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JOINT INDEPENDENT SUBSPACE ANALYSIS BY COUPLED BLOCK DECOMPOSITION:
NON-IDENTIFIABLE CASES

Dana Lahat and Christian Jutten

Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000 Grenoble, France

ABSTRACT

This paper deals with the identifiability of joint independent sub-
space analysis of real-valued Gaussian stationary data with uncorre-
lated samples. This model is not identifiable when each mixture is
considered individually. Algebraically, this model amounts to cou-
pled block decomposition of several matrices. In previous work, we
showed that if all the cross-correlations in this model were square
matrices, the model was generally identifiable. In this paper, we
show that this does not necessarily hold when the cross-correlation
matrices are rectangular. In this current contribution, we first show
that, in certain cases, the balance of degrees of freedom (d.o.f.) be-
tween model and observations does not allow identifiability; this sit-
uation never occurs in the square case. Second, we explain why for
certain block sizes, even if the balance of d.o.f. seems adequate, the
model is never identifiable.

Index Terms— Blind source separation, coupled decomposi-
tions, low-rank approximation, uniqueness, identifiability

1. INTRODUCTION

This theoretical paper deals with certain aspects of the identifiabil-
ity of joint independent subspace analysis (JISA) [1, 2, 3]. JISA is
a recently-proposed model that extends independent subspace anal-
ysis (ISA) (e.g., [4, 5]) by exploiting statistical links among latent
multivariate random processes in several ISA problems. Another
way to look at JISA is as a variant of independent vector analy-
sis (IVA) [6] in which the random processes within each mixture
are possibly multivariate. Both ISA and IVA are themselves exten-
sions of independent component analysis (ICA) [7]. As such, JISA
is a very general framework that is able to exploit any of the types
of diversity as in single-mixture ICA, such as complex-valued data,
sample non-stationarity and/or dependence, and higher-order statis-
tics (HOS), to name a few [1, 8, 3]. Naturally, each type of diver-
sity will further enhance identifiability (e.g., [9, 10]). Accordingly,
the algebraic formulations corresponding to these models are more
elaborate (e.g., [1, Section VI],[8]). In addition, JISA inherits the
enhanced identifiability, interpretability, and versatility of IVA with
respect to (w.r.t.) ICA (e.g., [11, 12, 13, 14, 15, 16]). These proper-
ties make JISA a potentially useful tool in various applications.

In this paper, however, our focus is on a different aspect, of un-
derstanding the added value of the link among datasets w.r.t. an en-
semble of individual unrelated ISA problems. For this aim, we focus
on the minimal JISA model that provides such insights. Namely,
JISA of real-valued Gaussian stationary data with uncorrelated sam-
ples. As shown, e.g., in [17], this model amounts to coupled block
decomposition (CBD) of an ensemble of matrices. This model does
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not exploit any of the additional single-set types of diversity that we
mentioned earlier. One can readily verify that in this case, each indi-
vidual ISA mixture is not identifiable (see also Section 2.2). There-
fore, this minimal model allows us to isolate the contribution of the
multiset diversity [18].

IVA identifiability under these minimal model assumptions was
discussed in [11, 12, 13]. These results, along with, e.g., [19], pro-
vide evidence that coupled decompositions can achieve uniqueness
and identifiability that exceed those of their underlying individual
building blocks. Recently, coupled decompositions have been at-
tracting increasing attention as a means to analyse more elaborate
linked datasets and achieve data fusion in various applications; see,
e.g., [18, 20, 21] and references therein. Therefore, understanding
the properties of coupled decomposition, their advantages and dis-
advantages, is a matter of onging research.

In previous work, we provided numerical [1, 17] and theoreti-
cal [22] evidence that this minimal JISA model can be identifiable.
More specifically, we have proven that in the special case where
the non-zero cross-correlation matrices are square and nonsingular
(which implies that all blocks in the CBD are square), and the mix-
ing matrices have full column rank, JISA is generally identifiable,
except for very special cases in which the covariance profiles of two
independent sources belong to the same equivalence class. In this
paper, we do not impose this constraint. Instead, we allow the non-
zero cross-correlation matrices to be rectangular, as long as they are
full-rank. In this current contribution, we show that this relaxation
results in a new phenomenon: for certain block dimensions, the CBD
is never unique, which implies that the corresponding JISA model is
never identifiable. Furthermore, this phenomenon occurs even if the
balance of degrees of freedom (d.o.f.) between model unknowns and
constraints imposed by the observations seems adequate. The goal
of this paper is to characterize these cases, and to explain them.

