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This paper deals with the identifiability of joint independent subspace analysis of real-valued Gaussian stationary data with uncorrelated samples. This model is not identifiable when each mixture is considered individually. Algebraically, this model amounts to coupled block decomposition of several matrices. In previous work, we showed that if all the cross-correlations in this model were square matrices, the model was generally identifiable. In this paper, we show that this does not necessarily hold when the cross-correlation matrices are rectangular. In this current contribution, we first show that, in certain cases, the balance of degrees of freedom (d.o.f.) between model and observations does not allow identifiability; this situation never occurs in the square case. Second, we explain why for certain block sizes, even if the balance of d.o.f. seems adequate, the model is never identifiable.

INTRODUCTION

This theoretical paper deals with certain aspects of the identifiability of joint independent subspace analysis (JISA) [START_REF] Lahat | Joint independent subspace analysis using second-order statistics[END_REF][START_REF] Lahat | Joint blind source separation of multidimensional components: Model and algorithm[END_REF][START_REF] Silva | Multidataset independent subspace analysis extends independent vector analysis[END_REF]. JISA is a recently-proposed model that extends independent subspace analysis (ISA) (e.g., [START_REF] Comon | Supervised classification, a probabilistic approach[END_REF][START_REF] Cardoso | Multidimensional independent component analysis[END_REF]) by exploiting statistical links among latent multivariate random processes in several ISA problems. Another way to look at JISA is as a variant of independent vector analysis (IVA) [START_REF] Kim | Independent vector analysis: An extension of ICA to multivariate components[END_REF] in which the random processes within each mixture are possibly multivariate. Both ISA and IVA are themselves extensions of independent component analysis (ICA) [START_REF] Comon | Independent component analysis, a new concept?[END_REF]. As such, JISA is a very general framework that is able to exploit any of the types of diversity as in single-mixture ICA, such as complex-valued data, sample non-stationarity and/or dependence, and higher-order statistics (HOS), to name a few [START_REF] Lahat | Joint independent subspace analysis using second-order statistics[END_REF][START_REF] Lahat | Joint analysis of multiple datasets by cross-cumulant tensor (block) diagonalization[END_REF][START_REF] Silva | Multidataset independent subspace analysis extends independent vector analysis[END_REF]. Naturally, each type of diversity will further enhance identifiability (e.g., [START_REF] Adalı | Diversity in independent component and vector analyses: Identifiability, algorithms, and applications in medical imaging[END_REF][START_REF] Sidiropoulos | On communication diversity for blind identifiability and the uniqueness of low-rank decomposition of N -way arrays[END_REF]). Accordingly, the algebraic formulations corresponding to these models are more elaborate (e.g., [1, Section VI], [START_REF] Lahat | Joint analysis of multiple datasets by cross-cumulant tensor (block) diagonalization[END_REF]). In addition, JISA inherits the enhanced identifiability, interpretability, and versatility of IVA with respect to (w.r.t.) ICA (e.g., [START_REF] Vía | Joint blind source separation from second-order statistics: Necessary and sufficient identifiability conditions[END_REF][START_REF] Anderson | Independent vector analysis: Identification conditions and performance bounds[END_REF][START_REF] Lahat | An alternative proof for the identifiability of independent vector analysis using second order statistics[END_REF][START_REF] Kitamura | Determined blind source separation unifying independent vector analysis and nonnegative matrix factorization[END_REF][START_REF] Bhinge | Data-driven fusion of multi-camera video sequences: Application to abandoned object detection[END_REF][START_REF] Nesta | Audio/video supervised independent vector analysis through multimodal pilot dependent components[END_REF]). These properties make JISA a potentially useful tool in various applications.

