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A New Link Between Joint Blind Source
Separation Using Second Order Statistics and

the Canonical Polyadic Decomposition

Dana Lahat? and Chrisitan Jutten

Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000 Grenoble, France

Abstract. In this paper, we discuss the joint blind source separation
(JBSS) of real-valued Gaussian stationary sources with uncorrelated
samples from a new perspective. We show that the second-order statis-
tics of the observations can be reformulated as a coupled decomposi-
tion of several tensors. The canonical polyadic decomposition (CPD) of
each such tensor, if unique, results in the identification of one or two
mixing matrices. The proposed new formulation implies that standard
algorithms for joint diagonalization and CPD may be used to estimate
the mixing matrices, although only in a sub-optimal manner. We discuss
the uniqueness and identifiability of this new approach. We demonstrate
how the proposed approach can bring new insights on the uniqueness of
JBSS in the presence of underdetermined mixtures.

Keywords: Joint blind source separation, independent vector analysis,
tensor, canonical polyadic decomposition, uniqueness, identifiability

1 Introduction

In this paper, we present a new type of link between joint blind source sepa-
ration (JBSS) [1,2] and the canonical polyadic decomposition (CPD) [3], in the
special case that each of the sources, in each mixture, is a real-valued Gaussian
random process with independent and identically distributed (i.i.d.) samples. To
the best of our knowledge, until now, this link has been shown only when the
data had some additional type of diversity, e.g., nonstationarity or higher-order
statistics (HOS) [4,5,6,7]. Our model assumptions, as well as previous related
results, are described in Section 2. The new algebraic formulation is introduced
in Section 3. In Section 4 we discuss the uniqueness of the proposed new formu-
lation. In Section 5, we suggest to use this new formulation as an alternative to
existing JBSS algorithms on the one hand, and to the closed-form solution via
generalized eigenvalue decomposition (GEVD) on the other hand. In Section 6
we demonstrate how the proposed approach leads to new insights and new re-
sults on the identifiability of JBSS in underdetermined cases, beyond existing
results in the literature.

? This work is supported by the project CHESS, 2012-ERC-AdG-320684. GIPSA-Lab
is a partner of the LabEx PERSYVAL-Lab (ANR–11-LABX-0025).
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In this paper, scalars, column vectors, matrices, and tensors, are denoted
a, a, A, and A, respectively. The rth entry of a, and the rth column of A, are
denoted ar and ar, respectively. ·> denotes transpose. A−[k], X−[k,l], and A−[k]>

stand for (A[k])−1, (X[k,l])−1, and (A−[k])>, respectively. The outer product is
denoted as ◦, where a ◦ b = ab>, and a ◦ b ◦ c is a third-order array (tensor)
whose (i, j, k)th element is aibjck. Diag{a} is a diagonal matrix with the values
of a on its main diagonal. E{·} denotes expectation. kA denotes the Kruskal rank
of matrix A, which is equal to the largest integer kA such that every subset of
kA columns of A is linearly independent [8].

2 Problem Formulation

In this paper, we consider the JBSS problem in K ≥ 2 mixtures,

x[k] = A[k]s[k] , k = 1, . . . ,K (1)

where the random vector x[k] ∈ RI[k]×1 represents the observations at I [k] sen-
sors at the kth mixture. Within each mixture, the R elements of the random

vector s[k] , [s
[k]
1 , . . . , s

[k]
R ]> ∈ RR×1 are statistically independent. Each random

variable s
[k]
r generates a real-valued Gaussian random process with i.i.d. sam-

ples. The K mixing matrices A[k] , [a
[k]
1 | · · · | a

[k]
R ] ∈ RI[k]×R are assumed to

be different from each other.
The kth mixture (sometimes referred to as “dataset”) can be written as a

sum of contributions from R ≥ 2 different sources,

x[k] =

R∑
r=1

a[k]
r s

[k]
r =

R∑
r=1

x[k]
r . (2)

It is clear that x
[k]
r remains invariant if the pair (a

[k]
r , s

[k]
r ) is replaced with

(z−1a
[k]
r , zs

[k]
r ), for any z 6= 0. Therefore, in the absence of additional infor-

mation, only span(a
[k]
r ) and x

[k]
r may be uniquely identified. Furthermore, the

order of the summands in (2) is immaterial. When the model is subject only to
these trivial ambiguities, we say that it is essentially unique.