1.1. Notations and Conventions

Scalars, column vectors, and matrices, are denoted a, a, and A, re-
spectively. The direct product of two matrices, A and B, is denoted
A®B 2[4 8] 1., 15, and 0, x5 denote an o X «v identity matrix,
an all-ones 3 x 1 vector, and a y X § all-zeros matrix, respectively.
-7 denotes transpose. A~*l and A~*IT stand for (A*1)~! and
(A=) T respectively. The Khatri-Rao product for partitioned ma-
trices [23] is defined as

A11 ®B11 A12®B12
AEB2 [A21®@Bar A ®Bay .- o

where A;; and B;; denote the (4, j)th m; X n; and p; X g; blocks
of partitioned matrices A and B, respectively, and where A;; ® B;;
and AHB are m;p; Xxn;q; and (3 msp;) X (D njq;), respectively.



2. BACKGROUND AND PROBLEM FORMULATION

2.1. JISA Model

Consider an ensemble of K > 2 datasets, modeled as

= AWK k=1,....K (2a)
R
= > Al (2b)
=1
where x* € R! "I%1 5 a random vector representing the obser-

vations at dataset k, and R > 2 is the number of statistically in-
dependent contributions in each dataset. The multivariate Gaus-

[k] 7SE§]T]T c Rl[k]xl and
[k] Rm 1

S; in dataset k£ have non-degenerate probability den-
sity functlon (pdf)s that cannot be written as a product of several
non-trivial pdfs. These random vectors generate multivariate Gaus-
sian stationary random processes with uncorrelated samples. In ad-

dition, the block (partitioned) matrix A = [AlF]...|AlF] ¢

R! M (Siy mih is nonsingular (in fact, the model may be iden-
tifiable even if this assumption is relaxed; however, this assump-
e R The
dimensions of these latent variables satisfy mgk] > 1, where
m = [m[lk], ce m%]]-r, m; = [mgl], ce mEK]}T, and JFl =
Zf:l ma[;k] =m* T 1p.

In the JISA model that we consider in this paper, the cross-

. (k] T
sian random vectors '™ = [s]

tion simplifies our discussion), where Agk]

correlation between s I and s ,where 1 < i, < R, 1 < k,l <
K, satisfies
R
kodl & prglRl Ty _ ) S i=3
Sy = E{s;s; }—{ 0 i # 3)

[
where S k1] ¢ Rm *mi " are full-rank Vi, k,[. The mz[.k] X my]

Cross- correlatlon matrices S 511 can be collected in the (k, I)th block

_ Sii
o 0

as well as in the (4, j)th block of the m* "1 x m!"T 1z matrix

of the m; 1x X m] 1x matnx
(K1
Si;

i=j
: L “)
g iF]

(K,K]
”, glE

st 2 p(sMshTy = sl g ... g sl 5)
Throughout this paper, we assume that S;; and Syf’k] are positive-
definite Vi, k. The cross-correlation between observations in

datasets k and [ satisfies

Xkl & E{X[k] T} — ARGk AT (62)

R
Z AW AT g (6b)

where the second equality in (6a) is due to (2a), and the transition
to (6b) is due to (5). Since A" are nonsingular Vk, (6) can be
written as

AT AT = @ st vk ()

where the last equality is due to (5). We refer to the decomposition
in (6b) and (7), of all the matrices in {X[k’” }kK,z:1 at once, as CBD.
It follows from (2b) that one cannot distinguish between the

pairs (A[k] [k]) and (A[’C P k],ZEI;]SEk]), where Z[k] is an ar-
bitrary nonsingular m[k] X m[ I matrix. However, glven x[k] =
Agk] Ek] Vi, k, we can rewrite (2) as x/¥/ = Zf;l Ik, which

does not suffer from this ambiguity. Therefore, given a sequence of
samples drawn from {x*)}/ | and given {m;, k]}l 1h=1> We de-
fine the problem associated with this model as obtalnlng estimates
of x1,...,Xp that are as statistically independent (uncorrelated) as
possible, where x; 2 [x [I]T, cey } Vi. Accordingly, we
propose the following definition for JISA identifiability: if all (un-
ordered) sets of maximally independent estimates of X1, . .., X g that
satisfy the JISA model assumptions are identical, we say that the
JISA model is identifiable.