In this paper, however, our focus is on a different aspect, of understanding the added value of the link among datasets w.r.t. an ensemble of individual unrelated ISA problems. For this aim, we focus on the minimal JISA model that provides such insights. Namely, JISA of real-valued Gaussian stationary data with uncorrelated samples. As shown, e.g., in [START_REF] Lahat | Joint independent subspace analysis: A quasi-Newton algorithm[END_REF], this model amounts to coupled block decomposition (CBD) of an ensemble of matrices. This model does This work is supported by the project CHESS, 2012-ERC-AdG-320684. GIPSA-Lab is a partner of the LabEx PERSYVAL-Lab (ANR-11-LABX-0025).

not exploit any of the additional single-set types of diversity that we mentioned earlier. One can readily verify that in this case, each individual ISA mixture is not identifiable (see also Section 2.2). Therefore, this minimal model allows us to isolate the contribution of the multiset diversity [START_REF] Lahat | Multimodal data fusion: An overview of methods, challenges and prospects[END_REF].

IVA identifiability under these minimal model assumptions was discussed in [START_REF] Vía | Joint blind source separation from second-order statistics: Necessary and sufficient identifiability conditions[END_REF][START_REF] Anderson | Independent vector analysis: Identification conditions and performance bounds[END_REF][START_REF] Lahat | An alternative proof for the identifiability of independent vector analysis using second order statistics[END_REF]. These results, along with, e.g., [START_REF] Sørensen | Coupled canonical polyadic decompositions and (coupled) decompositions in multilinear rank-(Lr,n, Lr,n, 1) terms-part I: Uniqueness[END_REF], provide evidence that coupled decompositions can achieve uniqueness and identifiability that exceed those of their underlying individual building blocks. Recently, coupled decompositions have been attracting increasing attention as a means to analyse more elaborate linked datasets and achieve data fusion in various applications; see, e.g., [START_REF] Lahat | Multimodal data fusion: An overview of methods, challenges and prospects[END_REF][START_REF] Acar | Understanding data fusion within the framework of coupled matrix and tensor factorizations[END_REF][START_REF] Van Mechelen | A generic linked-mode decomposition model for data fusion[END_REF] and references therein. Therefore, understanding the properties of coupled decomposition, their advantages and disadvantages, is a matter of onging research.

In previous work, we provided numerical [START_REF] Lahat | Joint independent subspace analysis using second-order statistics[END_REF][START_REF] Lahat | Joint independent subspace analysis: A quasi-Newton algorithm[END_REF] and theoretical [START_REF] Lahat | A generalization to Schur's lemma with an application to joint independent subspace analysis[END_REF] evidence that this minimal JISA model can be identifiable. More specifically, we have proven that in the special case where the non-zero cross-correlation matrices are square and nonsingular (which implies that all blocks in the CBD are square), and the mixing matrices have full column rank, JISA is generally identifiable, except for very special cases in which the covariance profiles of two independent sources belong to the same equivalence class. In this paper, we do not impose this constraint. Instead, we allow the nonzero cross-correlation matrices to be rectangular, as long as they are full-rank. In this current contribution, we show that this relaxation results in a new phenomenon: for certain block dimensions, the CBD is never unique, which implies that the corresponding JISA model is never identifiable. Furthermore, this phenomenon occurs even if the balance of degrees of freedom (d.o.f.) between model unknowns and constraints imposed by the observations seems adequate. The goal of this paper is to characterize these cases, and to explain them.

Notations and Conventions

Scalars, column vectors, and matrices, are denoted a, a, and A, respectively. The direct product of two matrices, A and B, is denoted

A ⊕ B [ A 0 0 B ].
Iα, 1 β , and 0 γ×δ denote an α × α identity matrix, an all-ones β × 1 vector, and a γ × δ all-zeros matrix, respectively.

• denotes transpose. A -[k] and A -[k] stand for (A [k] ) -1 and (A -[k]
) , respectively. The Khatri-Rao product for partitioned matrices [START_REF] Horn | Block-matrix generalizations of Schur's basic theorems on Hadamard products[END_REF] is defined as

A B    A11 ⊗ B11 A12 ⊗ B12 • • • A21 ⊗ B21 A22 ⊗ B22 • • • . . . . . . . . .    (1) 
where Aij and Bij denote the (i, j)th mi × nj and pi × qj blocks of partitioned matrices A and B, respectively, and where Aij ⊗ Bij and A B are mipi×njqj and ( mipi)×( njqj), respectively.