In this paper, we focus on JBSS using second-order statistics (SOS). In this

model, the cross-correlation s
[k,l]
rρ between any two sources s

[k]
r and s

[l]
ρ satisfies

s[k,l]rρ , E{s[k]r s[l]>ρ } =

{
s
[k,l]
rr r = ρ
0 r 6= ρ

,
k, l = 1, . . . ,K
r, ρ = 1, . . . , R

(3)

We assume that each mixture contains R non-zero sources, hence, s
[k,k]
rr 6= 0 ∀k.

Furthermore, due to the arbitrary scaling between each source and the column
of the mixing matrix associated with it, we can always choose, without loss of

generality (w.l.o.g.), s
[k,k]
rr = 1 ∀k. For k 6= l, each of s

[k,l]
rr can be zero or non-

zero; s
[k,l]
rr 6= 0 can be interpreted as a statistical link (correlation) between the
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rth source in the kth and lth datasets. The cross-correlation S[k,l] between s[k]

and s[l] can thus be written as

S[k,l] , E{s[k]s[l]>} = Diag{s[k,l]11 , . . . , s
[k,l]
RR } ∈ RR×R ∀k, l. (4)

In this paper, we assume that all the SOS exist and are finite-valued. Given our

assumptions, the sufficient statistics for the estimation of span(a
[k]
r ) and x

[k]
r are

the cross-correlation matrices of the observations:

X[k,l] , E{x[k]x[l]>} = A[k]S[k,l]A[l]> =

R∑
r=1

s[k,l]rr a[k]
r a[l]>

r ∀k, l (5)

where the second equality on the right-hand side (RHS) of (5) is due to (1),
and the last equality is due to (2) and (4). In the statistical JBSS formula-
tion (1), each dataset has its own set of parameters, and the link (coupling)
between datasets is probabilistic, using additional parameters that represent
cross-correlations; in the algebraic formulation in (5), the link between two
cross-correlation matrices X[k,l] and X[k,l′] is deterministic, via a shared mixing
matrix A[k]. These two types of links are sometimes referred to as “soft” versus
“hard”, see [9] and references therein. Equation (5) implies that the statistically-
motivated JBSS can be written algebraically, as a coupled decomposition of the
ensemble of matrices {X[k,l]}Kk,l=1 [2].

2.1 JBSS via GEVD: a Closed-Form Solution for Two Datasets

Given our assumptions, when K = 2 and A[k] are nonsingular (hence, I [k] = R)
for k = 1, 2, the estimates of A[k] can always be obtained algebraically, using
the GEVD [10, Chapter 12.2, Equation (53)] (see also [11, Sec. 4.3]):

X[2,1]X−[1,1]X[1,2]V[1] = X[2,2]V[1]Λ (6a)

X[1,2]X−[2,2]X[2,1]V[2] = X[1,1]V[2]Λ (6b)

where Λ = Diag{λ1, . . . , λR}, and the rth column of V[k] ∈ RR×R is the gen-
eralized eigenvector associated with the generalized eigenvalue λr. Therefore,
when K = 2, JBSS is identifiable if and only if (iff) this GEVD is unique, that
is, if its generalized eigenvalues are distinct. The resulting estimates of A[k],
A[1]GEVD , V[1]> and A[2]GEVD , V[2]>, exactly diagonalize {X[k,l]}Kk,l=1:

(A[k]GEVD)−1X[k,l](A[l]GEVD)−> ∈ Diag for any k, l = 1, 2 (7)

This solution always exists, and this exact diagonalization can always be
achieved, regardless of any perturbation of the observations with respect to
(w.r.t.) the ground truth statistics, as long as X[k,l]X−[l,l]X[l,k] and X[k,k] are
Hermitian (symmetric, in the real case) and X[k,k] is positive-definite ∀k, l.