Similarly, each of the R summands in (6b) satisfies
Agk]SEJZ,Z]AEz] (A[k Z: )(Z[k]s[k iy, l]T)(Z”[l]TAEZ]T) ®)
In analogy to our definition of JISA identifiability, we now state
the algebraic counterpart for CBD uniqueness: if any choice
of {AMYEX | and {SIPU}E,_, that satisfy (6) for fixed
{X[k’l]}glzl yields the same R summands Vk, [, we say that the
decomposition in (6) and (7) is unique.

If the JISA model satisfies all the above model assumptions, then
the cross-correlations {X[’“’” }ff 1—1 are sufficient statistics for esti-
mating the model’s parameters [1]. In this case, the uniqueness of
the CBD problem in (6) and (7) amounts to JISA identifiability.

2.2. Degrees of Freedom

In our JISA model of interest, the model unknowns consists of

{AMYE and {S;i}E . These matrices provide
K R R
Ninodel = Z ((Z mli? _ Zm?[k] )
k=1 =1 i=1
—_—— ——
due to AlK] due to Z[ ]
1B K
k k
S (1)) o
i=1 k=1 k=1
dueto S;;

free scalar parameters. In (9), we take into account the model’s
unavoidable inherent ambiguities (8). The data (i.e., observa-
tions, measurements, etc.) are represented by {X[k’l]}if I=1>
which can be regarded as the blocks of the covariance matrix of

XU xEITT ¢ RS Siy mithxa Hence, the model
has to fit

Ndm——(Zim N(( iimk )+1) (10

i=1 k=1 i=1 k=1

scalar constraints. One can readily verify that when K = 1 and
R > 2, Ngata — Nmodel < 0. When Ngaa — Nmodel < 0, the num-
ber of constraints provided by the observations is smaller than the
number of unknowns in the model, and thus the model is not identi-
fiable. Nonnegative values of Ngaa — Nmodgel, On the other hand, do
not guarantee identifiability.



2.3. Problem Formulation

In previous work [1, 17, 22], we considered the case of square non-
singular ng’l] Vi, k, l, which implies mgk] = m; Vk. In this case,
the balance of d.o.f. is always nonnegative. Given these assumptions,
we defined in [22] a subspace associated with signal ¢ as reducible
if and only if (iff) there exist K nonsingular matrices (transforma-

Kl

tions) T such that THISHITIT — { S0, } Yk, 1,
(X3 [ 1 [ Oa[k]xﬂ[” Sigig
where o*! and gF1 2 m; — o* are positive integers Vk. In this
case, we say that S;; is reducible. Otherwise, S;; is said to be ir-
reducible. Assuming irreducibility Vi, we showed in [22] that JISA
was generally identifiable, that is, except for very special cases in
which, for some i # j, m; = m; and the blocks of S;; and S;;
satisfy a certain equivalence relation. In other words, m; # m;
guarantees identifiability.

In this paper, we consider a more relaxed scenario, of rectangu-
lar full-rank SE’:’”. We show that in this case, different dimensions
for (7, j) do not guarantee identifiability. Namely, for certain values
of {m£k]}f:5f,§:1, the d.o.f. balance is negative. Then, in certain
other cases, the balance is nonnegative but the model is never identi-
fiable, regardless of the value of S;; Vi. The main part of this paper,
in Section 3, is dedicated to explaining this latter phenomenon. Iden-
tifiability of the remaining cases can be obtained using arguments
similar to those in [22], and is beyond the scope of this work.

2.4. Fisher Information Matrix

In [1], we have shown' that asymptotically, that is, when the number
of samples drawn from the random processes goes to infinity, for
every pair (i, ) with ¢ # j, the estimation error of the parameters in
the model that we have just defined is proportional to the inverse of
the symmetric positive semi-definite 2m; m; x 2m; m; matrix

S;; BS;;" I
H = 33 (52 1 (11)
I S;' BSi

(the transition from [1, Equation (32)] to (11) is trivial) where
S,; BS;;" isan m; m; x m; m; matrix whose (k,)th block has
size mgk]my@] X my]mm. Hence, H is related to the Fisher infor-
mation matrix (for further details, see [1]). Matrix H is generally
different for each pair of (4, j). Matrix H is well-defined, because it
was derived based on the assumption that S;; and S;; were positive-
definite covariance matrices. If H is singular for at least one pair of
i # j, we say that the model is not identifiable. Consequently, the
question of identifiability boils down to characterizing the singular
points of H for all pairs of (i, 7). In [22], we have shown that H is

singular iff the following system of coupled matrix equations,
glely [l _ g [kIglRY] —
S; LY =L"8s." kil=1,... K (12)

has non-zero solutions, that is, iff there exist {L[k] }i(:l not all zero

that satisfy (12), where L™ are mgk] x mU!