BACKGROUND AND PROBLEM FORMULATION

JISA Model

Consider an ensemble of K ≥ 2 datasets, modeled as

x [k] = A [k] s [k] , k = 1, . . . , K (2a) = R i=1 A [k] i s [k] i (2b) 
where

x [k] ∈ R I [k]
×1 is a random vector representing the observations at dataset k, and R ≥ 2 is the number of statistically independent contributions in each dataset. The multivariate Gaussian random vectors s

[k] = [s [k] 1 , . . . , s [k] R ] ∈ R I [k] ×1 and s [k] i ∈ R m [k] i ×1
in dataset k have non-degenerate probability density function (pdf)s that cannot be written as a product of several non-trivial pdfs. These random vectors generate multivariate Gaussian stationary random processes with uncorrelated samples. In addition, the block (partitioned) matrix

A [k] = [A [k] 1 | • • • |A [k] R ] ∈ R I [k] ×( R i=1 m [k]
i ) is nonsingular (in fact, the model may be identifiable even if this assumption is relaxed; however, this assumption simplifies our discussion), where

A [k] i ∈ R I [k] ×m [k]
i . The dimensions of these latent variables satisfy m

[k] i ≥ 1, where m [k] = [m [k] 1 , . . . , m [k] R ] , mi = [m [1] i , . . . , m [K]
i ] , and

I [k] = R i=1 m [k] i = m [k] 1R.
In the JISA model that we consider in this paper, the crosscorrelation between s

[k] i and s [l] j , where 1 ≤ i, j ≤ R, 1 ≤ k, l ≤ K, satisfies S [k,l] ij E{s [k] i s [l] j } = S [k,l] ii i = j 0 i = j (3) 
where

S [k,l] ii ∈ R m [k] i ×m [l] i are full-rank ∀i, k, l. The m [k] i × m [l] j cross-correlation matrices S [k,l] ij can be collected in the (k, l)th block of the m i 1K × m j 1K matrix Sij     S [1,1] ij • • • S [K,1] ij . . . . . . S [K,1] ij • • • S [K,K] ij     = Sii i = j 0 i = j (4) 
as well as in the (i, j)th block of the m

[k] 1R × m [l] 1R matrix S [k,l] E{s [k] s [l] } = S [k,l] 11 ⊕ • • • ⊕ S [k,l] RR . (5) 
Throughout this paper, we assume that Sii and S

[k,k] ii are positivedefinite ∀i, k. The cross-correlation between observations in datasets k and l satisfies

X [k,l] E{x [k] x [l] } = A [k] S [k,l] A [l] (6a) = R i=1 A [k] i S [k,l] ii A [l] i ∀k, l (6b) 
where the second equality in (6a) is due to (2a), and the transition to (6b) is due to [START_REF] Cardoso | Multidimensional independent component analysis[END_REF]. Since A [k] are nonsingular ∀k, (6) can be written as

A -[k] X [k,l] A -[l] = S [k,l] = R i=1 S [k,l] ii ∀k, l (7) 
where the last equality is due to [START_REF] Cardoso | Multidimensional independent component analysis[END_REF]. We refer to the decomposition in (6b) and ( 7), of all the matrices in {X [k,l] } K k,l=1 at once, as CBD. It follows from (2b) that one cannot distinguish between the pairs (A

[k] i , s [k] i ) and (A [k] i Z -[k] ii , Z [k] ii s [k] i ), where Z [k]
ii is an arbitrary nonsingular m

[k] i × m [k] i matrix. However, given x [k] i A [k] i s [k] i ∀i, k, we can rewrite (2) as x [k] = R i=1 x [k] i
∀k, which does not suffer from this ambiguity. Therefore, given a sequence of samples drawn from {x [k] } K k=1 , and given {m

[k] i } R , K i=1,k=1
, we define the problem associated with this model as obtaining estimates of x1, . . . , xR that are as statistically independent (uncorrelated) as possible, where xi [x

[1] i , . . . , x [K] i
] ∀i. Accordingly, we propose the following definition for JISA identifiability: if all (unordered) sets of maximally independent estimates of x1, . . . , xR that satisfy the JISA model assumptions are identical, we say that the JISA model is identifiable.

