− 1+κ

τp
t + κu0

l + u0

1 + κ
(36)

u(t) =
(
u0 − κu0

l + u0

1 + κ

)
e
− 1+κ

τp
t + κu0

l + u0

1 + κ
(37)

where κ = mpnl
ρf

. The equilibrium solution is then:

ul(t→∞) = u(t→∞) = κu0
l + u0

1 + κ
(38)

As a consequence, if we want to study the impact of inhomogeneity of the particulate phase by changing the
number of particles but keeping the same physical problem, we need to modify the particle mass mp accordingly,
to keep κm =

∫
κdx/Lx = Npmp constant.

4.2. Particle-laden case with Lagrangian particles
Knowing the sought continuum limit of the particle system, we now investigate the impact of the number

of particles, i.e. the impact of the statistical convergence of the randomly-drawn initial condition. We thus
simulate the two-way coupled burgers problem by changing the number of particles from 1 to a large number
or particles. In Fig. 3a, we compare the time evolution of the gas velocity averaged over a large number of
realizations of the initial conditions for different numbers of particles at fixed mass loading. We clearly see the
convergence of the Lagrangian simulations towards the homogeneous solution, with a convergence rate of order
1 (see Fig. 3b). This convergence rate is not affected by the number of cells for numerical discretization and
by the addition of physical diffusion in the Burgers equation. So even if we do not have a formal proof in the
spirit of Theorem 1.1, we still have confidence in the existence of a convergence result, and thus of an Eulerian
limit description.
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4.3. Eulerian modeling
As examplified by the previous test case, the Eulerian representation is still possible for a large number of

particles. If we do not have a large number of particles, let say less than one particle per cell, we still have to
propose a closure for Glim. Moreover, having a statistically-converged NDF f requires to take statistics also on
the gas phase velocity. We thus have a two-fold closure problem:

∂

∂t
ft + v · ∇xft +∇v ·

(
Glimft

)
= 0, (39)

∂ 〈u〉
∂t

+ ∂

∂x

(
〈u〉2

2

)
=
〈
Fp→g(t, x)

ρf

〉
− ∂

∂x

(
〈u′〉2

2

)
(40)

where < . > stands for the ensemble-average over particle realizations which clearly denotes a mean over the
initial law of particles.

Here we clearly see that performing an Eulerian simulation sought as an ensemble-average simulation neces-
sarily leads to an ensemble-average on the gas phase. Closing the whole system is a tough task outside of the
scope of the present work.

4.3.1. Closing the equations
Here we give some insight of possible closures. As results in Fig. 3 clearly shows similar trends but with a

different time scale, we propose to investigate the possibility to close the problem using an adapted relaxation
time scale τeffp :

dul
dt = u− ul

τeffp

(41)

du
dt = κ

ul − u
τeffp

(42)

In Fig. 4, we look at the impact of the particle interspace lt = 1/Np on this effective time scale. We exhibit a
linear trend for small lt, which would be helpful to devise closures in a two-way coupled system. The closure
for this effective time scale can then be sought as:

τeffp = τp + αlt

The previous example was just to show the impact of the droplet interspace on the solution, and a possible
modeling strategy to account for some of the effects. We only focused on the source term, but additional fluxes
can also be investigated as possible closures.

4.3.2. Interpreting existing Eulerian simulations
Even if we clearly show here that the ensemble average on the particle phase leads to an ensemble-average on

the gas phase, i.e. RANS-like statistics, many simulations can be found in the literature in a LES context, which
obviously exhibits large scale unsteady behavior. Thus, the question is: what is solved in such simulations?
A possible and simple interpretation is not to consider this simulation as statistics but as a unique realization
of the disperse phase represented in a Eulerian manner. This way, a unique realization of a gas phase will be
considered. This turns out to be an Eulerian representation of the empirical measure, which is valid in the sense
of the distributions:

∂

∂t
µNt + v · ∇xµNt +∇v ·

(
ug − v
τp

µNt

)
= 0. (43)
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(a) (b) zoom-in

Figure 4. 1D burgers problem. Evaluation of an effective relaxation time scale for the Eulerian
modeling as a function of the droplet interspace.

Taking the moments of this equation and the gas equation, we get:

∂mpn
N
l

∂t
+ ∂mpn

N
l u

N
l

∂x
= 0 (44)

∂mpn
N
l u

N
l

∂t
+ ∂mpn

N
l u

N
l

2 + PNl
∂x

= nNl mp
u− uNl
τp

(45)

∂u

∂t
+ ∂

∂x

(
u2

2

)
= mpn

N
l

ρf

uNl − u
τp

(46)

where nNl and uNl are zeroth and first order moments of the empirical measure, and PNl is its pressure. This
system of equations is similar to the Eulerian continuum limit, but the difference lies in the initial and boundary
conditions: while for the continuum limit, these inputs must be related to the law, here they must randomly
drawn as in the case of the Lagrangian particles.

In the case of the 1D burgers periodic problem, solving this system will not take advantage of the spatial
invariance of the problem, and we thus have to solve the PDEs. In the following, we will consider a pressureless
dynamics, i.e. PNl = 0, and we will use a second order scheme considering the high number density gradients
to be resolved. In Fig. 5, we show the results of the gas phase statistics when using this ”empirical” Eulerian
moment method, demonstrating the ability of such representation to capture the right behavior.

At this point, it is worth to mention that existing LES two-way coupled simulations do not consider a
random sampling of the initial/boundary conditions. Instead, they use statistically-converged inputs, leading
to an incoherent modeling. It is possible to consider them as regularized simulations in the sense that the
initial/boundary conditions has been smeared out enough to lose any random effect.

5. Conclusions
In this paper, an exploratory research activity has been started with the aim of statistical and probabilistic

modeling of a cloud of particles coupled with a turbulent fluid. Regarding the complexity of this problem, the
wide range of expertise of the authors represents an important asset. Here we have set up a common basis
to address the issues arising from the context of this work. By investigating all the passing to the limit, we
have clarified the main milestones to reach in order to answer our problematic. We have also defined a proper
numerical framework to evaluate the modeling approaches and to investigate the statistical properties of our
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Figure 5. 1D burgers problem. Ensemble-averaged gas velocity for different number of par-
ticles from 1 to 256, with the Lagrangian tracking (dashed lines) and the ”empirical” Eulerian
moment method (full lines to compare with the homogeneous limit (black).

systems of interest. Finally, we have shown the main limitations in two-way coupled system, proposing some
possible solutions to overcome them.
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