; matrices, and

it = (st 2SSt 2T ke a3

(52 i 3

are normalized versions of S;; satisfying §£’j’“] =1 Vk, as well

as all our other model assumptions. We shall use this formulation in
our analysis in Section 3.

IThe generalization of all the results in [1] from m[k] = m; Vk to

i

mgk] #* my] for [ # k is trivial and straightforward.

3. MAIN RESULT: NON-IDENTIFIABLE CASES

In this section, we present our claims using a case study. Let m; =
[1,1,0]T, m; = [1,1,53]". This example corresponds to K = 3
datasets, with block dimensions given by mgl] = m?] =S mg.l] =
m?] =1, m£3] = q, mg.S] = B, for some pair (i,5), 1 < i,5 <
R, i # j, where the total number of latent low-rank terms in each
datasetis R > 2. In this example, R = 2,7 = 1, 7 = 2. Substituting
these parameters in (9) and (10), the balance of d.o.f. between model
unknowns and observational constraints is

Naata — Nmodel = 200 + 25 - 056 . (14)

Specific values of (14) for 1 < «, 8 < 7 are given in Table 1. For
this model, depending on « and 3, we identify three types of iden-
tifiability, as we now explain. The negative values in Table 1 cor-
respond to non-identifiable cases. The non-highlighted nonnegative
entries in Table 1 correspond to cases that are generally identifiable.
The highlighted entries in Table 1 correspond to cases that are never
identifiable although their d.o.f. balance is nonnegative. The aim of
this paper is to explain this type of non-identifiability.

Table 1. Nyaw — Nmodel = 2428 — 5. The highlighted cells corre-
spond to cases that are never identifiable although their d.o.f. balance
is nonnegative.

Bl 2 3 4 5 6 7
(0%

I 3 4 5 6 7 8 9
2 |4 4 4 4 4 4 4
3 05 403 2 1 0 -
4 |6 4 2 0 2 4 6
5 |7 4.1 2 5 -8 -l
6 [8 4 0 -4 -8 -12 -16
7 |9 4 a1 6 -11 -16 -21

Before going into our theoretical analysis, we point out that each
of these claims for (non)identifiability can be validated numerically
by generating arbitrary S;; and S;; that satisfy the model assump-
tions of Section 2 and looking at the eigenvalues of H.

In a first step (Section 3.1), we show that given these values of «
and f3, one can always write gu and §j ;j as a direct sum of a smaller
square matrix and an identity matrix. In a second step (Section 3.2),
we show that this structure is always associated with a singular H.
We discuss and explain these results in Section 3.3.

3.1. First Step

The main idea is that the arbitrary matrices ny], defined in (8), act
as transformations (see also [24]). Let
zl) 2 QM) ik (15)

(%]

i

(K]

where QEIE] is a nonsingular m, -~ X m; " matrix Vi, k. Then

zslzlT = Qi Msl) T isisl) T TR (6w

= Q;MsQ T ik, (16b)

where the last transition is due to (13). For the sake of simplicity, we
exemplify using « = 3 = (. However, the same arguments apply



to all pairs of («, 3) corresponding to highlighted entries in Table 1.

In this example, gfl] and gg,z] are 3 X 1 vectors; gg,l]’ QE], and
Qf] are nonzero scalars, and Q 3'is 3 x 3. Hence, the ensemble
of transformation {Q[ 1K, on {S [k, l]}k,l on the right-hand side
(RHS) of (16b) can be written as

K w™ o 0

@a s EBQ [y T 0o ¢2 o

k=1 0 0 Q;[B]
Lo o o]
s ST e ¢ o (17
s L o 0 q

The key point is that the operation of Q;[?’] on the lower-left 3 x 2
submatrix of S;; (highlighted in (17)) can be interpreted as a QR

decomposition: [551] 55’2]] = QS] R, where R has an upper

* ok
triangular structure |0 [, “x” stands for any unspecified non-
0 0

1]

i

and qZ[?] do not have any effect on the structure. We further note that
Q;[g]sgi]Q;[S]T = I3 for any unitary QE?] If we choose g}/ =
1= ql[-?], it follows that one can always transform S;; to a structure

zero scalar value, and QE is unitary. The nonnegative scalars g;

21

18

OO *|*x|=
O ¥ ¥ || %
O O % | *
O = Ol % |O
i) fen] an)

via (15). The same procedure can be applied to S;;. Summarizing
our derivations so far, we have shown that given m; = (1,1,3) =
m;, both S;; and S;; can always be assumed to have the structure
in (18).