Similarly, each of the R summands in (6b) satisfies

A [k] i S [k,l] ii A [l] i = (A [k] i Z -[k] ii )(Z [k] ii S [k,l] ii Z [l] ii )(Z -[l] ii A [l] i ) . (8) 
In analogy to our definition of JISA identifiability, we now state the algebraic counterpart for CBD uniqueness: if any choice of {A

[k] i } R , K i=1,k=1 and {S [k,l]
ii } K k,l=1 that satisfy (6) for fixed {X [k,l] } K k,l=1 yields the same R summands ∀k, l, we say that the decomposition in ( 6) and ( 7) is unique.

If the JISA model satisfies all the above model assumptions, then the cross-correlations {X [k,l] } K k,l=1 are sufficient statistics for estimating the model's parameters [START_REF] Lahat | Joint independent subspace analysis using second-order statistics[END_REF]. In this case, the uniqueness of the CBD problem in ( 6) and ( 7) amounts to JISA identifiability.

Degrees of Freedom

In our JISA model of interest, the model unknowns consists of {A [k] } K k=1 and {Sii} R i=1 . These matrices provide

Nmodel = K k=1 ( R i=1 m [k] i ) 2 due to A [k] - R i=1 m 2[k] i due to Z [k] ii + 1 2 R i=1 ( K k=1 m [k] i ) ( K k=1 m [k] i ) + 1 due to S ii (9) 
free scalar parameters. In [START_REF] Adalı | Diversity in independent component and vector analyses: Identifiability, algorithms, and applications in medical imaging[END_REF], we take into account the model's unavoidable inherent ambiguities [START_REF] Lahat | Joint analysis of multiple datasets by cross-cumulant tensor (block) diagonalization[END_REF]. The data (i.e., observations, measurements, etc.) are represented by {X [k,l] } K k,l=1 , which can be regarded as the blocks of the covariance matrix of [x [1] , . . . ,

x [K] ] ∈ R ( R i=1 K k=1 m [k] i )×1
. Hence, the model has to fit

Ndata = 1 2 R i=1 K k=1 m [k] i R i=1 K k=1 m [k] i + 1 (10) 
scalar constraints. One can readily verify that when K = 1 and R ≥ 2, Ndata -Nmodel < 0. When Ndata -Nmodel < 0, the number of constraints provided by the observations is smaller than the number of unknowns in the model, and thus the model is not identifiable. Nonnegative values of Ndata -Nmodel, on the other hand, do not guarantee identifiability.

Problem Formulation

In previous work [START_REF] Lahat | Joint independent subspace analysis using second-order statistics[END_REF][START_REF] Lahat | Joint independent subspace analysis: A quasi-Newton algorithm[END_REF][START_REF] Lahat | A generalization to Schur's lemma with an application to joint independent subspace analysis[END_REF], we considered the case of square nonsingular S

[k,l] ii ∀i, k, l, which implies m

[k] i = mi ∀k. In this case, the balance of d.o.f. is always nonnegative. Given these assumptions, we defined in [START_REF] Lahat | A generalization to Schur's lemma with an application to joint independent subspace analysis[END_REF] a subspace associated with signal i as reducible if and only if (iff) there exist K nonsingular matrices (transformations)

T [k] ii such that T [k] ii S [k,l] ii T [l] ii = S [k,l] i 1 i 1 0 0 α [k] ×β [l] S [k,l] i 2 i 2 ∀k, l,
where α [k] and β [k] mi -α [k] are positive integers ∀k. In this case, we say that Sii is reducible. Otherwise, Sii is said to be irreducible. Assuming irreducibility ∀i, we showed in [START_REF] Lahat | A generalization to Schur's lemma with an application to joint independent subspace analysis[END_REF] that JISA was generally identifiable, that is, except for very special cases in which, for some i = j, mi = mj and the blocks of Sii and Sjj satisfy a certain equivalence relation. In other words, mi = mj guarantees identifiability.

