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Abstract

A signed graph Gσ is a pair (G, σ), where G is a graph, and σ : E(G) −→ {−1,+1} is a

function. Assume that m ≤ n are two positive integers. Let

A =

[
0 B

Bt 0

]
is the adjacency matrix of Kσ

m,n. In this paper we show that for every sign function σ,

2
√
mn ≤ E(Kσ

m,n) ≤ 2m
√
n, where E(Kσ

m,n) is the energy of Kσ
m,n. Also it is proved that the

equality holds for the upper bound if there exists a Hadamard matrix of order n for which B

is an m by n submatrix of H. Also if the equality holds, then every two distinct rows of B

are orthogonal. We prove that for the lower bound the equality holds if and only if Kσ
m,n is

switching equivalent to Km,n.

1 Introduction

Let A be a real symmetric matrix of order n and λ1 ≥ · · · ≥ λn be all eigenvalues of A. The energy

of A is defined by E(A) =
∑n

i=1 |λi|. A signed graph Gσ is a pair (G, σ), where G is a graph, and

σ : E(G) −→ {−1,+1} is a function. We call σ the sign function of Gσ. The adjacency matrix,

A(Gσ) corresponding to Gσ on the vertex set V = {v1, . . . , vn} is an n × n matrix whose entries

are

(A(Gσ))ij =


1 if vi is adjacent to vj with positive sign.

0 if vi is not adjacent to vj .

−1 if vi is adjacent to vj with negative sign.
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The spectrum of Gσ is the set of all eigenvalues of the adjacency matrix corresponding to the

signed graph Gσ with multiplicities and denoted by Spec(Gσ) = {λm1
1 , . . . , λmk

k }, where mi is the

multiplicity of λi. The energy of Gσ denoted by E(Gσ), is the energy of the adjacency matrix of

Gσ. A switching of a signed graph Gσ at a vertex v is changing the sign of each edge incident with

v. It is easy to see that a switching at a vertex v implies a new sign function σ′ and new signed

graph Gσ′
which is cospectral with Gσ. We say that Gσ′

is a switching of Gσ if it is obtained from

Gσ by finitely many switchings at some vertices of Gσ. Switching defines an equivalence relation

on the set of all signed graphs with underlying graph G. It is easy to check that if G has m edges,

n vertices and c components, then there are 2m−n+c distinct equivalence classes. It is immediately

implies that the signed cycles have just two classes and it is not hard to see that every class has

at most one negative edge. We denote the cycle of order n, by Cn. The sign of a cycle in a signed

graph is the product of the signs of its edges. Thus a cycle is positive if and only if it contains an

even number of negative edges. A signed graph is said to be balanced if all of its cycles are positive

otherwise unbalanced. In this paper Km,n denotes the complete bipartite graph with part sizes m

and n. We denote a signed complete bipartite graph with underlying graph of Km,n by Kσ
m,n. A

conference matrix is a square matrix C of order n with zero diagonal, such that CCt = (n−1)I. If

C is the adjacency matrix of a signed graph, then the signed graph is called a conference graph. A

Hadamard matrix H is an n by n matrix whose entries are either −1 or +1 and whose distinct rows

are mutually orthogonal. It implies that HHt = HtH = nI. Haemers in [8] provided some bounds

for the energy of signed complete graphs of order n and proved that E(Kσ
n) ≤ n

√
n− 1 and the

equality holds if and only if Kσ
n is a conference graph. Also he conjectured that E(Kσ

n) ≥ 2n− 2.

This conjecture was proved for n ≤ 12 but it is still open in general. For more information on the

energy of graphs, see [1], [2], [3], [5], [6], [7], [9], [10], [11], [12], [13], [15] and [17]. In this paper we

would like to obtain some results for the energy of signed complete bipartite graphs.

2 Bounds for the Energy of Signed Complete Bipartite Graphs

In this section we wish to obtain a sharp upper bound for the energy of signed complete bipartite

graphs.

Theorem 1. If m ≤ n are two positive integers and

A =

[
0 B

Bt 0

]

is the adjacency matrix of Kσ
m,n for an arbitrary sign function σ, then E(Kσ

m,n) ≤ 2m
√
n. More-

over, if there exists a Hadamard matrix of order n, then there is a sign function σ for Km,n such

that E(Kσ
m,n) = 2m

√
n. If the equality holds, then every two distinct rows of B are orthogonal.