Similar arguments can now applied to the other highlighted en-
tries in Table 1. We now note that each of these highlighted cells
(1 ]+m[2] [ ] [1] _|_m[2] <

(3. Hence, the QR decomposmon of the lower—left m 3 X 2

corresponds to 2 = m, =aand2 =

m[3] —
submatrix of S;; yields an upper-triangular matrix R with mi -2
rows of zeros at the bottom. Consequently, Si; can always be written
m&k] +2) matrix and I (5 .

The same holds for 5. This concludes the first step of our case study.

. 2
as a direct sum of an order- (3, _;

3.2. Second Step

We now explain why a structure that is a direct sum of a square ma-
trix and the identity, for both ¢ and j, implies that the corresponding
H is always singular. In our example, one can readily verify that for
any Si; and §j ; with the structure in (18), the system of equations

0 0 0
in(12) holds forany LI =0 =L@ and LB = [0 0 0| #0,
0 0 ¢

& # 0. As explained in Section 2.4, a non-zero solution to (12) corre-
sponds to a singular H, and thus the overall JISA model is not iden-
tifiable. This concludes our proof that our minimal JISA model with
m; = m; = (1,1,3), j # i, is never identifiable. As for the other
highlighted values in Table 1, one can readily verify that given the

direct-sum structure explained in Section 3.1 for both §“ and §] J,
there always exists a non-zero solution to (12), with LM =0=

and L) = 0243 ®E, where Z is an arbitrary (m EJ] —2) X (m£.3] —2)
matrix.

3.3. Discussion

A questlon that may arise is whether the fact that the effective form
of S“ and S 4j;7 contains zeros changes the balance of d.o.f., and if so,
can this explain the non-identifiability. To answer this question, we
point out that the zeros in (18) can affect only Nyodel, by decreasing
the number of model unknowns. Hence, the value of Ngaa — Nmodel
can only increase. Therefore, this cannot serve as an alternative ex-
planation to non-identifiability.

Until now, we ignored the question of reducibility. By observing
the transformed structure in (18), we see that gu does not satisfy
the definition of reducibility in Section 2.3. However, (18) reveals

(3]

that the last entry of s, is uncorrelated with all other entries of

sgk] Vk. Hence, SES] consists of two uncorrelated terms, and is thus
reducible. These results imply that the definition of (ir)reducibility
in Section 2.3 is inadequate for the more general case of JISA with
rectangular blocks. In other words, the new phenomenon is due to a
new and more elaborate type of reducibility that was not considered
in earlier work.

Clearly, this type of reducibility and non-identifiability is not
limited to models with structure given by m; = [1,1,¢] ", m; =
[1,1,8]7. One can readily verify that this phenomenon occurs
whenever a model has at least one pair of ¢ # j for which
Zk 1 m[k] < m[ , and similarly for j. For example, if m; =
[1,2,4]" and m; = [3,5,9]", where Ny — Nmoder = 21, the
model is not identifiable. Hence, in the general case of rectangu-
lar cross-correlations, having different dimensions for the different
random vectors can result in completely non-identifiable models.
This is in striking contrast to the square case, i.e., m[k]

m.[jk] = myj Vk, in which identifiability is guaranteed if m; # m;
for any @ # j.

This type of reducibility and non-identifiability is not a concern
when m&k] = m; Vi, k, because in this case, each SE’;’” is square
(and nonsingular, by our model assumptions) such that its QR de-
composition yields a nonsingular triangular matrix.

A possible remedy is to use additional types of diversity. If the
samples are piecewise nonstationary, such that there exist at least two
distinct matrices S A for fixed i,k,l, where t = 1,...,T are
indices of disjoint T > 2 sampling 1ntervals, then this type of non-
identifiability cannot occur, in general. The reason is that once the

normalization §£’§”“W> = T has been applied for some fixed ¢ = ¢/,

= m; and

the other §£’;*““">, for t"" # t/, cannot, in general, be diagonalized.
Hence, this result can serve as a further motivation for exploiting all
types of diversity in the data.

To conclude, in this paper, we presented new results on the iden-
tifiability of JISA and CBD, when dependent random processes have
different dimensions. We have shown that while in certain cases
different dimensions guarantee identifiability, in other cases they
can completely destroy it. We explained this by showing that this
setup may be associated with more elaborate types of (ir)reducibility.
These results indicate that while block decompositions carry more
flexibility in representing data, they should be treated with care.
These results also further emphasize that block decompositions can-
not be handled as straightforward extensions of rank-1 methods.
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