Emilia María

Diego Descotte

Santiago Figueira

Figueira

María Emilia Descotte

Diego Figueira

Closure properties of synchronized relations

Keywords: 2012 ACM Subject Classification Theory of computation → Formal languages and automata theory synchronized word relations, rational, closure, characterization, intersection, complement, Kleene star, concatenation

HAL is

Introduction

We study relations of finite words, that is, sets R ⊆ (A *) k for a finite alphabet A and k ∈ N, where (A *) k is the cartesian product of k copies of A * . The study of these relations dates back to the works of Büchi, Elgot, Mezei, and Nivat in the 1960s [START_REF] Richard | Weak second-order arithmetic and finite automata[END_REF][START_REF] Elgot | On relations defined by generalized finite automata[END_REF][START_REF] Nivat | Transduction des langages de Chomsky[END_REF], with much subsequent work done later (e.g., [START_REF] Berstel | Transductions and Context-Free Languages[END_REF][START_REF] Choffrut | Relations over words and logic: A chronology[END_REF]). Most of the investigations focused on extending the standard notion of regularity from languages to relations. This effort has followed the long-standing tradition of using equational, operational, and descriptive formalisms -that is, finite monoids, automata, and regular expressions -for describing relations, and gave rise to three different classes of relations: Recognizable, Automatic (a.k.a. Regular [START_REF] Berstel | Transductions and Context-Free Languages[END_REF] or Synchronous [START_REF] Frougny | Synchronized rational relations of finite and infinite words[END_REF][START_REF] Choffrut | Relations over words and logic: A chronology[END_REF]), and Rational.

The above classes of relations can be seen as three particular examples of a much larger (in fact infinite) range of possibilities, where relations are described by special languages over extended alphabets, called synchronizing languages [START_REF] Figueira | Synchronizing relations on words[END_REF]. Intuitively, the idea is to describe a k-ary relation by means of a k-tape automaton with k heads, one for each tape, which can move independently of one another. In the basic framework of synchronized relations, one lets each head of the automaton either move right or stay in the same position. In addition, one can constrain the possible sequences of head motions by a suitable regular language C ⊆ {1, . . . , k} * . In this way, each regular language C ⊆ {1, . . . , k} * induces a class of k-ary relations, denoted Rel(C), which is contained in the class Rational (due to Nivat's Theorem [START_REF] Nivat | Transduction des langages de Chomsky[END_REF]). For example, on binary relations, the classes Recognizable, Automatic, and Rational are captured, respectively, by the languages C Rec = {1} * • {2} * , C Aut = {12} * •{1} * ∪ {12} * •{2} * , and C Rat = {1, 2} * . Roughly speaking, any other class that can be defined through the 'tape behavior' of a multi-tape automaton will be also captured by this framework. Other examples include length-preserving, or α-synchronous relations [START_REF] Carton | The growth ratio of synchronous rational relations is unique[END_REF]. However, it should be noted that other well-known subclasses of rational relations, such as deterministic or functional relations, are not captured by the notion of synchronization. In general, the correspondence between a language C ⊆ {1, . . . , k} * and the induced class Rel(C) of synchronized relations is not one-to-one: it may happen that different languages C, D induce the same class of synchronized relations. The problem of when two classes of synchronized relations coincide, and when one is contained in the other has been only recently solved for the case of binary relations [START_REF] María | Resynchronizing classes of word relations[END_REF], while the case for arbitrary k-ary relations remains open. In this work we identify, among the infinitely many synchronized classes of relations, which are those with good closure properties, in terms of paradigmatic operations such as intersection, complement, concatenation, projection, or Kleene star.

Motivation

The motivation for identifying and studying well-behaved classes of word relations, besides its intrinsic interest within formal language theory, stems from various areas. One motivation comes from verification of safety and liveness properties of parameterized systems, where relations describe transitions [START_REF] Parosh | A survey of regular model checking[END_REF][START_REF] Bouajjani | Regular model checking[END_REF][START_REF] Jonsson | Transitive closures of regular relations for verifying infinitestate systems[END_REF][START_REF] Widjaja | Algorithmic metatheorems for decidable LTL model checking over infinite systems[END_REF]. Another one arises from the study of Automatic Structures [START_REF] Blumensath | Automatic structures[END_REF], where word languages and relations are used to describe infinite structures, and good closure properties are necessary to obtain effective model checking of logics. Another example is the study of formal models underlying IBM's tools for text extraction into a relational model [START_REF] Fagin | Document Spanners: A formal approach to information extraction[END_REF]; where several classes of relations emerge (some outside Rational) with differing closure properties. Yet another comes from graph databases, which are actively studied as a suitable model for RDF data, social networks data, and others [START_REF] Angles | Survey of graph database models[END_REF]. Paths in graph databases are described by their labels and hence they are abstracted as finite words. These paths need to be compared, for instance, for their degree of similarity, edit distance, or other relations [START_REF] Anyanwu | ρ-queries: enabling querying for semantic associations on the semantic web[END_REF][START_REF] Barceló | Expressive languages for path queries over graph-structured data[END_REF][START_REF] Milo | Network motifs: simple building blocks of complex networks[END_REF]. As a concrete link with the present work we consider CRPQs -a basic query language for graph-structured data. As it was shown in [START_REF] Barceló | Graph logics with rational relations[END_REF], allowing rational relations in CRPQs turns the query evaluation problem undecidable. There have therefore been efforts towards finding subclasses of Rational relations that preserve decidability for CRPQs (e.g. [START_REF] Barceló | Expressive languages for path queries over graph-structured data[END_REF][START_REF] Figueira | Path logics for querying graphs: Combining expressiveness and efficiency[END_REF][START_REF] Barceló | Graph logics with rational relations: The role of word combinatorics[END_REF]), often exploiting an effective closure under intersection on the underlying subclass of relations. Part of our motivation for studying closure under intersection stems from our ambition, as future work, to characterize all synchronized classes of relations that can be added to CRPQs while preserving decidability.

Contribution

Our main contribution is a characterization for each of the studied closure properties, the main results can be summarized as follows.

Theorem. For every regular C ⊆ 2 * , it is decidable whether Rel(C) is closed under intersection, complement, concatenation, Kleene star and projection.

While some of the characterizations we give are for arbitrary arity relations, we were only able to show decidability for binary arity. Indeed, the decidability of these characterizations relies, crucially, on the decidability of testing for inclusion between synchronized classes, which has only been shown for binary relations [START_REF] María | Resynchronizing classes of word relations[END_REF].

We do not include closure under union since it can be easily seen that all classes defined in this way are closed under union. The most involved result is closure under intersection. The main property we will prove is that Rel(C) is closed under intersection if, and only if, Rel(C) ⊆ Rel(D) for some D whose Parikh-image is injective (i.e., there are no two distinct words of D with the same Parikh-image). Further, we show that this can be tested, and such a language D can be effectively constructed, whenever possible. In the same vein, we obtain that Rel(C) is closed under complement if, and only if, Rel(C) = Rel(D) for some D with a bijective Parikh-image. (Observe that closure under complement implies closure under intersection in view of the fact that all classes are closed under union.)

Related work

The formalization of the framework to describe synchronized classes of relations has been introduced only recently [START_REF] Figueira | Synchronizing relations on words[END_REF]. As mentioned, the problem of containment between classes of relations has been addressed in [START_REF] María | Resynchronizing classes of word relations[END_REF] for the binary case. The formalism of synchronizations has been also extended beyond rational relations by means of semi-linear constraints [START_REF] Figueira | Path logics for querying graphs: Combining expressiveness and efficiency[END_REF] in the context of querying graph databases.

The paper [START_REF] Bojańczyk | Transducers with origin information[END_REF] studies relations with origin information, as induced by non-deterministic (one-way) finite state transducers. Origin information can be seen as a way to describe a synchronization between input and output words -somehow in the same spirit of our synchronization languages -and was exploited to recover decidability of the equivalence problem for transducers. The paper [START_REF] Filiot | On equivalence and uniformisation problems for finite transducers[END_REF] pursues further this principle by studying "distortions" of the origin information, called resynchronizations. The paper [START_REF] Winter | Uniformization problems for synchronizations of automatic relations on words[END_REF] studies the uniformization problem for synchronized relations.

Organization

After a preliminary Section 2, we show the main result characterizing closure under intersection in Section 3. In Section 4 we study closure under complement and another variant that we call "relativized complement". In Section 5 we give characterizations for closure under concatenation, Kleene star and projection. We conclude with Section 6. Detailed proofs of all statements not included in the body can be found in the Appendix.

Preliminaries

We denote by N the set of non-negative integers. A, B denote arbitrary finite alphabets and for k ∈ N, k ≥ 1, k denotes the k-letter alphabet {1, . . . , k}. For a word w ∈ A * , |w| is its length, and |w| a is the number of occurrences of symbol a in w.

Regular languages

We use standard notation for regular expressions without complement, namely, for expressions built up from the empty set, the empty word ε and the symbols a ∈ A, using the operations •, ∪, and () * . For economy of space and clarity we use the abbreviated notation () n , () <n , () ≥n , () n * , and () * n -the last two being shorthands for (() n) * and (() *) n respectively. We abuse the notation () k to also denote the cartesian product of k copies of the same set (typically (A *) k) when there is no risk of confusion. We also identify regular expressions with the defined languages; for example, we may write abbc

∈ a • b ≥2 • (c ∪ d) * , b(ab) * = (ba) * b and {a, b} * • c = (a ∪ b) * • c.
The star-height of a regular expression is the maximum number of nested Kleene stars ()

* . Given u = a 1 • • • a n ∈ A * and v = b 1 • • • b n ∈ B * , we write u ⊗ v for the word (a 1 , b 1) • • • (a n , b n) ∈ (A × B) * . Similarly, given U ⊆ A * , V ⊆ B * , we write U ⊗ V ⊆ (A × B) * for the set {u ⊗ v : u ∈ U, v ∈ V, |u| = |v|}. Given two languages L, L over A, we write L ⊆ reg L to denote that L is a regular subset of L . A regular expression C ⊆ 2 * is concat-star, if it is of the form C = C * 1 u 1 C * 2 u 2 • • • C * n u n , ()
for n ∈ N, words u 1 , . . . , u n , and regular expressions C 1 , . . . , C n where none of the C i 's describes the empty language. The C * i 's from () are called components of the concat-star. A concat-star expression like () is smooth if either n ≤ 2 or there are no , s ∈ 2 and 1 ≤ i < n such that C i ⊆ * , C i+1 ⊆ s * . We say that a regular language L is concat-star (resp. smooth) if it admits a concat-star (resp. smooth) expression.