In this paper, we consider a more relaxed scenario, of rectangular full-rank

S [k,l]
ii . We show that in this case, different dimensions for (i, j) do not guarantee identifiability. Namely, for certain values of {m

[k] i } R , K
i=1,k=1 , the d.o.f. balance is negative. Then, in certain other cases, the balance is nonnegative but the model is never identifiable, regardless of the value of Sii ∀i. The main part of this paper, in Section 3, is dedicated to explaining this latter phenomenon. Identifiability of the remaining cases can be obtained using arguments similar to those in [START_REF] Lahat | A generalization to Schur's lemma with an application to joint independent subspace analysis[END_REF], and is beyond the scope of this work.

Fisher Information Matrix

In [START_REF] Lahat | Joint independent subspace analysis using second-order statistics[END_REF], we have shown 1 that asymptotically, that is, when the number of samples drawn from the random processes goes to infinity, for every pair (i, j) with i = j, the estimation error of the parameters in the model that we have just defined is proportional to the inverse of the symmetric positive semi-definite 2m i mj × 2m i mj matrix

H = Sjj S -1 ii I I S -1 jj Sii (11) 
(the transition from [1, Equation (32)] to [START_REF] Vía | Joint blind source separation from second-order statistics: Necessary and sufficient identifiability conditions[END_REF] is trivial) where Sjj S -1 ii is an m i mj × m i mj matrix whose (k, l)th block has size m

[k] i m [k] j × m [l] i m [l] j .
Hence, H is related to the Fisher information matrix (for further details, see [START_REF] Lahat | Joint independent subspace analysis using second-order statistics[END_REF]). Matrix H is generally different for each pair of (i, j). Matrix H is well-defined, because it was derived based on the assumption that Sii and Sjj were positivedefinite covariance matrices. If H is singular for at least one pair of i = j, we say that the model is not identifiable. Consequently, the question of identifiability boils down to characterizing the singular points of H for all pairs of (i, j). In [START_REF] Lahat | A generalization to Schur's lemma with an application to joint independent subspace analysis[END_REF], we have shown that H is singular iff the following system of coupled matrix equations,

S [k,l] ii L [l] = L [k] S [k,l] jj k, l = 1, . . . , K (12) 
has non-zero solutions, that is, iff there exist {L [k] } K k=1 not all zero that satisfy [START_REF] Anderson | Independent vector analysis: Identification conditions and performance bounds[END_REF], where

L [k] are m [k] i × m [k]
j matrices, and

S [k,l] ii = (S [k,k] ii ) -1 2 S [k,l] ii (S [l,l] ii ) -1 2 ∀k, l (13) 
are normalized versions of Sii satisfying S

[k,k] ii = I m [k]
i ∀k, as well as all our other model assumptions. We shall use this formulation in our analysis in Section 3. 1 The generalization of all the results in [START_REF] Lahat | Joint independent subspace analysis using second-order statistics[END_REF] from m

[k] i = m i ∀k to m [k] i = m [l]
i for l = k is trivial and straightforward.

MAIN RESULT: NON-IDENTIFIABLE CASES

In this section, we present our claims using a case study.