In the presence of K ≥ 3 datasets, the GEVD may be used, for example, to
initialize JBSS algorithms that optimize (5). Our new approach, which will be
explained in Section 3, is based on extending the formulation in (6) to K ≥ 2
mixtures.
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3 JBSS as a Coupled CPD

Based on the GEVD in (6), we now propose a new algebraic formulation of JBSS
for K ≥ 2 datasets. For any nonsingular A[l] (i.e., of size R×R), and using our
assumption in Section 2 that S[k,k] is nonsingular ∀k, we can write

X[k,l]X−[l,l]X[l,m] = A[k]S[k,l]A[l]> ·A−[l]
>

S−[l,l]A−[l] ·A[l]S[l,m]A[m]> (8a)

= A[k] S[k,l]S−[l,l]S[l,m]︸ ︷︷ ︸
diagonal

A[m]> = A[k]C[k,l,m]A[m]> , X[k,l,m] (8b)

The matrix C[k,l,m], introduced in (8b), is diagonal, due to (4):

S[k,l]S−[l,l]S[l,m] = Diag{s[k,l]11 s
−[l,l]
11 s

[l,m]
11 , . . . , s

[k,l]
RR s

−[l,l]
RR s

[l,m]
RR } (9a)

= Diag{c[k,l,m]
1 , . . . , c

[k,l,m]
R } , C[k,l,m] (9b)

where

c[k,l,m]
r , s[k,l]rr s−[l,l]rr s[l,m]

rr . (10)

Let L denote the set of indices for which A[k] is nonsingular: L = {k |
A[k] nonsingular}, L ⊆ {1, . . . ,K}, L , |L| ≤ K. W.l.o.g., let L = 1, . . . , L.
For fixed k and m, the ensemble {X[k,l,m]}Ll=1 can be written as

X[k,1,m] = A[k]C[k,1,m]A[m]> = a
[k]
1 c

[k,1,m]
1 a

[m]>

1 + . . .+ a
[k]
R c

[k,1,m]
R a

[m]>

R (11a)

...
...

X[k,L,m] = A[k]C[k,L,m]A[m]> = a
[k]
1 c

[k,L,m]
1 a

[m]>

1 + . . .+ a
[k]
R c

[k,L,m]
R a

[m]>

R (11b)

Let

C[k,m] =

c[k,1,m]
1 · · · c[k,1,m]

R...
...

c
[k,L,m]
1 · · · c[k,L,m]

R

 ∈ RL×R (12)

and let c
[k,m]
r denote the rth column of C[k,m]. Let us stack the L matrices

{X[k,l,m]}Ll=1 in a single 3rd-order tensor X [k,m] ∈ RI[k]×I[m]×L, whose lth frontal
slice is X[k,l,m]. In this case, (11) can be written as

X [k,m] = a
[k]
1 ◦ a

[m]
1 ◦ c

[k,m]
1 + . . .+ a

[k]
R ◦ a

[m]
R ◦ c

[k,m]
R . (13)

Equation (13) is a decomposition in sum of rank-1 terms of X [k,m]. When R is
minimal, (13) is the CPD of X [k,m], whose three factor matrices are A[k], A[m],
and C[k,m].

We now discuss some degeneracies in this representation. Since
S[k,k]S−[k,k]S[k,m] = S[k,m] = S[k,m]S−[m,m]S[m,m] ∀k,m, we have

C[k,k,m] = C[k,m,m] = S[k,m] ∀k,m (14)
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and

X[k,k,m] = X[k,m,m] = A[k]S[k,m]A[m]> = X[k,m] ∀k,m (15)

where the rightmost equality in (15) follows from (5). Therefore, for fixed k 6= m,
each of the sequences {C[k,l,m]}Kl=1 and {X[k,l,m]}Kl=1 contains (at most) (K −
1) distinct matrices, whereas for k = m, all the matrices in {C[k,l,k]}Kl=1 and
{X[k,l,k]}Kl=1 may be distinct. In order to avoid this degeneracy, from this point
and on, we implicitly assume that all the tensors X [k,m] are constructed such
that they do not contain redundant frontal slices, i.e., they do not contain both
X[k,k,m] and X[k,m,m] for fixed k and m, if k 6= m. Therefore, the third “depth”
dimension of the tensors X [k,k] and X [k,m]|k 6=m is not, in general, the same. As
an example, if all A[k] are nonsingular, then the largest tensors that we can

construct for k 6= m are X [k,m] ∈ RI[k]×I[m]×(K−1), and for k = m, X [k,k] ∈
RI[k]×I[k]×K . Another point to keep in mind is that due to symmetry, X [m,k]

does not contribute any information beyond X [k,m].

The bottom line is that we have restated the JBSS problem that we defined
in Section 2 as an ensemble of tensors {X [k,m]}Kk,m=1 that admit a CPD (13).
The tensors in this ensemble are coupled because each of them shares, deter-
ministically, a factor matrix A[k] and/or A[m] with one or several other CPDs.
Hence, we say that the ensemble {X [k,m]}Kk,m=1 admits a coupled CPD.