Parikh-images and linear sets

The Parikh-image of w ∈ 2 * is the pair associating each symbol of 2 to its number of occurrences in w, i.e. π(w) = (|w| 1 , |w| 2). We naturally extend this to languages L ⊆ 2 * by letting π(L)

def = {π(w) : w ∈ L} (⊆ N 2). A language C ⊆ 2 * is Parikh-injective if for every u, v ∈ C, if π(u) = π(v) then u = v; it is Parikh-surjective if π(C) = N 2 ;
and it is Parikh-bijective if it is both Parikh-injective and -surjective. We will use the product order (≤, N 2), defined by (n, m) ≤ (n , m) iff n ≤ n and m ≤ m . Given a vector x ∈ N 2 and a set X = {x 1 , . . . , xn } ⊆ N 2 (in our case, the Parikh-image of words from 2 *), we define the linear set generated by X and x as x,

X = {x + α 1 • x1 + • • • + α n xn : α i ∈ N}.
For economy of space we write X as short for 0, X , where 0 = (0, 0). Note that, in particular, ∅ = { 0}. A semi-linear set is a finite union of linear sets. The following fact will be useful in the next section.

Lemma 1.

For every semi-linear set V ⊆ N 2 there exists a Parikh-injective language

C ⊆ reg 2 * such that π(C) = V . Two sets of vectors X, Y ⊆ N 2 are independent if 0 ∈ X ∪ Y and X ∩ Y = { 0};
otherwise they are dependent. We say that two languages over 2 are Parikh-independent (resp. Parikh-dependent) if their Parikh-images are. We abuse notation and say that x and ȳ are (in)dependent whenever {x} and {ȳ} are (in)dependent, and likewise for words. We will need the following simple observation later.

Observation 2. If u and v are Parikh-independent, for every s, t, s , t ∈ N, if π(u s v s) = π(v t u t), then s = t and t = s.

Indeed, we have that s • π(u) + s • π(v) = t • π(u) + t • π(v).
Let us assume that s ≤ t (the case in which is ≥ is similar). Then t ≤ s and so we have (s -t) • π(u) = (t -s) • π(v) which implies s -t = 0 = t -s since u and v are Parikh-independent. Then s = t and t = s.

Synchronized relations

A synchronization of a tuple (w 1 , . . . , w k) of words over A is a word over k × A such that the projection onto A of positions labeled by i is exactly w i , for i = 1, . . . , k. For example, the words (1, a) (1, b) (2, a) and (1, a)(2, a) (1, b) are two possible synchronizations of the same pair (ab, a). Every word w ∈ (k × A) * is a synchronization of a unique tuple (w 1 , . . . , w k) of words over A, where for all i ∈ {1, . . . , k}, i |wi| ⊗ w i is the projection of w onto the alphabet {i} × A. We denote such tuple (w 1 , . . . In this setup, we define classes of relations by restricting the set of admitted synchronizations. One way of doing so is to fix a language C ⊆ reg k * , called control language, and let L vary over all regular languages over k × A whose projections onto k are in C. Thus, given k ∈ N and C ⊆ reg k * , we define the class of k-ary C-controlled relations as

Rel k (C) def = (L k , A) : L ⊆ reg C ⊗ A * , A is a finite alphabet .
Whenever k is clear from the context, we write w , L and Rel(C). For economy of space, we write C = Rel D as short for Rel(C) = Rel(D), and we say that C is Relequivalent to D. Similarly, we write C ⊆ Rel D as short for Rel(C) ⊆ Rel(D) and we say that C is Rel-contained in D. The definition makes explicit the alphabet used for each relation, in contrast to previous definitions of synchronized classes [START_REF] Figueira | Synchronizing relations on words[END_REF][START_REF] María | Resynchronizing classes of word relations[END_REF]. The reason for this is that in particular we study closure under complement, which requires the alphabet to be specified. However, we observe that synchronized classes are closed under taking super-alphabets, and thus the alphabet can be often disregarded. We then write R ∈ Rel(C) to denote (R, A) ∈ Rel(C) for some A.

Observation 3. If (R, A) ∈ Rel(C) then (R, A) ∈ Rel(C) for every A ⊆ A . If (R, A) ∈ Rel(C) then (R, A R) ∈ Rel(C), where A R ⊆ A is the set of symbols present in R. Clearly, C ⊆ reg D ⊆ reg k * implies C ⊆ Rel D, but the converse does not hold: Rel 2 (C Rec) = Recognizable Automatic = Rel 2 (C Aut), but C Rec ⊆ C Aut .
Moreover, different control languages may induce the same class of synchronized relations. For any two regular C, D ⊆ reg k * it is decidable to test whether C ⊆ Rel D in the case k = 2 [START_REF] María | Resynchronizing classes of word relations[END_REF], but for arbitrary k-ary relations the decidability of the class containment problem is open. Henceforward, Rational will denote the class Rel(2 *) of rational relations.

We restate some properties from [START_REF] María | Resynchronizing classes of word relations[END_REF] that we will use throughout (the proofs in [START_REF] María | Resynchronizing classes of word relations[END_REF] are for the case k = 2 but they can be easily generalized to arbitrary k). We will use the notation R • S to denote the usual concatenation of relations, more specifically, given R, S ⊆ (

A *) k , R • S = {(u • u , v • v) : (u, v) ∈ R and (u , v) ∈ S}.
Lemma 4 (Lemma 2 of [START_REF] María | Resynchronizing classes of word relations[END_REF]). For every C, D, C , D ⊆ reg k * ,

1. if R ∈ Rel(C • D), there are R 1 , . . . , R n ∈ Rel(C), R 1 , . . . , R n ∈ Rel(D) such that R = i R i • R i ; 2. if R ∈ Rel(C *), there are R 1 , . . . , R n ∈ Rel(C) and I ⊆ reg {1, . . . , n} * such that R = w∈I R w[1] • • • R w[|w|] ; 3. For every R ∈ Rel(C ∪ D), there are R 1 ∈ Rel(C), R 2 ∈ Rel(D) such that R = R 1 ∪R 2 . 4. if C ⊆ D, then C ⊆ Rel D; 5. if C ⊆ Rel D and C ⊆ Rel D , then C • C ⊆ Rel D • D and C ∪ C ⊆ Rel D ∪ D ; 6. if C ⊆ Rel D, then C * ⊆ Rel D * ; 7.
for every partition I, J of {1, . . . , k} such that C ⊆ I * and D ⊆ J * , we have

C • D = Rel D • C; 8. if C is finite, then C • D = Rel D • C; 9. if C ⊆ Rel D then π(C) ⊆ π(D); moreover, if C is finite, the converse also holds.
The following decomposition lemma, which is an immediate consequence of [14, Proposition 3 plus Lemma 2 P7] and basic properties from Lemma 4, will be used throughout. Lemma 5. Every C ⊆ reg 2 * is effectively Rel-equivalent to a finite union of smooth languages, i.e. given C ⊆ reg 2 * , one can compute a finite set of smooth languages such that C is Rel-equivalent to their union.

In addition to these, our characterization results make use of the following easy properties of relations controlled by Parikh-injective and Parikh-bijective languages.

Lemma 6. For any

C ⊆ reg k * and L, M ⊆ reg C ⊗ A * , 1. if C is Parikh-injective, and w, w ∈ C ⊗ A * , then w = w implies w = w ; 2. L ∪ M = L ∪ M ; 3. if C is Parikh-injective then L ∩ M = L ∩ M and L \ M = L \ M ; 4. if C is Parikh-bijective then (A *) k \ L = (C ⊗ A *) \ L ; 5. if C is Parikh-surjective then 1 * • • • k * ⊆ Rel C.
Proof. The first two items follow immediately from definitions.

L

∩ M ⊆ L ∩ M is always true. For the other containment, let (w 1 , . . . , w k) ∈ L ∩ M , then there exist w ∈ L, w ∈ M such that w = w = (w 1 , . . . , w k). Since C is Parikh-injective, by item 1, w = w ∈ L ∩ M synchronizes (w 1 , . . . , w k) which concludes the proof. L \ M ⊆ L \ M is always true. For the other containment, let w ∈ L \ M . Then w ∈ L . By way of contradiction, suppose that w ∈ M . In this case, there exists w ∈ M such that w = w . Since C is Parikh-injective, by item 1, M w = w ∈ M which is a contradiction. 4. For ⊆, note that, since C is Parikh-surjective, (A *) k = C ⊗ A * ,
and so the result follows from the previous item. 5. We make use of closure under componentwise letter-to-letter relations (cf. Lemma 8 of Section 2.2). Suppose C ⊆ reg k * is Parikh-surjective, and let R ∈ Rel(1 * • • • k *). As an immediate consequence of Mezei's theorem, we have the following:

Claim 7. For every k, Rel(1 * • • • k *) = { i∈I L i,1 × • • • × L i,k : I is finite and L i,j ⊆ reg A * for some finite alphabet A}. Then R = i∈I L i,1 × • • • × L i,
k for a finite I and regular languages L i,j . For any i ∈ I and j ∈ k consider T i,j as the letter-to-letter relation

T i,j = {(u, v) : |u| = |v| and v ∈ L i,j } ∈ Rel((12) *). Note that, by Parikh-surjectivity, U = (A *) k = C ⊗ A * ∈ Rel(C) and therefore U • (T i,1 , . . . , T i,k) = L i,1 × • • • × L i,k .
Then, by closure under union and componentwise letter-to-letter relations (Lemma 8), it follows that

R = i∈I U • (T i,1 , . . . , T i,k) ∈ Rel(C).

Universal closure properties

There are some closure properties which are shared by all classes of synchronized relations, that is, by every Rel(C) with C ⊆ reg k * . We highlight the most salient ones.

An alphabetic morphism between two finite alphabets A, B is a morphism h : A * → B * between the free monoids such that h(a) ∈ B for every a ∈ A. Its application is extended to any

relation R ⊆ (A *) k as follows h(R) = {(h(u 1), . . . , h(u k)) : (u 1 , . . . , u k) ∈ R} ⊆ (B *) k ; and its inverse is applied to S ⊆ (B *) k as h -1 (S) = {(u 1 , . . . , u k) : (h(u 1), . . . , h(u k)) ∈ S} ⊆ (A *) k . A letter-to-letter relation is one from Rel((12) *).
We define the following closure properties over classes C of k-ary relations.