Let mi = [1, 1, α] , mj = [1, 1, β]
. This example corresponds to K = 3 datasets, with block dimensions given by m

[1] i = m [2] i = m [1] j = m [2] j = 1, m [3] i = α, m [3] j
= β, for some pair (i, j), 1 ≤ i, j ≤ R, i = j, where the total number of latent low-rank terms in each dataset is R ≥ 2. In this example, R = 2, i = 1, j = 2. Substituting these parameters in ( 9) and ( 10), the balance of d.o.f. between model unknowns and observational constraints is

Ndata -Nmodel = 2α + 2β -αβ . ( 14 
)
Specific values of ( 14) for 1 ≤ α, β ≤ 7 are given in Table 1. For this model, depending on α and β, we identify three types of identifiability, as we now explain. The negative values in Before going into our theoretical analysis, we point out that each of these claims for (non)identifiability can be validated numerically by generating arbitrary Sii and Sjj that satisfy the model assumptions of Section 2 and looking at the eigenvalues of H.

In a first step (Section 3.1), we show that given these values of α and β, one can always write Sii and Sjj as a direct sum of a smaller square matrix and an identity matrix. In a second step (Section 3.2), we show that this structure is always associated with a singular H. We discuss and explain these results in Section 3.3.

First Step

The main idea is that the arbitrary matrices Z ii , defined in [START_REF] Lahat | Joint analysis of multiple datasets by cross-cumulant tensor (block) diagonalization[END_REF], act as transformations (see also [START_REF] Lathauwer | Decompositions of a higher-order tensor in block terms. Part II: Definitions and uniqueness[END_REF]). Let

Z [k] ii Q -[k] ii (S [k,k] ii ) -1 2 ∀i, k (15) 
where

Q [k]
ii is a nonsingular m

[k] i × m [k] i matrix ∀i, k. Then Z [k] ii S [k,l] ii Z [l] ii = Q -[k] ii (S [k,k] ii ) -1 2 S [k,l] ii (S [l,l] ii ) -1 2 Q -[l] ii (16a) = Q -[k] ii S [k,l] ii Q -[l] ii ∀i, k, l (16b) 
where the last transition is due to [START_REF] Lahat | An alternative proof for the identifiability of independent vector analysis using second order statistics[END_REF]. For the sake of simplicity, we exemplify using α = 3 = β. However, the same arguments apply to all pairs of (α, β) corresponding to highlighted entries in Table 1.

In this example, S [START_REF] Silva | Multidataset independent subspace analysis extends independent vector analysis[END_REF][START_REF] Lahat | Joint independent subspace analysis using second-order statistics[END_REF] ii and S [START_REF] Silva | Multidataset independent subspace analysis extends independent vector analysis[END_REF][START_REF] Lahat | Joint blind source separation of multidimensional components: Model and algorithm[END_REF] ii

are 3 × 1 vectors; S [2,1] ii , Q [1]
ii , and Q [START_REF] Lahat | Joint blind source separation of multidimensional components: Model and algorithm[END_REF] ii are nonzero scalars, and Q [START_REF] Silva | Multidataset independent subspace analysis extends independent vector analysis[END_REF] ii is 3 × 3. Hence, the ensemble of transformation {Q

[k] ii } K k=1 on { S [k,l]
ii } K k,l on the right-hand side (RHS) of (16b) can be written as

( K k=1 Q -[k] ) Sii( K k=1 Q -[k] ) =    q -[1] ii 0 0 0 q -[2] ii 0 0 0 Q -[3] ii       1 s [2,1] ii s [3,1] ii s [2,1] ii 1 s [3,2] ii s [3,1] ii s [3,2] ii I3       q -[1] ii 0 0 0 q -[2] ii 0 0 0 Q -[3] ii    (17) 
The key point is that the operation of Q - [START_REF] Silva | Multidataset independent subspace analysis extends independent vector analysis[END_REF] ii on the lower-left 3 × 2 submatrix of Sii (highlighted in [START_REF] Lahat | Joint independent subspace analysis: A quasi-Newton algorithm[END_REF]) can be interpreted as a QR decomposition: s

[3,1] ii s [3,2] ii = Q [3]
ii R, where R has an upper triangular structure   * * 0 * 0 0   , " * " stands for any unspecified nonzero scalar value, and