It is worth noting that if A[k] is nonsingular for some k, the CPD of X [k,k]

amounts to joint diagonalization (JD), and if both A[k] and A[m] are nonsingular
for some m 6= k, then X [k,m] is an asymmetric two-sided tensor diagonalization.
If A[k] is nonsingular ∀k, this coupled CPD amounts to generalized joint diago-
nalization (GJD) [4]. In general, these are simpler problems.

3.1 Previous Links between JBSS and Coupled CPD

In fact, the coupled CPD model that we have just described, in Section 3, and
its link with JBSS, are not new, as we now explain. Let us ignore for a mo-
ment the latent structure of the entries of C[k,m] due to (9) and (10). Then,
a representation of the sufficient statistics of a JBSS model in terms of tensors
{X [k,m]}Kk,m=1 that admit a coupled CPD as in (13) has already been introduced
(e.g., [4,5], [7, Section VI]). However, until now, a three-way structure has been
considered only when the sources had an additional type of diversity, such as
statistical dependence (correlation) among samples, or nonstationarity; in other
words, only when the i.i.d. assumption was violated. In these cases, the distinct
frontal slices of each tensor X [k,m] represented, for example, different correlation
matrices taken at different time lags. In these cases, the third “depth” dimension
of the tensors reflected the additional diversity in the data. In this paper, we
show for the first time that a coupled CPD formulation is possible even if none
of these additional types of diversity is present.
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3.2 Discussion

Equation (15) implies that each tensor X [k,m] has one frontal slice that is identi-
cal to the (k,m)th matrix in (5). The difference from (5) is that now, for fixed k
and m, we have more than one equation that involves A[k] and A[m]. Therefore,
the new coupled CPD formulation subsumes the coupled matrix factorization
in (5). In previous work (e.g., [11]), it was shown that the JBSS problem in Sec-
tion 2 can be solved optimally, in the maximum likelihood (ML) sense, i.e., in
terms of the minimal mean square error (MMSE), using the simpler coupled
matrix factorization in (5). The proposed coupled CPD formulation uses ex-
actly the same information, and thus cannot achieve a better MMSE. Similarly,
in terms of uniqueness, recall that the coupled factorization in (5) uses all the
sufficient statistics, and thus, its uniqueness is tantamount to JBSS identifiabil-
ity [12,13,14]. Consequently, the alternative formulation of the same statistics
in terms of a coupled CPD cannot achieve stronger uniqueness properties. It is
thus natural to ask what we can obtain from the more complicated coupled CPD
formulation in Section 3. The rest of this paper is dedicated to this question.

4 Uniqueness

The identifiability of the JBSS model in Section 2 was characterized in [12,13,14],
for nonsingular A[k] ∀k. The model was shown to be identifiable except for very
special cases that were fully characterized in [12,13,14], and depended only on
the values of {S[k,l]}Kk,l=1. Our goal in this section is to show how these non-
identifiable scenarios are reflected in the tensorized framework of Section 3. In
this paper, we focus only on one of these non-identifiable cases; conclusions for
the other cases can be obtained similarly.

In [12,13,14], it was shown that our JBSS model is not identifiable if there
exists a pair (i, j), i 6= j, of sources, whose statistics satisfy

s
[k,l]
jj = ϕ[k]ϕ[l]s

[k,l]
ii ∀k, l (16)

where ϕ[k] 6= 0 ∀k. Equation (16) implies that, for each k, the subspaces asso-
ciated with the ith and jth columns of A[k] cannot be distinguished. Substitut-
ing (16) in (10), we obtain

c
[k,l,m]
j = s

[k,l]
jj s

−[l,l]
jj s

[l,m]
jj = ϕ[k]ϕ[m]s

[k,l]
ii s

−[l,l]
ii s

[l,m]
ii = ϕ[k]ϕ[m]c

[k,l,m]
i ∀k, l,m

(17)

which implies

c
[k,m]
j = ϕ[k]ϕ[m]c

[k,m]
i ∀k,m (18)

The other non-identifiable cases are associated with pairs (i, j) of source corre-

lations {s[k,l]ii }Kk,l=1 and {s[k,l]jj }Kk,l=1 that contain zeros. Calculations similar to

those in (17) show that in these non-identifiable cases, some of C[k,m] contain
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two zero columns (c
[k,m]
i = 0 = c

[k,m]
j ), and the remaining C[k,m] have pairs

of proportional columns that contain zeros in some of their entries, in specific
locations. Due to lack of space, we omit the details.