C is closed under union if for all (R, A), (S, A) ∈ C, (R ∪ S, A) ∈ C; C is closed under (inverse) alphabetic morphisms if for all (R, A) ∈ C and h : A * → B * (resp. g : B * → A *) an alphabetic morphism, (h(R), B) ∈ C (resp. (g -1 (R), B) ∈ C); C is closed under componentwise letter-to-letter relations if for every (R, A) ∈ C and (T 1 , A), . . . , (T k , A) ∈ Rel((12) *) the following relation over the alphabet A is also in C: R • (T 1 , . . . , T k) def = {(u 1 , . . . , u k) : there is (v 1 , . . . , v k) ∈ R s.t. (v i , u i) ∈ T i for every i}. C is closed under recognizable projections if for all (R, A) ∈ C and (S, A) ∈ Rel(1 * • • • k *), (R ∩ S, A) ∈ C.
Lemma 8. For every k ∈ N and C ⊆ reg k * , Rel(C) is closed under union, alphabetic morphisms, inverse alphabetic morphisms, componentwise letter-to-letter relations, and recognizable projections. [START_REF] Barceló | Graph logics with rational relations: The role of word combinatorics[END_REF]. Closure under letter-to-letter relations follows from the fact that, given L ⊆ reg C ⊗ A * and k letter-to-letter relations T 1 , . . . , T k over A, there exists L ⊆ reg C ⊗ A * such that L = L • (T 1 , . . . , T k) (one can build an automaton recognizing such language from the automata for L, T 1 , . . . , T k). Since any (inverse) alphabetic morphism can be implemented as a letter-to-letter relation, it follows that Rel(C) is closed under (inverse) alphabetic morphisms. Finally, closure under recognizable projections follows from closure under letter-to-letter relations and closure under union, since for every R ∈ Rel(C) and

Proof. Closure under union follows from the fact that if

L, L ⊆ reg C ⊗ A * , then L ∪ L ⊆ reg C ⊗ A * and L ∪ L = L ∪ L (Lemma
S = i∈I L i,1 × • • • × L i,k ∈ Rel(1 * • • • k *) (recall Claim 7) we have that R ∩ S = i∈I R • (T i,1 , . . . , T i,k) for T i,j = {(w, w) : w ∈ L i,j }.

3

Closure under intersection

We say that a class C of k-ary relations is closed under intersection if for all (R, A), (S, A) ∈ C,

(R∩S, A) ∈ C.
C ⊆ Rel D for some Parikh-injective D ⊆ reg 2 * .
At the end of this section we give an effective procedure to decide, given C ⊆ reg 2 * , whether Rel(C) is closed under intersection. Decidability can be seen as the fact that the set of languages C ⊆ reg 2 * for which there is a Parikh-injective language D ⊆ reg 2 * such that C ⊆ Rel D is both computably enumerable and co-computably enumerable. While showing that it is c.e. is straightforward, proving co-c.e. involves all the developments of this section. Concretely, we define some bad conditions that characterize all languages C such that Rel(C) is not closed under intersection, and in this way we obtain that the set of languages C ⊆ reg 2 * which satisfy any of the bad conditions is c.e.

We will start by giving a sufficient condition for Rel(C) to be closed under intersection. The following simple lemma (which was already proved in [START_REF] Figueira | Synchronizing relations on words[END_REF]) follows from Lemma 6.

Lemma 10. If C ⊆ reg 2 * is Parikh-injective, then Rel(C) is closed under intersection.
This lemma implies that any language which is Rel-equivalent to a Parikh-injective one gives rise to a closed under intersection class. A natural question is whether the converse holds but it doesn't seem to. For instance, if C = 1 * 2 * ∪ (12) * , Rel(C) is closed under intersection but it seems unlikely that C is Rel-equivalent to a Parikh-injective language.

Another sufficient condition for Rel(C) to be closed under intersection is that C = Rel D ∪ X for some Parikh-injective D, X ⊆ reg 2 * such that X ⊆ Rel 1 * 2 * (in fact, it can be seen that injectivity of X is not really necessary). We will prove that this condition is also necessary, and thus we will have another characterization of closure under intersection. This is not obvious and we will prove a stronger statement, which we present below (Theorem 12). Also, in particular, we will show that if Rel(C) is closed under intersection, we can compute

Bad conditions

For C ⊆ reg 2 * , consider the following properties:

(A) There exist u 1 , u 2 , v, z ∈ 2 * such that 1. u i and v are Parikh-independent for i = 1, 2, 2. π(u i) ≥ (1, 1) for some i, 3. {u 1 , u 2 } and {v} are Parikh-dependent, 4. u * 1 u * 2 z ⊆ Rel C and v * z ⊆ Rel C. (B) There exist u, v, z ∈ 2 * such that 1. u and v are Parikh-independent, 2. π(u) ≥ (1, 1) or π(v) ≥ (1, 1), 3. u * v * z ⊆ Rel C and v * u * z ⊆ Rel C. (C) There exist u, v, w, z ∈ 2 * such that 1. u ∈ 1 * \ {ε}, w ∈ 2 * \ {ε}, 2. π(v) ≥ (1, 1), 3. u * v * w * z ⊆ Rel C or w * v * u * z ⊆ Rel C.
For example, 1 * (12) * (122 We can now present the characterization theorem.

) * satisfies A for u 1 = 1, u 2 = 122, v = 12, z = ε; 1 * (12) * 1 * satisfies B for u = 1, v = 12, z = ε; and 1 * (12) * 2 * satisfies C for u = 1, v = 12, w = 2, z = ε.
Theorem 12. For C ⊆ reg 2 * , the following are equivalent:

1. Rel(C) is closed under intersection (i.e. Rel(C) ∩ = Rel(C)); 2. Rel(C) ∩ is definable (i.e. there exists D ⊆ reg 2 * such that Rel(C) ∩ = Rel(D)); 3. Rel(C) ∩ ⊆ Rational; 4. for all R, S ∈ Rel(C), R ∩ S ∈ Rational; 5.
C does not satisfy any of the bad conditions;

6. there exist D, X ⊆ reg 2 * Parikh-injective such that C = Rel D ∪ X and X ⊆ Rel 1 * 2 * ; 7. there exists D ⊆ reg 2 * Parikh-injective such that C ⊆ Rel D.
From 1 ⇔ 7 and transitivity of ⊆ Rel , closure under intersection is ⊆ Rel -downward closed:

Corollary 13. For C, D ⊆ reg 2 * , if C ⊆ Rel D and Rel(D) is closed under intersection, then Rel(C) is closed under intersection.
We first explain the main proof strategy for obtaining Theorem 12, and present the three key technical results we will need to prove (Propositions 14, 16 and 17).

Proof idea of Theorem 12

The proof strategy is by showing 1 ⇒ 2 ⇒ 3 ⇒ 4 ⇒ 5 ⇒ 6 ⇒ 1 on the one hand, and 6 ⇒ 7 ⇒ 3 on the other hand. First observe that 1 ⇒ 2 ⇒ 3 ⇒ 4 are trivial. We next prove 6 ⇒ 1, 7 ⇒ 3 and 6 ⇒ 7.

For 6 ⇒ 1, suppose that C = Rel D ∪X for some Parikh-injective languages D, X such that

X ⊆ Rel 1 * 2 * . Let R, S ∈ Rel(C). Then, by item 3 of Lemma 4, there exist R 1 , S 1 ∈ Rel(D), R 2 , S 2 ∈ Rel(X) such that R = R 1 ∪ R 2 and S = S 1 ∪ S 2 . Note that: R 1 ∩ S 1 ∈ Rel(D) ⊆ Rel(C) by Lemma 10 applied to D; R 2 ∩ S 2 ∈ Rel(X) ⊆ Rel(C) by Lemma 10 applied to X; and R 1 ∩ S 2 , R 2 ∩ S 1 ∈ Rel(D) by closure under recognizable projections (Lemma 8). It only remains to observe that R ∩ S = (R 1 ∩ S 1) ∪ (R 1 ∩ S 2) ∪ (R 2 ∩ S 1) ∪ (R 2 ∩ S 2
) and obtain that R ∩ S ∈ Rel(C) due to closure under union (Lemma 8).

On the other hand, 7 ⇒ 3 can be derived from 1 ⇒ 3. Indeed, suppose that C ⊆ Rel D for some Parikh-injective language D. By Lemma 10, Rel(D) is closed under intersection and so, by 1 ⇒ 3, Rel(C) ∩ ⊆ Rel(D) ∩ ⊆ Rational.

For 6 ⇒ 7, suppose that C = Rel D ∪ X for some Parikh-injective languages D, X such that X ⊆ Rel 1 * 2 * . By Lemma 1, closure under complement of semi-linear sets and Parikh's Theorem [START_REF] Parikh | On context-free languages[END_REF], it follows that there exists D ⊆ reg 2 * Parikh-injective such that The main difficulty will lie on the proofs of 4 ⇒ 5 and 5 ⇒ 6. For 4 ⇒ 5, we will prove the contrapositive statement: Proposition 14. If C ⊆ reg 2 * satisfies any of the bad conditions, then there exist R, S ∈ Rel(C) such that R ∩ S ∈ Rational.

π(D) = N 2 \ π(D). Note that D ∪ D is Parikh-bijective. Since D ∪ D is Parikh-surjective, by
To prove 5 ⇒ 6, we define some basic regular languages over 2 that we call basic injective. A language C ⊆ 2 * is basic injective if it can be expressed as u * v * z for u, v, z ∈ 2 * such that if u, v = ε, then u and v are Parikh-independent. In particular this implies the following.

Lemma 15. Every basic injective language is Parikh-injective.

Proof. Let C = u * v * z be basic injective. The cases in which u and/or v are empty are straightforward. We will then assume that u and v are Parikh-independent. Suppose then that π(u r v s z) = π(u r v s z) for some r, s, r , s ∈ N. By Observation 2, r = r or s = s which concludes the proof.

Note that singleton sets and languages of the form u * z for u an arbitrary word are basic injective. The interest of basic injective languages stems from the fact that we can prove the following two results, from which it is not hard to get 5 ⇒ 6. To show 5 ⇒ 6 from the two statements above, suppose that C does not satisfy any of the bad conditions. By Proposition 16, C = Rel X ∪ D , for X = i∈I X i and D = j∈J D j , where I, J are finite, for every i ∈ I, X i is basic injective and X i ⊆ Rel 1 * 2 * , and for every j ∈ J, D j is basic injective and D j ⊆ Rel 1 * 2 * . Note that, from the definition of basic injective plus [14, Proposition 7] plus basic properties from Lemma 4, it follows readily that for each i ∈ I, there exist , s, , s ∈ N such that X i is Rel-equivalent to 1 * 1 2 s * 2 s . Therefore X is Rel-equivalent to a Parikh-injective language X such that X ⊆ Rel 1 * 2 * . On the other hand, by Observation 11, since D ⊆ Rel C and C does not satisfy any of the bad condition, neither does D . Hence, by Proposition 17, D is Rel-equivalent to a Parikh-injective regular language D. Thus C = Rel X ∪ D which concludes the proof.