Q [3]
ii is unitary. The nonnegative scalars q

[1] ii and q

[2]

ii do not have any effect on the structure. We further note that Q - [START_REF] Silva | Multidataset independent subspace analysis extends independent vector analysis[END_REF] ii S [START_REF] Silva | Multidataset independent subspace analysis extends independent vector analysis[END_REF] ii Q - [START_REF] Silva | Multidataset independent subspace analysis extends independent vector analysis[END_REF] ii = I3 for any unitary Q [START_REF] Silva | Multidataset independent subspace analysis extends independent vector analysis[END_REF] ii . If we choose q

[1] ii = 1 = q [2]
ii , it follows that one can always transform Sii to a structure

Sii =      1 * * 0 0 * 1 * * 0 * * 1 0 0 0 * 0 1 0 0 0 0 0 1      . (18) 
via [START_REF] Bhinge | Data-driven fusion of multi-camera video sequences: Application to abandoned object detection[END_REF]. The same procedure can be applied to Sjj. Summarizing our derivations so far, we have shown that given mi = (1, 1, 3) = mj, both Sii and Sjj can always be assumed to have the structure in [START_REF] Lahat | Multimodal data fusion: An overview of methods, challenges and prospects[END_REF]. Similar arguments can now applied to the other highlighted entries in Table 1. We now note that each of these highlighted cells corresponds to 2 = m [START_REF] Lahat | Joint independent subspace analysis using second-order statistics[END_REF] i +m [START_REF] Lahat | Joint blind source separation of multidimensional components: Model and algorithm[END_REF] i < m [START_REF] Silva | Multidataset independent subspace analysis extends independent vector analysis[END_REF] i = α and 2 = m i -2 . The same holds for j. This concludes the first step of our case study.

Second Step

We now explain why a structure that is a direct sum of a square matrix and the identity, for both i and j, implies that the corresponding H is always singular. In our example, one can readily verify that for any Sii and Sjj with the structure in [START_REF] Lahat | Multimodal data fusion: An overview of methods, challenges and prospects[END_REF], the system of equations in [START_REF] Anderson | Independent vector analysis: Identification conditions and performance bounds[END_REF] holds for any L [1] = 0 = L [2] and L [3] =   0 0 0 0 0 0 0 0 ξ   = 0, ξ = 0. As explained in Section 2.4, a non-zero solution to [START_REF] Anderson | Independent vector analysis: Identification conditions and performance bounds[END_REF] corresponds to a singular H, and thus the overall JISA model is not identifiable. This concludes our proof that our minimal JISA model with mi = mj = (1, 1, 3), j = i, is never identifiable. As for the other highlighted values in Table 1, one can readily verify that given the direct-sum structure explained in Section 3.1 for both Sii and Sjj, there always exists a non-zero solution to [START_REF] Anderson | Independent vector analysis: Identification conditions and performance bounds[END_REF], with L [1] = 0 = L [2] and L [3] = 02×3 ⊕Ξ, where Ξ is an arbitrary (m

[3] i -2)×(m [3] j -2) matrix.

Discussion

A question that may arise is whether the fact that the effective form of Sii and Sjj contains zeros changes the balance of d.o.f., and if so, can this explain the non-identifiability. To answer this question, we point out that the zeros in [START_REF] Lahat | Multimodal data fusion: An overview of methods, challenges and prospects[END_REF] can affect only Nmodel, by decreasing the number of model unknowns. Hence, the value of Ndata -Nmodel can only increase. Therefore, this cannot serve as an alternative explanation to non-identifiability.

Until now, we ignored the question of reducibility. By observing the transformed structure in [START_REF] Lahat | Multimodal data fusion: An overview of methods, challenges and prospects[END_REF], we see that Sii does not satisfy the definition of reducibility in Section 2.3. However, [START_REF] Lahat | Multimodal data fusion: An overview of methods, challenges and prospects[END_REF] reveals that the last entry of s [START_REF] Silva | Multidataset independent subspace analysis extends independent vector analysis[END_REF] i is uncorrelated with all other entries of s

[k] i ∀k. Hence, s [START_REF] Silva | Multidataset independent subspace analysis extends independent vector analysis[END_REF] i consists of two uncorrelated terms, and is thus reducible. These results imply that the definition of (ir)reducibility in Section 2.3 is inadequate for the more general case of JISA with rectangular blocks. In other words, the new phenomenon is due to a new and more elaborate type of reducibility that was not considered in earlier work.