Let us assume for a moment that s
[k,l]
rr 6= 0 ∀k, l, r. Hence, the model is not

identifiable, and the coupled CPD is not unique, iff (16) holds for some pair
(i, j), i 6= j. Equation (18) implies that, in this case, the ith and jth columns
of C[k,m] are proportional ∀k,m. Hence, kC[k,m] = 1 ∀k,m, and none of the
tensors X [k,m] has a unique CPD [8]. However, it is important to note that the
notation “kC[k,m] = 1 ∀k,m” does not provide information about the indices of
the proportional columns. Hence, it does not necessarily imply that the coupled
CPD is not unique: if, for some pair of (k,m), the proportional columns are
not in the same indices (i, j) as in the other CPDs, then (16) does not hold,
and the JBSS is identifiable. In this case, the coupled matrix factorization (5),
as well as the coupled CPD associated with it, are unique. This result is of
potential interest because it is the first time that the uniqueness of the coupled
CPD is stated explicitly for C[k,m] that do not have full column rank ∀k,m
(the uniqueness analysis of the coupled CPD in [15] assumes that C[k,m] has
full column rank ∀k,m, and that the tensors do not have any latent structure).
Similar conclusions can be obtained from observing the structure of C[k,m] in
the other non-identifiable cases [12,13,14], as we have mentioned earlier in this
section.

5 Estimating Mixing Matrices From a Single CPD

In this section, we focus our attention on a single CPD (or JD, or a two-sided ten-
sor diagonalization) in (13), within the context of the JBSS model in Section 2.
It follows from Section 4 that it is possible to have kC[k,m] ≥ 2. In this case, the
CPD of X [k,m] may be unique. The uniqueness of the CPD is guaranteed, for
example, if it satisfies [8]

kA[k] + kA[m] + kC[k,m] ≥ 2R+ 2 . (19)

Equation (19) implies that, in certain cases, a single CPD may be unique even
if A[k] and/or A[m], as well as C[k,m], do not have full column rank. If the CPD
of X [k,m] is unique, then we can extract both A[k] and A[m] (if k 6= m) or just
A[k] (if k = m) from it.1

Using a single CPD in (13) to estimate one or two mixing matrices can be
regarded as an intermediate stage between GEVD and coupled decomposition
of the whole ensemble. It allows to compute a single mixing matrix, or two
mixing matrices, using any standard JD or CPD algorithm, from a subset of
the available cross-correlations. The result of this computation may be used for
initialization, or validation, instead of GEVD. An advantage w.r.t. GEVD is that

1 In practice, due to finite sample size and noise, (13) is just an approximation. Ques-
tions related to uniqueness and estimation in the presence of perturbations from the
exact model are beyond the scope of this paper.
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JD and CPD can take into account more than two frontal slices, providing a more
accurate initialization (for example). Note also that the GEVD solution in (6) is
applicable only to data whose mixing matrices have full column rank, whereas
this restriction is relaxed when using a CPD. A drawback of this approach is
that we may lose the inherent ability of JBSS to fix a single permutation for all
the rank-1 terms in all datasets [1].

6 Application to Underdetermined JBSS

In this section, we demonstrate how our new formulation of the coupled CPD
can bring new insights about JBSS with underdetermined mixtures, when C[k,m]

does not have full column rank for at least one pair of (k,m). To the best of our
knowledge, this case has not yet been addressed in the literature.

Consider a JBSS setup as in Section 2. In this example, we assume that

s
[k,l]
rr 6= 0 ∀k, l, r. Assume that K−1 mixtures, indexed, w.l.o.g., k = 1, . . . ,K−1,

with nonsingular mixing matrices, satisfy (16) (withK−1 instead ofK), and thus
are not identifiable. The Kth mixture is underdetermined, with a mixing matrix
A[K] that has more columns than rows, i.e. I [K] < R. We assume that the cross-
correlations of the sources, when taking into account all datasets k = 1, . . . ,K, do
not satisfy (16). Our goal is to demonstrate that this model may be identifiable.