We dedicate the rest of the section to prove Propositions 14, 16 and 17.

Proof idea of Proposition 14

We show the proof idea for condition A. The other two conditions follow a similar proof strategy. Suppose that condition A holds, and consider the 3-letter alphabet A = {a 1 , a 2 , c}. Let R, S be the following relations in (A *) 2 :

R = (u * 1 ⊗ a * 1) • (u * 2 ⊗ a * 2) • z ⊗ c * , S = (v * ⊗ {a 1 , a 2 } *) • z ⊗ c * ,
note that R, S ∈ Rel(C) by condition A.4. It is not hard to show that |R ∩ S| = ∞ due to condition A.3. We show that R ∩ S ∈ Rational. By means of contradiction, suppose there is an automaton over the alphabet 2 × A such that the language recognized by this automaton synchronizes R ∩ S. Since the language is infinite, there is a non-trivial cycle q 0 w1 --→ q w2 --→ q w3 --→ q f inside some accepting run. By a pumping argument, it can be seen that: 1) w 2 is necessarily of the form (a s i , a t i) for some i, s, t partly due to A.2; 2) (s, t) ∈ {π(u j)} for some j; and 3) (s, t) ∈ {π(v)} . Since 2) plus 3) are in contradiction with A.1, it follows that R ∩ S ∈ Rational.

Proof idea of Proposition 16

It can be seen that one can reduce to the case in which C is of the form w * 1 • • • w * n z with w i and w i+1 Parikh-independent for all i = 1, . . . , n -1. For this kind of languages, if n ≤ 2 the result follows trivially since they are already basic injective. A straightforward case inspection shows that if n ≥ 3 then at least one of the bad conditions holds.

Proof idea of Proposition 17

In order to prove Proposition 17 we show the following stronger statement, which gives a characterization of closure under intersection based on the decomposition into basic injective languages. We denote the commutative closure of a language C ⊆ reg 2 * by [C] π = {w ∈ 2 * :

π(w) ∈ π(C)}.
Lemma 18. Given a finite set of basic injective languages {B i } that are not Rel-contained in 1 * 2 * , the following are equivalent:

1. Rel(i B i) is closed under intersection; 2. for all R, S ∈ Rel(i B i), R ∩ S ∈ Rational;
3. i B i does not satisfy any of the bad conditions; 4. for every i, j B i ∪ B j does not satisfy any of the bad conditions; 5. for every i, j, B i ∩ [B j] π is regular and

B i ∩ [B j] π ⊆ Rel B j ; 6. i B i = Rel C for some Parikh-injective C ⊆ reg 2 * .
Proposition 17 follows from Lemma 18 since it is its implication 3 ⇒ 6. In order to give a proof for Lemma 18, we first define the following property, which is at the core of the next lemmas. A pair of languages B 1 , B 2 , is said to verify the dichotomy property if either B 1 ∪ B 2 satisfies one of the bad conditions; or

B 1 ∩ [B 2] π is regular and B 1 ∩ [B 2] π ⊆ Rel B 2 . Note that B 1 ∩ [B 2
] π may not be regular in general, for example if B 1 = 1 * 2 * and B 2 = (12) * . The main ingredient to prove Lemma 18 is given by the following statement.

Lemma 19. Every pair of basic injective languages

B 1 , B 2 such that B 1 , B 2 ⊆ Rel 1 * 2 * satisfies the dichotomy property.
Proof of Lemma 18. 1 ⇒ 2 is trivial; 2 ⇒ 3 follows from the contrapositive of Proposition 14; 3 ⇒ 4 holds by Observation 11; and 4 ⇒ 5 follows from Lemma 19. For 5 ⇒ 6, we proceed by induction on the number of basic injective languages in {B i }. The base case is the empty language, which is (vacuously) Parikh-injective. For the inductive step, consider a union B ∪ i B i . First observe that, by Lemma 15, B is Parikh-injective. By inductive hypothesis, there exists D ⊆ reg 2 * Parikh-injective such that i B i = Rel D. Also, since

B ∩ [i B i] π = i B ∩ [B i] π , by hypothesis both B ∩ [i B i] π and B \ [i B i] π are regular, and B ∩ [i B i] π ⊆ Rel i B i . Now it only remains to observe that (B \ [i B i] π) ∪ D is Parikh-injective and Rel-equivalent to B ∪ i B i . Finally, 6 ⇒ 1 follows from Lemma 10.

Decidability

We finally discuss briefly the decidability procedure to test whether a class Rel(C) is closed under intersection. Proposition 20. It is decidable wether a given C ⊆ reg 2 * is such that Rel(C) is closed under intersection.

Proof idea. It follows by the equivalence 1 ⇔ 5 ⇔ 7 of Theorem 12, together with the fact that the set of languages C ⊆ reg 2 * for which there is a Parikh-injective language D ⊆ reg 2 * such that C ⊆ Rel D is computably enumerable; and the fact that the set of languages C ⊆ reg 2 * which satisfy any of the bad conditions is computably enumerable.

Note that whenever Rel(C) is closed under intersection, it is effectively so: given

L 1 , L 2 ⊆ reg C ⊗ A * it is possible to compute L ⊆ reg (2 × A) * with L = L 1 ∩ L 2 .
Indeed, by the previous proposition we can compute some Parikh-injective D such that C ⊆ Rel D. By the results of [START_REF] María | Resynchronizing classes of word relations[END_REF], one can compute L 1 , L 2 ⊆ reg D ⊗ A * such that L 1 = L 1 and L 2 = L 2 ; and thus L = L 1 ∩ L 2 is such that L = L 1 ∩ L 2 due to injectivity of D and Lemma 6.

4

Closure under complement

We say that a class C of k-ary relations is closed under complement if for every (R, A) ∈ C,

((A *) k \ R, A) ∈ C. For every Rel k (C) and alphabet A, note that there is a unique largest relation (U, A) ∈ Rel k (C) that contains all relations (R, A) ∈ Rel k (C); this is U = C ⊗ A * k .
Thus, a natural alternative definition for complement could take U , instead of (A *) k , as the universe. We say that Rel

Relativized complement

We Proof. For the left-to-right direction, let (R, A), (S, A) ∈ Rel(C). Recall that Rel(C) is always closed under union and note that R

∩ S = C ⊗ A * \ ((C ⊗ A * \ R) ∪ (C ⊗ A * \ S)),
and therefore (R ∩ S, A) ∈ Rel(C). For the right-to-left direction, let L ⊆ reg C ⊗ A * . We want to check that C ⊗ A * \ L ∈ Rel(C). By the characterization of the previous section (Theorem 12, implication 1 ⇒ 6) we can assume that C = D ∪ X, for X ⊆ Rel 1 * 2 * and X, D Parikh-injective. Then,

C ⊗ A * \ L = (D ∪ X) ⊗ A * \ L = ((D ⊗ A *) ∪ (X ⊗ A *)) \ L = (D ⊗ A * ∪ X ⊗ A *) \ L = (D ⊗ A * \ L) ∪ (X ⊗ A * \ L) = (D ⊗ A *) \ L R ∪ X ⊗ A * \ L S .
(by Lemma 6, item 3)

Since R, S ∈ Rel(C), by Lemma 8, R ∪ S ∈ Rel(C), and thus

C ⊗ A * \ L ∈ Rel(C). Note that if C ⊆ 2 * is Parikh-surjective, then C ⊗ A * = (A *) 2 ,
L ⊆ reg C ⊗ {a} * such that L = ({a} *) 2 \ L . Then L ∪ L = L ∪ L = ({a} *) 2 .
Therefore, the Parikh-image of the projection of L ∪ L onto the first component must be N k and so C is Parikh-surjective since both L and L (and hence L ∪ L) are ⊆ reg C ⊗ {a} * .

From Lemma 23 plus Observation 22, we have that Rel(C) is closed under complement if, and only if, Rel(C) is closed under intersection and C is Parikh-surjective. At the end of this section, we will use this to prove that closure under complement is a decidable property.

We now give a characterization for closure under complement without referring to closure under intersection. Before proving the above theorem, we observe that we cannot obtain the third and fourth equivalent statements that we have in Theorem 12.

Lemma 25. There is C ⊆ reg 2 * with Rel(C) c ⊆ Rational but Rel(C) c not definable.

Proof.

Consider any language which is Parikh-injective but not Parikh-surjective, e.g. C = (12) * . Then, by item 2 of Lemma 23, plus Theorem 24, we have that Rel(C) c is not definable. The result is then an immediate consequence of the following:

Claim. If C ⊆ reg 2 * is Parikh-injective, then Rel(C) c ⊆ Rational.
Indeed, by Parikh's Theorem [START_REF] Parikh | On context-free languages[END_REF], π(C) is a semi-linear set and then so is N 2 \ π(C) (see for example [START_REF] Ginsburg | Semigroups, Presburger formulas, and languages[END_REF]). By Lemma 1, N 2 \ π(C) = π(D) for some Parikh-injective language D. It follows then that C ∪ D is Parikh-bijective and so, by Lemma 23, item 1,

Rel(C ∪ D) is closed under complement. Then Rel(C) c ⊆ Rel(C ∪ D) ⊆ Rational. exist Parikh-injective languages D, X ⊆ reg 2 * such that X ⊆ Rel 1 * 2 * and C = Rel D ∪ X.

It follows then that

D ⊗ A * ∈ Rel(C) and so R = (A *) 2 \ D ⊗ A * ∈ Rel(C). Let L ⊆ reg (D ∪ X) ⊗ A * be such that L = R.
By definition of R, we get that L ⊆ reg X ⊗ A * and so X = {u : ∃v such that u ⊗ v ∈ L} ⊆ reg X. Besides, also by definition of R, π(X) = N 2 \ π(D) and so D ∪ X is Parikh-bijective. It only remains to observe that C = Rel D ∪ X : ⊇ is trivial and ⊆ follows from the fact that 1 * 2 * is Rel-contained in any Parikh-surjective language (Lemma 6, item 5) and so X ⊆ Rel D ∪ X .