Proof. Suppose that
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A =

[
0 B

Bt 0

]
,

is the adjacency matrix of Kσ
m,n, where B is a (−1, 1)-matrix of size m × n. Let A have the

eigenvalues λ1 ≥ · · · ≥ λm+n. Thus the eigenvalues of A2 are λ2
1 ≥ · · · ≥ λ2

m+n. Since

A2 =

[
BBt 0

0 BtB

]
,

and all non-zero eigenvalues of BBt and BtB are the same (see [16]), the eigenvalues of BBt have

the following form,

λ2
i1

≥ λ2
i2

≥ · · · ≥ λ2
im
.

Now, tr(BBt) =
∑m

j=1 λ
2
ij
. On the other hand, 2mn = tr(A2) =

∑m+n
i=1 λ2

i = 2tr(BBt). It implies

that tr(BBt) = mn. By Cauchy-Schwartz Inequality we have,

(
∑m

j=1 |λij |)2 ≤ (
∑m

j=1 λ
2
ij
)(
∑m

j=1 1) = (mn)m,

and so (
E(Kσ

m,n)

2
)2 ≤ m2n. This yields that E(Kσ

m,n) ≤ 2m
√
n.

Let H be a Hadamard matrix of order n and B be a submatrix of H of size m× n. Clearly,

A2 =

[
nIm 0

0 BtB

]
.

It is not hard to see that the energy of signed complete bipartite graph corresponding to A has

energy 2m
√
n. Now, assume that E(Kσ

m,n) = 2m
√
n. By the equality case of Cauchy-Schwartz

Inequlity, all eigenvalues of BBt are n. Thus BBt = nIm. Therefore every two distinct rows of B

are orthogonal. □

If we consider the positive Km,n, then its energy is equal to 2
√
mn. Now, we state the following

lemma.

Lemma 1.[2] The eigenvalues of signed Cn are

λk =

{
2cos 2kπ

n if Cn is balanced.

2cos (2k+1)π
n if Cn is unbalanced.

(1)
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for k = 1, . . . , n.

Theorem 2.[14] Two signed graphs Gσ1 and Gσ2 are switching equivalent if and only if they have

the same set of unbalanced cycles. Subsequently, Gσ is switching equivalent to G if and only if all

of its cycles are balanced.

Now, we are ready to prove the following theorem.

Theorem 3. Let m ≤ n be two positive integers. Then for any sign function σ, E(Kσ
m,n) ≥ 2

√
mn,

and the equality holds if and only if Kσ
m,n is the switching equivalent to Km,n.

Proof. By a suitable labeling of vertices, the adjacency matrix of Kσ
m,n has the following form:

A(Kσ
m,n) =

[
0 B

Bt 0

]
.

Thus we have

(A(Kσ
m,n))

2 =

[
BBt 0

0 BtB

]
.

The non-zero eigenvalues of BBt and BtB are the same. Obviously, every eigenvalue of BtB

is non-negative. Assume that λ1 ≥ · · · ≥ λm are the first largest eigenvalues of BtB. Thus

A(Kσ
m,n) has at least n−m eigenvalues 0. Hence we find that E(Kσ

m,n) = 2
∑m

i=1

√
λi. Obviously,

(
∑m

i=1

√
λi)

2 ≥
∑m

i=1 λi = tr(BtB) = mn. This implies that E(Kσ
m,n) ≥ 2

√
mn. Now, if BtB has

at least two positive eigenvalues, then clearly, E(Kσ
m,n) > 2

√
mn. Therefore the multiplicity of

zero in Spec(E(Kσ
m,n)) is m+ n− 2. Since

∑m+n
i=1 λ2

i = 2mn and
∑m+n

i=1 λi = 0, the eigenvalues of

Kσ
m,n are as follows:

√
mn, 0, . . . , 0,−

√
mn.

Suppose that Kσ
m,n contains a negative cycle. By switching one can assume that this cycle has

exactly one negative edge. First we show that there exists a negative 4-cycle. To see this let

v1, v2, . . . , vr be a negative cycle such that v1v2 is negative. If v3vr is positive, then v1v2v3vr is a

negative 4-cycle, as desired. So v3vr is negative. Similarly, v4vr−1 is a negative edge. By continuing

this procedure we find that v r
2
v r

2+1v r
2+2v r

2+3 is a negative 4-cycle, as desired. The eigenvalues of

a negative 4-cycle are: −
√
2,−

√
2,
√
2,
√
2. So by Interlacing Theorem, (see [4]), Kσ

m,n has at least

two positive eigenvalues, a contradiction. Thus every cycle of Kσ
m,n is positive. So by Theorem 2,

Kσ
m,n is switching equivalent of Km,n. Other side of theorem is clear and the proof is complete.□
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