Clearly, this type of reducibility and non-identifiability is not limited to models with structure given by mi = [1, 1, α] , mj = [1, 1, β] . One can readily verify that this phenomenon occurs whenever a model has at least one pair of i = j for which

K-1 k=1 m [k] i < m [K]
i , and similarly for j. For example, if mi = [1, 2, 4] and mj = [START_REF] Silva | Multidataset independent subspace analysis extends independent vector analysis[END_REF][START_REF] Cardoso | Multidimensional independent component analysis[END_REF][START_REF] Adalı | Diversity in independent component and vector analyses: Identifiability, algorithms, and applications in medical imaging[END_REF] , where Ndata -Nmodel = 21, the model is not identifiable. Hence, in the general case of rectangular cross-correlations, having different dimensions for the different random vectors can result in completely non-identifiable models. This is in striking contrast to the square case, i.e., m This type of reducibility and non-identifiability is not a concern when m

[k] i = mi ∀i, k, because in this case, each S [k,l] ii is square (and nonsingular, by our model assumptions) such that its QR decomposition yields a nonsingular triangular matrix.

A possible remedy is to use additional types of diversity. If the samples are piecewise nonstationary, such that there exist at least two distinct matrices S , for t = t , cannot, in general, be diagonalized. Hence, this result can serve as a further motivation for exploiting all types of diversity in the data.

To conclude, in this paper, we presented new results on the identifiability of JISA and CBD, when dependent random processes have different dimensions. We have shown that while in certain cases different dimensions guarantee identifiability, in other cases they can completely destroy it. We explained this by showing that this setup may be associated with more elaborate types of (ir)reducibility. These results indicate that while block decompositions carry more flexibility in representing data, they should be treated with care. These results also further emphasize that block decompositions cannot be handled as straightforward extensions of rank-1 methods.

  j = β. Hence, the QR decomposition of the lower-left m[START_REF] Silva | Multidataset independent subspace analysis extends independent vector analysis[END_REF] i × 2 submatrix of Sii yields an upper-triangular matrix R with m[START_REF] Silva | Multidataset independent subspace analysis extends independent vector analysis[END_REF] i -2 rows of zeros at the bottom. Consequently, Sii can always be written as a direct sum of an order-( 2 k=1 m[k] i + 2) matrix and I m[START_REF] Silva | Multidataset independent subspace analysis extends independent vector analysis[END_REF] 

=

  mj ∀k, in which identifiability is guaranteed if mi = mj for any i = j.

  [k,l](t) ii for fixed i, k, l, where t = 1, . . . , T are indices of disjoint T ≥ 2 sampling intervals, then this type of nonidentifiability cannot occur, in general. The reason is that once the normalization S [k,k](t) ii = I has been applied for some fixed t = t , the other S [k,k](t ) ii

Table 1 .

 1 Table 1 correspond to non-identifiable cases. The non-highlighted nonnegative entries in Table 1 correspond to cases that are generally identifiable. The highlighted entries in Table1correspond to cases that are never identifiable although their d.o.f. balance is nonnegative. The aim of this paper is to explain this type of non-identifiability. Ndata-Nmodel = 2α+2β-αβ. The highlighted cells correspond to cases that are never identifiable although their d.o.f. balance is nonnegative.

	α	β 1 2 3	4	5	6	7
	1	3 4 5	6	7	8	9
	2	4 4 4	4	4	4	4
	3	5 4	3	2	1	0	-1
	4	6 4	2	0	-2	-4	-6
	5	7 4	1 -2	-5	-8	-11
	6	8 4	0 -4	-8	-12 -16
	7	9 4 -1 -6 -11 -16 -21