(C) such that R ∩ S ∈ Rational; but since R ∩ S = (A *) 2 \ ((A *) 2 \ R ∪ (A *) 2 \ S) ∈ Rel(C) c = Rel(D) ⊆ Rational (recall that Rel(D)

Decidability

From Observation 22 and item 2 of Lemma 23, decidability of closure under complement follows immediately: Rel(C) is closed under complement if, and only if, Rel(C) is closed under intersection and C is Parikh-surjective. The former is decidable due to Proposition 20, and the latter is decidable through Parikh's Theorem, since universality for semi-linear sets is decidable (see, e.g., [START_REF] Ginsburg | Semigroups, Presburger formulas, and languages[END_REF]).

Proposition 26. Given C ⊆ reg 2 * , testing whether Rel(C) is closed under complement is decidable.

Closure under concatenation, Kleene star, and projection

In this section, we characterize languages C ⊆ reg k * such that Rel(C) is closed under concatenation, Kleene star, and projection.

C is closed under concatenation if for all R, S ∈ C, R • S ∈ C, where • is the component-wise concatenation operation (e.g., {(a, ab), (b, a)} • {(b, c)} = {(ab, abc), (bb, ac)}); C is closed under Kleene star if for all R ∈ C, R * ∈ C for R * = i∈N R (i)
, where

R (0) = {(ε, . . . , ε)}, and R (i+1) = R • R (i) ;
C is closed under projection if for all (R, A) ∈ C and K ⊆ k, (R| K , A) ∈ C, where

R| K ⊆ A * k
is the projection of R onto the components in K (with ε in the other components). For example, for R = {(aa, ab, b), (a, bbb, aab), (aa, ab, ba)} and K = {1, 2} we have R| K = {(aa, ab, ε), (a, bbb, ε)}. We now give characterizations for closure under concatenation and Kleene star. As we show, closure under concatenation is in fact a necessary condition for closure under Kleene star.

Proposition 27. For every

C, C 1 , C 2 , C 3 ⊆ reg k * , 1. C 1 • C 2 ⊆ Rel C 3 iff for every R 1 ∈ Rel(C 1), R 2 ∈ Rel(C 2) we have R 1 • R 2 ∈ Rel(C 3); 2. Rel(C) is closed under concatenation iff C • C ⊆ Rel C; 3. if Rel(C)
L 1 ⊆ reg C 1 ⊗ A * and L 2 ⊆ reg C 2 ⊗ A * . Then we only have to observe that L 1 • L 2 = L 1 •L 2 ∈ Rel(C 1 • C 2) ⊆ Rel(C 3)
as we wanted. The right-to-left direction follows from Lemma 8 together with property 1 of Lemma 4. Note that item 2 is a particular case of item 1.

We now turn to item 3. For simplicity assume k = 2. Suppose Rel(C) is closed under Kleene star, and take arbitrary R 1 , R 2 ∈ Rel(C) over an alphabet A. Define R i over the alphabet A × {lst i , lst i } as the result of replacing every pair (a

1 • • • a n , b 1 • • • b m) ∈ R i with ((a 1 , lst i) • • • (a n-1 , lst i)(a n , lst i), (b 1 , lst i) • • • (b m-1 , lst i)(b m , lst i)). Intuitively, lst i marks the last symbols of tuples from R i . It is easy to see that R 1 , R 2 ∈ Rel(C) using closure under componentwise letter-to-letter relations. Observe that R 1 • R 2 ⊆ (R 1 ∪ R 2)
* and, by closure under union and Kleene star, that (R

1 ∪ R 2) * ∈ Rel(C). Let L ⊆ reg C ⊗ (A × {lst 1 , lst 1 , lst 2 , lst 2 }) * such that L = (R 1 ∪ R 2) * . It is easy to see that there is L ⊆ reg L such that L = R 1 • R 2 , and thus that R 1 • R 2 ∈ Rel(C).
Again by closure under component-wise letter-to-letter relations we obtain that R 1 • R 2 ∈ Rel(C), this time using the relation that projects onto the first component.

Finally, we prove item 4. For the right-to-left direction, let R ∈ Rel(C) and take

L ⊆ reg C ⊗ A * such that L = R. Therefore R * = L * = L * ∈ Rel(C *) ⊆ Rel(C) as wanted.
For the converse, first observe that Rel(C) is also closed under concatenation due to item 3. Let R ∈ Rel(C *). By item 2 of Lemma 4, we have the following:

there are R 1 , . . . , R n ∈ Rel(C) and I ⊆ reg {1, . . . , n} * such that R = w∈I R w[1] • • • R w[|w|] .
Consider any regular expression E denoting the language I above, and replace each occurence of i ∈ {1, . . . , n} with R i , in such a way that the resulting expression E denotes R. Then, by finite application of closure under Kleene star, concatenation and union as given by E , we obtain that R ∈ Rel(C).

For C ⊆ reg k * and K ⊆ k, let C| K be the projection of C onto the alphabet K (which is also regular). We give the following characterization of closure under projection.

Lemma 28. For every

k ∈ N and C ⊆ reg k * , Rel k (C) is closed under projection iff Rel k (C| K) ⊆ Rel k (C) for every K ⊆ k.

Decidability

For the binary case, by previous results [START_REF] María | Resynchronizing classes of word relations[END_REF], it is decidable to test whether a synchronized class is included in another, and thus the characterizations for Kleene star and concatenation are decidable. We leave the general case as an open question.

6

Concluding remarks and future work

We discuss the decidability of paradigmatic problems within Rel(C). First, note that the emptiness problem for relations reduces to the emptiness problem for automata: The equivalence problem obviously reduces to the containment problem.

L = ∅ if,
The universality problem for (L , A) amounts to checking whether (A *) k \ L is empty. Since Rel(C) is closed under complement, by Theorem 24, there exists a Parikh-bijective language D such that C = Rel D. As before, we can effectively compute such language D, and therefore, by the results on [START_REF] María | Resynchronizing classes of word relations[END_REF], we can effectively construct L ⊆ reg D ⊗ A * such that L = L . By Lemma 6, item 4, we thus obtain

(A *) k \ L = (A *) k \ L = (D ⊗ A *) \ L
and so the containment problem within Rel(C) reduces to the emptiness problem within Rel(D).

We prove the last item only for intersection; similar (or simpler) arguments can be used for all the other operations. Given L, M ⊆ reg C ⊗ A * , with a similar argument than the one used in the previous item, we can effectively construct a Parikh-injective language D and L , M ⊆ reg D ⊗ A * such that L = L , and M = M . Then, by Lemma 6, item 3, L ∩ M = L ∩ M = L ∩ M and the result follows.

One can then conclude that classes of synchronized binary relations are generally "wellbehaved": a) it is decidable to test whether a class is closed under Boolean connectives; b) every synchronized class closed under intersection (resp. complement, etc.), is effectively closed under intersection (resp. complement, etc.); c) every synchronized class which is closed under Boolean connectives has decidable paradigmatic problems (in the sense of Lemma 29); d) at least for the binary case, the characterizations for Kleene star and concatenation are decidable.

We leave as future work the question of whether it is decidable to test if Rel(C) is closed under Kleene star, concatenation and projection when C ⊆ reg k. We also leave open the characterization for closure under complement and intersection for k-ary relations. Although it is conceivable that the same characterization for closure under intersection holds for arbitrary arity relations, we were not able to show it -the main issue is that it is not clear how to generalize the bad conditions to a k-ary alphabet, nor what would be the analog of item 6 in Theorem 12.

A Missing proofs to Section 2

Before proving Lemma 1, we begin with a known normal form for semilinear sets.

Lemma 31 ([15, 23]). For every semilinear set V ⊆ N k there exist a finite I, and xi ∈ N k , P i ⊆ N k for every i ∈ I such that V = i∈I xi + N • P i , all P i 's are linearly independent sets, and

(x i + N • P i) ∩ (x j + N • P j) = ∅ for all i = j.
Lemma 1. For every semi-linear set V ⊆ N 2 there exists a Parikh-injective language C ⊆ reg 2 * such that π(C) = V .

Proof. Let us assume that V is in the normal form given by Lemma 31. Note that, since we are in dimension 2, every P i has at most 2 vectors, namely P i = {ȳ i , zi } (where perhaps ȳi = zi). For every linear set xi + N • P i , consider words u i , v i , w i such that π(u i) = xi , π(v i) = ȳi and π(w i) = zi (let us assume that v i = w i if ȳi = zi). Then it follows that 2) = 0, this implies that there is an infinite sequence of tuples in R ∩ S of increasing size, and thus |R ∩ S| = ∞.

C = i∈I v * i w * i u i is
We show that R ∩ S ∈ Rational. By definition we have that for every (w 1 , w 2) ∈ R and ∈ 2,

(|w 1 | a , |w 2 | a) ∈ {π(u)} , and (1)
for every (w 1 , w 2) ∈ S, b∈{a1,a2}

(|w 1 | b , |w 2 | b) ∈ {π(v)} . (2
)
By means of contradiction, suppose R ∩ S ∈ Rational or, equivalently, that there is an automaton over the alphabet 2 × A such that the language recognized by this automaton synchronizes R ∩ S. Since we have shown that R ∩ S is infinite, the automaton must have a non-trivial cycle q 0 w1 --→ q w2 --→ q w3 --→ q f inside some accepting run. In particular,

w 1 w 3 ∈ R ∩ S. Let w 2 = (a s1 i1 , a s2 i2) with i 1 , i 2 ∈ 2, s 1 , s 2 ∈ N (it
is easy to see that there cannot be more than one symbol of A in any given component). First observe that i 1 = i 2 , since otherwise, due to item A.2, for some t ∈ 2 we have that π(u t) ≥ (1, 1), and in this case, we would obtain that w 1 w 3 ∈ R would contradict (1) for = t.

Since w 2 = ε, there is some r such that s r > 0. Therefore we have (s 1 , s 2) ∈ {π(u ir)} , as otherwise we would obtain that w 1 w 3 ∈ R would contradict (1) for = i 1 = i 2 ; and (s 1 , s 2) ∈ {π(v)} , as otherwise w 1 w 3 ∈ S would contradict (2). We therefore have that u ir and v are Parikh-dependent, but this is not possible because of condition A.1. The contradiction originates from assuming that R ∩ S ∈ Rational. Hence, R ∩ S ∈ Rational. Note that the proof above can be replicated using only two letters, by replacing c with the letter a 1 (at the price of making the proof less clean). We can therefore conclude that condition A implies that Rel(C) is not closed under intersection, even when restricted to two-letter alphabets. Now suppose that B holds. We will assume that |u| 1 , |v| 1 > 0 (the other cases being similar). Consider the following relations in Rel(C):

R = u * (a,a) • v * (b,b) • z (a,a) ∈ Rel(u * v * z), S = v * (a,) • u * (b,) • z (a,a) ∈ Rel(v * u * z).
We show that the projection onto the first component of R ∩ S contains only words of the form a n b n a |z|1 (Claim 32 below), and that it forms an infinite language (Claim 33 below), implying that it is not regular and thus that R ∩ S ⊆ Rational. (If, in turn, we had assumed |u| 2 , |v| 2 > 0, we would produce similar relations and obtain such a result but this time on the second component.)

