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A signed graph G σ is a pair (G, σ), where G is a graph, and σ :

is the adjacency matrix of K σ m,n . In this paper we show that for every sign function σ,

) is the energy of K σ m,n . Also it is proved that the equality holds for the upper bound if there exists a Hadamard matrix of order n for which B is an m by n submatrix of H. Also if the equality holds, then every two distinct rows of B are orthogonal. We prove that for the lower bound the equality holds if and only if K σ m,n is switching equivalent to Km,n.

Introduction

Let A be a real symmetric matrix of order n and λ 1 ≥ • • • ≥ λ n be all eigenvalues of A. The energy of A is defined by

E(A) = ∑ n i=1 |λ i |. A signed graph G σ is a pair (G, σ),
where G is a graph, and σ : E(G) -→ {-1, +1} is a function. We call σ the sign function of G σ . The adjacency matrix, A(G σ ) corresponding to G σ on the vertex set V = {v 1 , . . . , v n } is an n × n matrix whose entries are

(A(G σ )) ij =        1 if v i is adjacent to v j with positive sign. 0 if v i is not adjacent to v j .
-1 if v i is adjacent to v j with negative sign.

The spectrum of G σ is the set of all eigenvalues of the adjacency matrix corresponding to the signed graph G σ with multiplicities and denoted by Spec(G σ ) = {λ m1 1 , . . . , λ m k k }, where m i is the multiplicity of λ i . The energy of G σ denoted by E(G σ ), is the energy of the adjacency matrix of G σ . A switching of a signed graph G σ at a vertex v is changing the sign of each edge incident with v. It is easy to see that a switching at a vertex v implies a new sign function σ ′ and new signed graph G σ ′ which is cospectral with G σ . We say that G σ ′ is a switching of G σ if it is obtained from G σ by finitely many switchings at some vertices of G σ . Switching defines an equivalence relation on the set of all signed graphs with underlying graph G. It is easy to check that if G has m edges, n vertices and c components, then there are 2 m-n+c distinct equivalence classes. It is immediately implies that the signed cycles have just two classes and it is not hard to see that every class has at most one negative edge. We denote the cycle of order n, by C n . The sign of a cycle in a signed graph is the product of the signs of its edges. Thus a cycle is positive if and only if it contains an even number of negative edges. A signed graph is said to be balanced if all of its cycles are positive otherwise unbalanced. In this paper K m,n denotes the complete bipartite graph with part sizes m and n. We denote a signed complete bipartite graph with underlying graph of K m,n by K σ m,n . A conference matrix is a square matrix C of order n with zero diagonal, such that CC t = (n -1)I. If C is the adjacency matrix of a signed graph, then the signed graph is called a conference graph. A Hadamard matrix H is an n by n matrix whose entries are either -1 or +1 and whose distinct rows are mutually orthogonal. It implies that HH t = H t H = nI. Haemers in [START_REF] Haemers | Seidel switching and graph energy[END_REF] provided some bounds for the energy of signed complete graphs of order n and proved that E(K σ n ) ≤ n √ n -1 and the equality holds if and only if K σ n is a conference graph. Also he conjectured that E(K σ n ) ≥ 2n -2. This conjecture was proved for n ≤ 12 but it is still open in general. For more information on the energy of graphs, see [START_REF] Akbari | Edge addition, singular values, and energy of graphs and matrices[END_REF], [START_REF] Bhat | On equienergetic signed graphs[END_REF], [START_REF] Sh | Lower bounds for the energy of (bipartite) graphs[END_REF], [START_REF] Chen | Bounds on the matching energy of unicyclic odd-cycle graphs[END_REF], [START_REF] Ch | On energy of graphs[END_REF], [START_REF] Gutman | Resolvent energy of graphs[END_REF], [START_REF] Huang | On comparison between Laplacian-energy-like invariant and Kirchhoff index of graphs[END_REF], [START_REF] Kaya | On the Co-PI spectral radius and the Co-PI energy of graphs[END_REF], [START_REF] Ma | On the minimal energy of tetracyclic graphs[END_REF], [START_REF] Nayak | Spectra and energy of signed graphs[END_REF], [START_REF] Oboudi | Energy and seidel energy of graphs[END_REF], [START_REF] Vaidya | Some New Results on Energy of Graphs[END_REF] and [START_REF] Zhang | On the energy of trees[END_REF]. In this paper we would like to obtain some results for the energy of signed complete bipartite graphs.