We suggest to solve this problem by constructing a tensor X [K,m], whose
CPD will yield a unique estimate of A[K] and A[m]. Let us begin by looking at
C[K,m]. As an example, let K = 4, and m = 1. Then,

C[4,1] =

 s
[4,1]
ii s

−[1,1]
ii s

[1,1]
ii s

[4,1]
jj s

−[1,1]
jj s

[1,1]
jj

· · · s[4,2]ii s
−[2,2]
ii s

[2,1]
ii · · · s[4,2]jj s

−[2,2]
jj s

[2,1]
jj · · ·

s
[4,3]
ii s

−[3,3]
ii s

[3,1]
ii s

[4,3]
jj s

−[3,3]
jj s

[3,1]
jj

 ∈ R3×R (20a)

=

 s
[4,1]
ii s

−[1,1]
ii s

[1,1]
ii s

[4,1]
jj

· · · s[4,2]ii s
−[2,2]
ii s

[2,1]
ii · · · ϕ−[2]ϕ[1]s

[4,2]
jj s

−[2,2]
ii s

[2,1]
ii · · ·

s
[4,3]
ii s

−[3,3]
ii s

[3,1]
ii ϕ−[3]ϕ[1]s

[4,3]
jj s

−[3,3]
ii s

[3,1]
ii

 (20b)

Equation (20) depicts explicitly the ith and jth columns of C[4,1]. The transition
to (20b) is due to (16). In this scenario, C[K,m] has size (K − 1)×R; recall that
A[K] is not invertible, and thus, cannot take part in (8). Equation (20) shows

that if, as we assume, the cross-correlations s
[4,m]
rr are such that the ensemble

{s[k,l]rr }Kk,l=1 does not satisfy (16), then there is no linear dependence between

c
[4,1]
i and c

[4,1]
j . Consequently, C[4,1] has full rank (although not necessarily full

column rank).
We now turn to the uniqueness of X [K,m], when m < K. By (19), the CPD

of X [K,m] is unique if

I [K]︸︷︷︸
k
A[K]

+ R︸︷︷︸
k
A[m]

+ min(R,K − 1)︸ ︷︷ ︸
k
C[K,m]

≥ 2R+ 2 (21)



A New Link Between JBSS and the CPD 9

It follows from (21) that the CPD of X [K,m] is unique, for example, when R = 3,
I [K] = 2, and K = 4, or when R = 4, I [k] = 3, and K = 4.

As soon as A[K] and A[m] have been identified, for some fixed m, we can
identify all the remaining mixtures A[k], k < K, k 6= m, using the fact that now
A[m] is known and invertible, and the diagonal matrix S[k,m] is nonsingular [15]:

X[k,m] = A[k]S[k,m]A[m]> ⇒ X[k,m]A−[m]> = A[k]S[k,m] (22)

In this identifiable setup, the tensors X [k,m] with k,m < K have nonsingular
factors A[k] and A[m] and, as explained in Section 4, a third factor matrix C[k,m]

with kC[k,m] = 1. The tensors X [K,m] involve one underdetermined factor A[K],
a nonsingular A[m], and a third factor matrix C[K,m] that has full rank, but
may have more columns than rows, as explained earlier in Section 6. Our results
show that this model is identifiable, and hence, the overall coupled CPD must be
unique, too. This result has been obtained using only one CPD in the ensemble.
It is likely that the overall coupled CPD has an even stronger uniqueness.

7 Conclusion

In this paper, we have shown, for the first time, that JBSS of K ≥ 3 mixtures can
be associated with the CPD even in the simplest case where each source in each
mixture is a real-valued Gaussian stationary random process with uncorrelated
samples. Apart from the theoretical interest in showing another type of link
between the statistically-motivated JBSS and an algebraic tensor-based model,
we proposed several practical uses to this new formulation. We have shown that
this new formulation can bring new insights and new stronger uniqueness results
on coupled CPD and on JBSS. In a broader perspective, we provided another
evidence for the richness of coupled decompositions.

In Section 3.2, we mentioned that the new formulation cannot improve on the
MMSE. However, it remains to be seen if the proposed formulation, of coupled
CPD, can achieve a smaller estimation error when a norm that does not achieve
the ML, e.g., the Frobenius norm, is used in the optimization, and, if so, is the
improvement justified w.r.t. the higher computational cost.

The same type of analysis that we presented in this paper for decomposition
in sum of rank-1 elements can be extended to terms of any low rank [7], and
to complex-valued data. Finally, if the JBSS data have additional diversity, e.g.,
sample nonstationarity, this information can be added to each tensor X [k,m] as
additional frontal slices, and thus further enhance the estimation.
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