Claim 32. {w 1 : ∃w 2 , . . . , w k (w 1 , . . . , w k) ∈ R ∩ S} ⊆ {a n b n a |z|1 : n ≥ 0}.
Proof. By definition of R, S, any tuple in R ∩ S is of the form

u s (a,a) • v s (b,b) • z (a,a) = w t • w t • z (a,a)
for some w t ∈ v t (a,) , w t ∈ u t (b,) , and s, s , t, t ≥ 0, which imples u s (a,a) • v s (b,b) = w t w t . Since by hypothesis u and v are Parikh-independent, applying Observation 2 we obtain t = s and s = t . Therefore, every tuple from R ∩ S is of the form u s (a,a) Proof. Since |u| 1 > 0 and |v| 1 > 0, there exist s, t > 0 such that

• v t (b,b) • z (a,a) = w t • w s • z (a,
|u s | 1 = |v t | 1 . Therefore, u s (a,a) • v t (b,b) = w t • w s for some w t ∈ v t (a,) , w s ∈ u s (b,) . It then follows that R ∩ S contains u n•s (a,a) • v n•t (b,b) = w n t • w n s
for every n ≥ 0. Since |u| 1 > 0, the projection onto the first component yields an infinite language.

By the last two claims, it follows that {w 1 : ∃w 2 s.t. (w 1 , w 2) ∈ R ∩ S} is not regular. Indeed, it is easy to see, by pumping arguments, that there cannot exist an automaton accepting any infinite set inside {a n b n a |z|1 | n ≥ 0}. Then R ∩ S ∈ Rational -if there would be L ⊆ reg (2 × A) * such that L = R ∩ S, by projecting L onto the 1-labeled components, we would have a regular language inside ({1}×A) * synchronizing {w 1 : ∃w 2 s.t. (w 1 , w 2) ∈ R∩S} and thus it would be regular.

Case C. Let us assume that u ∈ 1 * and w ∈ 2 * , the other case is symmetric. Consider the following relations over the alphabet A = {a, b, c}, using the same terminology as before.

R = (u * ⊗ a *) • (v * ⊗ b *) • (w * ⊗ a *) • z ⊗ c * , S = v * (a,b) • v * (b,a) • z (c,c)
Note that R, S ∈ Rel(C), and, that R consists of all pairs

(a |u|1•n b |v|1•m c |z|1 , b |v|2•m a |w|2• c |z|2)
for n, m, ∈ N. By C.2 |v| 1 > 0 and |v| 2 > 0 and hence R has a linear dependence on the number of b's in the first and second component, and S has a linear dependence on the number of as' in the first component and the nuber of b's in the second component. Thus, Proof. Let l, m > 0 be such that l • π(u) = m • π(v). Then, by using the properties in Lemma 4, we have Base case s = 1: In this case, C = {u 1 , . . . , u m } is finite. Then there exist r 1 , . . . , r m ∈ N such that π(u i) = r i • π(u) for all i. Then, by using the properties in Lemma 4, we have

R ∩ S = {(a |u|1•n b |v|1•m c |z|1 , b |v|2•m a |w|2• c |z|2) : n, m, ∈ N, (|u| 1 • n, |v| 2 • m), (|v| 1 • m, |w| 2 •) ∈ {π(v)} }
u * v * = u l * u <l v * = Rel v m * v * u <l = v * u <l = l-1 i=0 v * u i
C * = Rel {u r1 , . . . , u rm } * = u r1 * • • • u rm * .
We conclude by applying Lemma 35 repeatedly and again properties from Lemma 4.

Inductive step: Suppose s > 1, and then without loss in generality (see Lemma 5 plus properties in Lemma 4) that

C * = (i C * i,1 • • • C * i,n u i) *
where each C i,j has star-height strictly smaller than s Since π(C *) ⊆ {x} we have, for each i, that π(u i) ∈ {x} and thus, by property 9 of Lemma 4, u i = Rel u i for some i ≥ 0. Then, by properties in Lemma 4, we have that

C * = Rel (i C * i,1 • • • C * i,n u i) * .
We further have that π(C i,j) ⊆ {x} ; indeed, if there were some word v ∈ C i,j with π(v) ∈ {x} , we would obtain a word vu i with π(vu i) ∈ π(C *) and π(vu i) ∈ {x} , contradicting the hypothesis. We can therefore apply the inductive hypothesis to each C i,j which implies, together with the application of some properties from Lemma 4, that C * = Rel D * where D is a finite union of languages of the form w * 1 • • • w * s z in which all words involved are powers of u. Then, applying Lemma 35 repeatedly (and, again properties from Lemma 4), we have that for some r j , t j > 0, Proof. We show the contrapositive, i.e., that every C ⊆ reg 2 * that is not Rel-equivalent to a finite union of basic injective languages satisfies at least one of the bad conditions. First observe that, by Lemma 5 plus Observation 11, without loss in generality we can assume that C is smooth. Also, by Lemma 34 plus Observation 11, if C has some component with two Parikh-independent words, then it satisfies property A. Then we can assume without loss in generality that the Parikh-image of every component of C lies inside the linear set generated by just one vector. We can then apply Lemma 36 to each component, which together with properties from Lemma 4, implies that C is Rel-equivalent to a finite union of languages of the form w * 1 • • • w * n z. Then, since C is not Rel-equivalent to a finite union of basic injective languages, there must exist at least one of those conjuncts w * 1 • • • w * n z that is not Rel-equivalent to a finite union of basic injective languages. Therefore, by Observation 11, without loss in generality we can assume that C is of the form w * 1 • • • w * n z. Moreover, using also Lemma 35, we can assume that w i and w i+1 are Parikh-independent for all i = 1, . . . , n -1. Also, by inspecting the proofs of Lemmas 35 and 36, one can check that the "smoothness" is not lost, i.e. either n = 2, w 1 = 1 p and w 2 = 2 q for some p, q ∈ N, or for r = 1, 2, there is no i ∈ {1, . . . , n -1} such that w i ∈ r * and w i+1 ∈ (3 -r) * . For this kind of languages, if n ≤ 2, the result follows immediately, since they are already basic injective. For n ≥ 3, we proceed by case distinction according to the letters from 2 that are used in each of the w i 's. Since we are going to prove that in every case at least one of the bad conditions is satisfied, by Observation 11, we can assume without loss in generality that our language is w * 1 w * 2 w * 3 z, and w 2 is Parikh-independent with both w 1 and w 3 .

C * = Rel (m j=1 u rj * u tj) * = 1≤s≤m 1≤j1<•••<js≤m u rj 1 * u tj 1 * • • • u rj s * u tj s * u tj 1 • • • u tj s (
1. There exists r ∈ 2 such that w 1 ∈ r * , w 3 ∈ (3 -r) * and π(w 2) ≥ (1, 1). In this case, condition C is satisfied.

2.

There exists r ∈ 2 such that w 1 , w 3 ∈ r * and π(w 2) ≥ (1, 1). In this case, condition B is satisfied. 3. We are neither in case 1 nor 2 and w 1 , w 2 , w 3 are pairwise Parikh-independent. In this case, condition A is satisfied: one only has to observe that, by basic linear algebra, for any three pairwise independent vectors en N 2 , there is one of them such that its singleton set is dependent with the set formed by the other two. 4. We are in none of the previous cases. Since w 1 and w 2 are Parikh-independent, we necessarily have that w 1 and w 3 are Parikh-dependent. In this case, we will prove for "not the last letter of a pair from R i " and symbol lst i for "the last letter of a pair from R i ". For each i ∈ {1, 2}, we define T i ⊆ A * × (A × {lst i , lst i }) * as

T i = {(u, v) ∈ A * × (A × {lst i , lst i }) * : v ∈ u ⊗ Z i } ∈ Rel((12) *).
For example, T 1 associates aab with (a, lst 1)(a, lst 1)(b, lst 1). Consider the component-wise application of T 1 and T 2 to R 1 and R 2 respectively, that is: R 1 = R 1 • (T 1 , T 1) and R 2 = R 2 • (T 2 , T 2). For example, if (aab, b, ba) ∈ R 1 then ((a, lst 1)(a, lst 1)(b, lst 1), (b, lst 1), (b, lst 1)(a, lst 1)) ∈ R 1 .

By closure under component-wise letter-to-letter relations we have that R 1 , R 2 ∈ Rel(C) over the alphabet A × {lst 1 , lst 1 , lst 2 , lst 2 }.

Observe that R 1 • R 2 ⊆ (R 1 ∪ R 2) * and, by closure under union and Kleene star, that (R 1 ∪ R 2) * ∈ Rel(C). Let L ⊆ reg C ⊗ (A × {lst 1 , lst 1 , lst 2 , lst 2 }) * such that L = (R 1 ∪ R 2) * . We show that there is L ⊆ reg L such that L = R 1 • R 2 , and thus that R 1 • R 2 ∈ Rel(C). Consider the language

S = {w ∈ (k × (A × {lst 1 , lst 1 , lst 2 , lst 2 })) * : w ∈ (A * ⊗ (Z 1 • Z 2)) k }.
Note that S is regular, and that

L ∩ S = R 1 • R 2 . Since L ∩ S ⊆ reg C ⊗ (A × {lst 1 , lst 1 , lst 2 , lst 2 }) * , it follows that R 1 • R 2 ∈ Rel(C).
Again by closure under component-wise letter-to-letter relations we obtain that R 1 • R 2 ∈ Rel(C), this time using the relation that projects onto the first component: R 1 Consider any regular expression E denoting the language I above, and replace each occurence of i ∈ {1, . . . , n} with R i , in such a way that the resulting expression E denotes R. Then, by finite application of closure under Kleene star, concatenation and union as given by E , we obtain that R ∈ Rel(C). Indeed, one can take an automaton recognizing a language that synchronizes R and replace all transitions labeled by an element from (k \ K) × A with an ε-transition.

• R 2 = (R 1 • R 2) • (T, T) for T = {(v, u) ∈ (A × {lst 1 , lst 1 , lst 2 , lst 2 }) * × A * : v ∈ u ⊗ (Z 1 • Z 2)} ∈ Rel((12) *).