Bounds for the Energy of Signed Complete Bipartite Graphs

In this section we wish to obtain a sharp upper bound for the energy of signed complete bipartite graphs.

Theorem 1. If m ≤ n are two positive integers and

A = [ 0 B B t 0 ]
is the adjacency matrix of K σ m,n for an arbitrary sign function σ, then

E(K σ m,n ) ≤ 2m √ n.
Moreover, if there exists a Hadamard matrix of order n, then there is a sign function

σ for K m,n such that E(K σ m,n ) = 2m √ n.
If the equality holds, then every two distinct rows of B are orthogonal.

Proof. Suppose that

A = [ 0 B B t 0 ] ,
is the adjacency matrix of K σ m,n , where B is a (-1, 1)-matrix of size m × n. Let A have the eigenvalues

λ 1 ≥ • • • ≥ λ m+n . Thus the eigenvalues of A 2 are λ 2 1 ≥ • • • ≥ λ 2 m+n . Since A 2 = [ BB t 0 0 B t B ] ,
and all non-zero eigenvalues of BB t and B t B are the same (see [16]), the eigenvalues of BB t have the following form,

λ 2 i1 ≥ λ 2 i2 ≥ • • • ≥ λ 2 im . Now, tr(BB t ) = ∑ m j=1 λ 2 ij .
On the other hand, 2mn = tr(A 2 ) = ∑ m+n i=1 λ 2 i = 2tr(BB t ). It implies that tr(BB t ) = mn. By Cauchy-Schwartz Inequality we have,

( ∑ m j=1 |λ ij |) 2 ≤ ( ∑ m j=1 λ 2 ij )( ∑ m j=1 1) = (mn)m,
and so (

E(K σ m,n ) 2 ) 2 ≤ m 2 n. This yields that E(K σ m,n ) ≤ 2m √ n.
Let H be a Hadamard matrix of order n and B be a submatrix of H of size m × n. Clearly,

A 2 = [ nI m 0 0 B t B ]
. 

It

Lemma 1.[2]

The eigenvalues of signed C n are

λ k = { 2cos 2kπ n if C n is balanced. 2cos (2k+1)π n if C n is unbalanced. (1) 
3 Proof. By a suitable labeling of vertices, the adjacency matrix of K σ m,n has the following form:

for k = 1, . . . ,
A(K σ m,n ) = [ 0 B B t 0 ] .
Thus we have

(A(K σ m,n )) 2 = [ BB t 0 0 B t B ] .
The √ mn, 0, . . . , 0, -√ mn.

Suppose that K σ m,n contains a negative cycle. By switching one can assume that this cycle has exactly one negative edge. First we show that there exists a negative 4-cycle. To see this let v 1 , v 2 , . . . , v r be a negative cycle such that v 1 v 2 is negative. If v 3 v r is positive, then v 1 v 2 v 3 v r is a negative 4-cycle, as desired. So v 3 v r is negative. Similarly, v 4 v r-1 is a negative edge. By continuing this procedure we find that v r 2 v r 2 +1 v r 2 +2 v r 2 +3 is a negative 4-cycle, as desired. The eigenvalues of a negative 4-cycle are: -√ 2, -√ 2, √ 2, √ 2. So by Interlacing Theorem, (see [START_REF] Brouwer | Spectra of Graphs[END_REF]), K σ m,n has at least two positive eigenvalues, a contradiction. Thus every cycle of K σ m,n is positive. So by Theorem 2, K σ m,n is switching equivalent of K m,n . Other side of theorem is clear and the proof is complete.□

  n. Two signed graphs G σ1 and G σ2 are switching equivalent if and only if they have the same set of unbalanced cycles. Subsequently, G σ is switching equivalent to G if and only if all of its cycles are balanced.
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has at least two positive eigenvalues, then clearly, E(K σ m,n ) > 2 √ mn. Therefore the multiplicity of zero in Spec(E(K σ m,n )) is m + n -2. Since