 , w k) by w k and extend the notation to languages L ⊆ (k × A) * by denoting the unique k-ary relation synchronized by L as L k def = { w k : w ∈ L}. In our previous example, (1, a)(1, b)(2, a) 2 = (1, a)(2, a)(1, b) 2 = (ab, a), and {(1, a)(2, a), (1, a)(2, b), (1, b)(2, a), (1, b)(2, b)} * 2 is the equal-length relation on the alphabet {a, b}.

a

 Parikh-injective D ⊆ reg 2 * such that C ⊆ Rel D, which allows us in turn to compute the intersection of two relations in Rel(C) as a synchronized relation. For C ⊆ reg 2 * , we denote by Rel(C) ∩ the closure under intersection of Rel(C), i.e., the smallest class of relations containing Rel(C) and being closed under intersection. We present three properties on C ⊆ reg 2 * that we call the bad conditions, which will characterize the languages such that Rel(C) is not closed under intersection.

Observation 11 .

 11 The bad conditions are ⊆ Rel -upward closed: If C ⊆ Rel D and C satisfies property A (resp. B, C), then D also satisfies property A (resp. B, C).

Lemma 6 ,

 6 item 5, X ⊆ Rel 1 * 2 * ⊆ Rel D ∪ D and so, by Lemma 4, item 3 plus closure under union of D ∪ D, we have C = Rel D ∪ X ⊆ Rel D ∪ D.

Proposition 16 .

 16 If C ⊆ reg 2 * does not satisfy any of the bad conditions, then C is Rel-equivalent to a finite union of basic injective languages. Proposition 17. If C is a finite union of basic injective languages that are not Relcontained in 1 * 2 * and C does not satisfy any of the bad conditions, then C is Rel-equivalent to a Parikh-injective regular language.

 k (C) is closed under relativized complement if for all (R, A) ∈ Rel k (C) we have (C ⊗ A * k \ R, A) ∈ Rel k (C).In this section, we give effective characterizations of the languages C ⊆ reg 2 * for which Rel(C) is closed under complement and relativized complement.

Theorem 24 . 2 . 3 .

 2423 For C ⊆ reg 2 * , the following are equivalent: 1. there exists D ⊆ reg 2 * Parikh-bijective such that C = Rel D; Rel(C) is closed under complement (i.e. Rel(C) c = Rel(C)); Rel(C) c is definable (i.e. there is D ⊆ reg 2 * such that Rel(C) c = Rel(D)).

3 ⇒ 2 :

 2 Let D ⊆ reg 2 * such that Rel(C) c = Rel(D). Since Rel(D) is closed under complement, by 2 ⇒ 1, we can assume wlog that D is Parikh-bijective. By means of contradiction, suppose that Rel(C) is not closed under complement. Therefore, by Observation 22, either C is not Parikh-surjective or Rel(C) is not closed under intersection. We show that in both cases we arrive to a contradiction. If Rel(C) is not closed under intersection, by Theorem 12 (implication ¬1 ⇒ ¬4), there are R, S ∈ Rel

 is closed under union by Lemma 8), we have a contradiction. On the other hand, if C is not Parikh-surjective, there exists x ∈ π(D) \ π(C). Let u ∈ D be such that π(u) = x and let us consider the singleton relationR = { u ⊗ a |u| }. It is clear that (R, {a, b}) ∈ Rel(D) = Rel(C) c. Then, either (R, {a, b}) or its complement (({a, b} *) 2 \ R, {a, b}) should be in Rel(C). But it is easy to see that both relations contain a tuple with Parikh-image x: u ⊗ a |u| ∈ R and u ⊗ b |u| ∈ ({a, b} *) 2 \ R. Since x ∈ π(C), none of the relations is in Rel(C), which is a contradiction.

 is closed under Kleene star, then it is closed under concatenation; and 4. Rel(C) is closed under Kleene star iff C * ⊆ Rel C. Proof sketch. For the left-to-right direction of item 1, let

Proof of Lemma 29 .

 29 Given L, M ⊆ reg C ⊗ A * , the containment problem between L and M amounts to checking if L \ M is empty. Since Rel(C) is closed under intersection, by Theorem 12, there exists a Parikh-injective language D such that C ⊆ Rel D. Moreover, our decidability proof, shows that we can effectively compute such language D. Therefore, by the results on[START_REF] María | Resynchronizing classes of word relations[END_REF], we can effectively construct L , M ⊆ reg D ⊗ A * such that L = L , and M = M . Then, by Lemma 6, item 3, L \ M = L \ M = L \ M and so the containment problem within Rel(C) reduces to the emptiness problem within Rel(D).

Conjecture 30 .

 30 For every k ∈ N and C ⊆ reg k * , Rel(C) is closed under intersection if, and only if, C ⊆ Rel D for some Parikh-injective D ⊆ reg k * .

B Missing proofs to Section 3 Lemma 10 .

 310 Parikh-injective and π(C) = V . If C ⊆ reg 2 * is Parikh-injective, then Rel(C) is closed under intersection.Proof. Given L, M ⊆ reg C ⊗ A * , note that L∩M ⊆ reg C ⊗ A * , hence (L∩M , A) ∈ Rel(C). Further, by Lemma 6, L ∩ M = L ∩ M . Thus, (L ∩ M , A) ∈ Rel(C). Proposition 14.If C ⊆ reg 2 * satisfies any of the bad conditions, then there existR, S ∈ Rel(C) such that R ∩ S ∈ Rational. Proof. Case A. Suppose that condition A is satisfied. Consider the 3-letter alphabet A = {a 1 , a 2 , c}. Let R, S be the following relations in (A *) 2 : R = (u * 1 ⊗ a * 1) • (u * 2 ⊗ a * 2) • z ⊗ c * , S = (v * ⊗ {a 1 , a 2 } *) • z ⊗ c * , note thatR, S ∈ Rel(C) by condition A.4. We show that |R∩S| = ∞. Since by condition A.3 we have {u 1 , u 2 } and {v} are Parikh-dependent, let s 1 , s 2 , s 3 ∈ N be such that π(u s1 1 • u s2 2) = π(v s3) = 0. For x 1 , x 2 , x 3 ∈ N, let R x1,x2 ⊆ R (resp. S x3 ⊆ S) be the subrelation obtained by replacing each u * 1 , u * 2 with u x1 1 , u x2 2 in the definition (resp. replacing v * with v x3). It then follows that R s1,s2 ∩ S s3 = ∅ and further R •s1, •s2 ∩ S •s3 = ∅ for every ∈ N. Since π(u s1 1 • u s2

Case B .

 . For α 1 , α 2 ∈ {a, b, } and w ∈ 2 * , let w (α1,α2) ∈ (2 × {a, b}) * denote the set of words resulting from replacing in w each i ∈ 2 with (i, a) if α i ∈ {a, } and each i ∈ 2 with (i, b) if α i ∈ {b, } -for example 112 (a,) = {(1, a)(1, a)(2, a), (1, a)(1, a)(2, b)}.

 a) . Let us now focus on the first component of any such tuple. Since in particular the number of a's in the first component ofu s (a,a) • v t (b,b) • z (a,a) is equal to the number of a's in the first component of w t • w s • z (a,a) , we have |u s | 1 = |v t | 1 . This means that the first component of u s (a,) • v t (b,) • z (a,) is of the form a n b n a |z|1 for n = |u s | 1 = |v t | 1 .Claim 33. |R ∩ S| = ∞, and further {w 1 : ∃w 2 s.t. (w 1 , w 2) ∈ R ∩ S} is infinite.

 creates a linear dependence between the number of a's and the number of b's in the first component. Since {w : (w, w) ∈ R ∩ S} is infinite due to C.1 and sits inside a * b * c * by definition, this implies that R ∩ S ∈ Rational. To prove Proposition 16, we need to prove first the following technical lemmas (Lemmas 34, 35 and 36): Lemma 34. For every C ⊆ reg 2 * having two Parikh-independent words and w ∈ 2 * , we have that C * w satisfies property A. Proof. Let u, v ∈ C such that u and v are Parikh-independent. From this, it follows easily that both uuv, uv and uvv, uv are Parikh-independent. It is also immediate that π(uuv) ≥ (1, 1) (also π(uvv) ≥ (1, 1)), and that {uuv, uvv} and {uv} are Parikh-dependent. It only remains to observe that (uuv) * (uvv) * w ⊆ C * w and (uv) * w ⊆ C * w. Lemma 35. For every two Parikh-dependent words u, v ∈ 2 * there exist n ∈ N and z 1 , . . . , z n ∈ 2 * such that u * v * = Rel n i=1 v * z i . Moreover, π(z i) ∈ {π(u)} for every i ∈ {1, • • • , n}.

 from where the result follows.Lemma 36. For every C ⊆ reg 2 * and x ∈ N 2 such that π(C) ⊆ {x} , there exist n ∈ N and words u, z 1 , . . . , z n ∈ 2 * with Parikh-image in {x} such thatC * = Rel n i=1 u * z i .Proof. Let u ∈ 2 * such that π(u) = x. We proceed by induction on the star-height s of C * (the maximum number of nested Kleene-stars), for any given regular expression representing C.

Item 4 .

 4 For the right-to-left direction of 4, let R ∈ Rel(C) and take L ⊆ reg C ⊗ A * such that L = R. Therefore R * = L * = L * ∈ Rel(C *) ⊆ Rel(C) as wanted. For the left-to-right direction, first observe that Rel(C) is also closed under concatenation due to item 3. Let R ∈ Rel(C *). By property 2 of Lemma 4, we have the following: there are R 1 , . . . , R n ∈ Rel(C) and I ⊆ reg {1, . . . , n} * such that R = w∈I R w[1] • • • R w[|w|] .

Lemma 28 .

 28 For every k ∈ N and C ⊆ reg k * , Rel k (C) is closed under projection iff Rel k (C| K) ⊆ Rel k (C) for every K ⊆ k.

Proof.

 The left-to-right direction follows from the fact that every relation (L , A) ∈ Rel k (C| K) is the projection of a relation in Rel k (C) onto the components K. Indeed, let M ⊆ reg (k × A) * the greatest language such that M | K = L. Now consider L = M ∩ (C ⊗ A *).It follows that L is regular and L | K = L . The right-to-left direction follows from the fact that the projection onto K of any relation R ∈ Rel k (C) is a relation of Rel k (C| K).

 In this section we show a decidable characterization of the languages C ⊆ reg 2

* for which Rel(C) is closed under intersection. Further, for C ⊆ reg 2 * , if Rel(C) is closed under intersection, it is effectively closed, that is, for every R, S ∈ Rel(C) over an alphabet A, one can compute R ∩ S as a synchronized relation, that is, as some L ⊆ reg (2 × A) * so that L = R ∩ S. The main result is the following. Theorem 9. For every C ⊆ reg 2 * , Rel(C) is closed under intersection if, and only if,

 and hence closure under relativized complement and closure under complement coincide. Thus, by Proposition 21: Observation 22. If C ⊆ 2 * is Parikh-surjective, then Rel(C) is closed under complement if, and only if, Rel(C) is closed under intersection.

	Complement
	Let Rel(C) c be the closure under complement of Rel(C), i.e., the smallest class closed
	under complement containing Rel(C). The following lemma gives sufficient conditions for
	our characterization.
	Lemma 23. For any C ⊆ reg 2

* , 1. if C is Parikh-bijective, then Rel(C) is closed under complement; 2. if Rel(C) is closed under complement, then C is Parikh-surjective. Proof. For item 1, let L ⊆ reg C ⊗ A * . By item 4 of Lemma 6, (A *) 2 \ L = C ⊗ A * \ L ∈ Rel(C) which concludes the proof.

For item 2, let L = C ⊗ {a} * . Then (({a} *) 2 \ L , {a}) ∈ Rel(C) and so there exists

 and only if, L = ∅ -and thus the emptiness problem is always decidable. Further, by the results we have shown together with Lemma 6 we obtain the following. ..intersection, then equivalence and containment problems within Rel(C) are decidable;...complement, then the universality problem within Rel(C) is decidable; ...Op, then the Op operation within Rel(C) is computable, for Op ∈ {intersection, complement, concatenation, Kleene star, projection}.

Lemma 29. For C ⊆ reg 2 * , if Rel(C) is closed under...

.

 where {j 1 , . . . , j s } represents the disjuncts that are iterated at least once). Finally, by Lemma 35 and properties from Lemma 4 again, we have the desired result.Proposition 16. If C ⊆ reg 2 * does not satisfy any of the bad conditions, then C is Rel-equivalent to a finite union of basic injective languages.

Proof of Theorem 24. 1 ⇒ 2 follows from item 1 of Lemma 23; and 2 ⇒ 3 is trivial.2 ⇒ 1: Suppose that Rel(C) is closed under complement. By Lemma 8, Rel(C) is also closed under union and so under intersection. Therefore, byTheorem 12, there

Acknowledgements

Work supported by ANR project DELTA, grant ANR-16-CE40-0007, grant PICT-2016-0215, and LIA INFINIS.

that condition B is satisfied. Indeed, let w be a word of shortest possible length which is Parikh-dependent with w 1 . Then there exist p, q ∈ N such that π(w 1) = p • π(w) and π(w 3) = q • π(w). For r = lcm(p, q), by properties from Lemma 4, we have that w r * w * 2 z ⊆ Rel w * 1 w * 2 z ⊆ w * 1 w * 2 w * 3 z and w * 2 w r * z ⊆ Rel w * 2 w * 3 z ⊆ w * 1 w * 2 w * 3 z. It only remains to observe that w r is Parikh-independent with w 2 , which follows from the fact that it is Parikhdependent with w 1 , and w 1 is Parikh-independent with w 2 , and π(w) ≥ (1, 1), which holds since otherwise we would be either in case 1 or 2.

Note that, by definition of smoothness plus the fact that there were no two consecutive Parikh-dependent w i 's, we covered all the possible cases.

The only missing link in the proof of Lemma 18 is the proof of Lemma 19, which requires some effort. Before giving its proof, we show a reduction of the general problem into simpler cases.

Lemma 37. Let B 1 = Rel i∈I B 1,i and B 2 = Rel j∈J B 2,j . If the pair B 1,i , B 2,j satisfies the dichotomy property for all i ∈ I, j ∈ J, then B 1 , B 2 satisfies the dichotomy property.

Proof.

If there exist i, j such that B 1,i ∪ B 2,j satisfies any of the bad conditions, then it is immediate that B 1 ∪ B 2 satisfies the same condition by Observation 11. Otherwise, for every i, j we have

Using the previous lemma, we will prove Lemma 19 gradually, starting from some restricted cases.

Let

We say that they agree if for all i, j ∈ 2, if u i and v j are Parikh-dependent then u i = v j . We say that they have the same tail if u = v. We first prove the case in which B 1 and B 2 agree and have the same tail.

Lemma 38. Every pair of basic injective languages B 1 , B 2 that agree, have the same tail, and are such that Rel(B 1), Rel(B 2) ⊆ Recognizable satisfies the dichotomy property.

and assume that B 1 ∪ B 2 does not satisfy any of the bad conditions. Let

For each ∈ I, let j ∈ 2 be the index such that u i = v j (there is only one such index since B 2 is basic injective), and let J = {j : ∈ I}. We first prove

Note that the ⊇-containment of (3) holds trivially. For the ⊆-containment, by means of contradiction, we show that if

would satisfy condition A, which is in contradiction with our hypothesis. If this happens, in particular there is a word u s1 1 u s2

Note that at least one of the sets I 1 , I 2 or Ī has to be empty (they are pairwise disjoint inside 2). But we assumed that Ī was not empty. Then either I 1 or I 2 is empty from which it follows easily that condition A is satisfied by

the cases in which |I| = 0 or |I| = 1 are trivial. Suppose then that I = 2. If j 1 < j 2 , the result is trivial, and, if j 1 > j 2 , we have a contradiction because B 1 ∪ B 2 would satisfy condition B.

We then allow tails to be different.

Lemma 39. Every pair of basic injective languages B 1 , B 2 that agree and such that Rel(B 1), Rel(B 2) ⊆ Recognizable satisfies the dichotomy property.

We are going to split the proof in four cases according to the value of n ∈ {0, . . . , 4}, which is the number of non-empty words in

if n = 1, we have two cases to consider:

π is finite and we can use the previous argument. Then we can assume that

Therefore, by properties from Lemma 4, one can check that

the latter equality holding due to [START_REF] Barceló | Graph logics with rational relations[END_REF]. By Lemma 37, it is enough to check that the result holds for any two disjuncts from B 1 and B 2 respectively. Observe that each such pair consists of two basic injective languages that satisfy the hypothesis of the lemma. For the pair of disjuncts u * 1 u s 1 u and v * 1 u s 1 u, we can apply Lemma 38 since they have equal tail. For all the other cases, we obtain pairs of basic injective languages with strictly less amount of non trivial components in total, and thus we can use previous cases. In this way we obtain that every pair of disjuncts satisfies the dichotomy property, and thus B 1 and

(5)

Therefore, by properties from Lemma 4, one can check that

the latter equality holding due to [START_REF] Barceló | Expressive languages for path queries over graph-structured data[END_REF]. By Lemma 37, it is enough to check that the result holds for any two disjuncts from B 1 and B 2 respectively. Observe that each such pair consists of two basic injective languages that satisfy the hypothesis of the lemma. For the pair of disjuncts u * 1 u s 1 u and v * 1 v * 2 u s 1 u, we can apply Lemma 38 since they have equal tail. For all the other cases, we obtain pairs of basic injective languages with strictly less amount of non trivial components in total, and thus we can use previous cases. In this way we obtain that every pair of disjuncts satisfies the dichotomy property, and thus B 1 and

Therefore, by properties from Lemma 4, one can check that

the latter equality holding due to [START_REF] Barceló | Graph logics with rational relations: The role of word combinatorics[END_REF]. By Lemma 37, it is enough to check that the result holds for any two disjuncts from B 1 and B 2 respectively. Observe that each such pair consists of two basic injective languages that satisfy the hypothesis of the lemma. For the pair of disjuncts

2 u, we can apply Lemma 38 since they have equal tail. For all the other cases, we obtain pairs of basic injective languages with strictly less amount of non trivial components in total, and thus we can use previous cases. In this way we obtain that every pair of disjuncts satisfies the dichotomy property, and thus B 1 and B 2 too. Finally, we prove Lemma 19 by lifting the unnecessary 'agree' condition.

Lemma 19. Every pair of basic injective languages B 1 , B 2 such that B 1 , B 2 ⊆ Rel 1 * 2 * satisfies the dichotomy property.

We proceed by induction on the cardinality n of the set {i ∈ 2 : there is j ∈ 2 s.t. u i = v j and u i and v j Parikh-dependent} (i.e., the number of 'disagreements'). The base case n = 0 is already proved in Lemma 39.

For the inductive step, let i, j ∈ 2 be such that u i and v j are Parikh-dependent but u i = v j . Then there is a word w ∈ 2 * and p, q ∈ N such that π(u i) = π(w p) and π(v j) = π(w q). Let r = lcm(p, q). Assume that i = j = 1 (other cases are analogous). Then, it follows that

Notice that each disjunct is a basic injective language that satisfies the hypothesis of the lemma. By Lemma 37, it is enough to check that the dichotomy property holds for any pair of disjuncts from B 1 and B 2 respectively. Any such pair of languages has one less disagreement because now the first word of the first language of the pair agrees with the first word of the second language. Then, we can use the inductive hypothesis and the dichotomy property for B 1 and B 2 follows.

Before proving Proposition 20, we show some preliminary results.

Lemma 40. The problem of whether a language L ⊆ reg A * is Parikh-injective is decidable.

Proof. Suppose A = {a 1 , . . . , a n } and let = {â 1 , . . . , ân } be the alphabet where we replace every symbol with its 'marked' version. For every w ∈ A * let ŵ ∈ * be the result of replacing every a i with âi in w. Given a pair of words Proof. This proposition also follows easily from the fact that Rel-containment is decidable [START_REF] María | Resynchronizing classes of word relations[END_REF].

Proof. By the equivalence 1 ⇔ 7 of Theorem 12, we obtain that the problem is c.e. (Lemma 41) and, by the equivalence 1 ⇔ 5 of the same theorem, we obtain that it is co-c.e. (Lemma 42). We conclude then that it is decidable.

C

Missing proofs to Section 5

as we wanted. The right-to-left direction follows from Lemma 8 together with property 1 of Lemma 4. Note that item 2 is a particular case of item 1.

Item 3. We now turn to item 3, since we will use this item to prove item 4. Suppose Rel(C) is closed under Kleene star, and take arbitrary R 1 , R 2 ∈ Rel(C) over an alphabet A. We define relations R 1 , R 2 as the result of the component-wise application of some letter-to-letter relations T 1 , T 2 to R 1 , R 2 , respectively. For each i = 1, 2 let Z i be the regular language (lst i) * • lst i ∪ {ε} over the binary alphabet {lst i , lst i }, where lst i will intuitively stand