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 proved that a functional central limit theorem holds as well. We give here a simple proof for an unidimensional version of this result, using a coupling between Beta coalescents and continuous-time branching processes.

Introduction

A coalescent process is a stochastic model for the genealogy of an infinite haploid population, built backward in time. In such a model, an individual is represented by an integer n ∈ N. At each time t, we denote by Π(t) the partition of N such that two individuals i and j belong to the same set in Π(t) (that we call "bloc" from now on) if they share a common ancestor less than t units of time in the past. In particular, we always assume that Π(0) = {{1}, {2}, . . .} is the partition in singletons. We construct (Π(t), t ≥ 0) as a Markov process on the set of partitions, that gets coarser over time.

Let Λ be a probability measure on [0, 1]. The Λ-coalescent is a coalescent process such that given there are b distinct blocs in Π(t), any particular set of k blocs merge at rate

λ b,k = 1 0 x k-2 (1 -x) b-k Λ(dx).
The Λ-coalescent has been introduced independently by Pitman [START_REF] Pitman | Coalescents with multiple collisions[END_REF] and Sagitov [START_REF] Sagitov | The general coalescent with asynchronous mergers of ancestral lines[END_REF]. In this process, several blocs may merge at once, but at most one such coalescing event may occur at a given time.

For any t ≥ 0, we denote by N (t) the number of blocs in Π(t). We have in particular N (0) = +∞. We say that the Λ-coalescent comes down from infinity if almost surely N (t) < +∞ for any t > 0. Pitman [START_REF] Pitman | Coalescents with multiple collisions[END_REF] proved that if Λ({1}) = 0, either the Λ-coalescent comes down from infinity, or N (t) = +∞ for any t > 0 a.s. In the rest of the article, we always assume that Λ has no atom at 1.

Schweinsberg [START_REF] Schweinsberg | A necessary and sufficient condition for the Λ-coalescent to come down from infinity[END_REF] obtained a necessary and sufficient condition for the Λcoalescent to come down from infinity, that Bertoin and Le Gall [START_REF] Bertoin | Stochastic flows associated to coalescent processes. III. Limit theorems[END_REF] proved equivalent to

+∞ 1 dq ψ(q) < +∞, where ψ(q) = 1 0 (e -qx -1 + qx)x -2 Λ(dx). (1.1)
Berestycki, Berestycki and Limic [START_REF] Berestycki | The Λ-coalescent speed of coming down from infinity[END_REF] obtained the almost sure behaviour for the number of blocs N (t) as t goes to 0, which they called the speed of coming down from infinity. More precisely, setting v ψ (t) = inf{s > 0 :

+∞ s dq ψ(q) ≤ t}, they proved that for a Λ-coalescent that comes down from infinity,

lim t→0 N (t) v ψ (t) = 1 a.s. (1.2)
In this article, we consider the one parameter family of coalescent processes called Beta-coalescents. For any α ∈ (0, 2), we consider the Λ-coalescent such that the measure Λ is Beta(2 -α, α), i.e.

Λ(dx) = 1 Γ(α)Γ(2 -α) x 1-α (1 -x) α-1 dx.
The Beta-coalescents have a number of interesting properties (see e.g. [START_REF] Birkner | Alpha-stable branching and beta-coalescents[END_REF][START_REF] Berestycki | Small-time behavior of beta coalescents[END_REF] and references therein). In particular, if α ∈ (1, 2), it can be constructed as the genealogy of an α-stable continuous state branching process. We observe that thanks to (1.1), α ∈ (1, 2) is a necessary and sufficient condition for the Beta-coalescent to come down from infinity. Moreover, (1.2) can be restated as lim

t→0 t 1 α-1 N (t) = (αΓ(α)) 1 α-1 a.s.
The speed of coming down from infinity for the Beta coalescent can also be found in [START_REF] Berestycki | Small-time behavior of beta coalescents[END_REF]. The main result of this article is a central limit theorem for the number of blocs, as t → 0. Theorem 1.1. Let α ∈ (1, 2) we set (Π(t), t ≥ 0) the Beta(2 -α, α)-coalescent and N (t) = #Π(t) the number of blocs at time t, we have

lim t→0 t 1 α(α-1) N (t) - αΓ(α) t 1 α-1 = -D α X in law, where D α = (Γ(α)α) 1 α(α-1) (α -1) -1 α , X = 1 0 Y (t)dt and (Y (t), t ≥ 0) is a Lévy process satisfying E(e -λYt ) = e tλ α .
Note that a more precise functional central limit theorem has been obtained by [START_REF] Limic | Second-order asymptotics for the block counting process in a class of regularly varying Λ-coalescents[END_REF] for any Λ-coalescent with a regularly varying density in a neighbourhood of 0. However, our proof follows from simple coupling arguments, that might be of independent interest. Remark 1.2. We observe that the random variable X defined in Theorem 1.1 is an α-stable random variable, that satisfies

E(e -λX ) = exp λ α α + 1 .
In Section 2, we use [START_REF] Berestycki | Small-time behavior of beta coalescents[END_REF] to couple the Beta-coalescent with a stable continuous state branching process, and link the small times behaviour of the number of blocs with the small times behaviour of the continuous-state branching process. In Section 3, we use the so-called Lamperti transform to transfer the computations into the small times asymptotic of an α-stable Lévy process, and use scaling properties to conclude.

Continuous state branching process

A continous-state branching process (or CSBP for short) is a càdlàg (rightcontinuous with left limits at each point) Markov process (Z(t), t ≥ 0) on R + that satisfies the so-called branching property: For any x, y ≥ 0, if (Z x (t), t ≥ 0) and (Z y (t), t ≥ 0) are two independent versions of Z starting from x and y respectively, then the process (Z x (t)+Z y (t), t ≥ 0) is also a version of Z starting from x + y.

The study of CSBP started with the seminal work of [START_REF] Jiřina | Stochastic branching processes with continuous state space[END_REF]. As observed in [START_REF] Lamperti | Continuous state branching processes[END_REF][START_REF] Silverstein | A new approach to local times[END_REF], there exists a deep connexion between CSBP and Lévy processes. In effect, we observe that for any x, t, λ ≥ 0, the Laplace transform of the CSBP Z satisfies

E (exp(-λZ x (t)) = exp(-xu t (λ)),
where u is the solution of the following differential equation

∂ t u t (λ) = φ(u t (λ)), with u 0 (λ) = λ, (2.1)
and φ is the Lévy-Khinchine exponent of a spectrally positive Lévy process (i.e. a Lévy process with no negative jump). The function φ is called the branching mechanism of the CSBP. If φ : λ → λ α with α ∈ (1, 2), we call Z the α-stable CSBP.

Let α ∈ (1, 2). Berestycki, Berestycki and Schweinsberg gave in [START_REF] Berestycki | Small-time behavior of beta coalescents[END_REF] a coupling between the α-stable CSBP and the Beta(2 -α, α)-coalescent, that we recall here. Let (Z a (t), t ≥ 0, a ∈ [0, 1]) be a random field, càdlàg in t and a, such that for any a < b, the process (Z b (t) -Z a (t), t ≥ 0) is the α-stable CSBP starting from b -a, and is independent with (Z c (t), t ≥ 0, c < a). For any t > 0, the function a → Z a (t) is a.s. increasing, and we set

D(t) = # {a ∈ (0, 1) : Z a-(t) < Z a (t)} (2.2)
the number of atoms in the measure µ t satisfying µ t ([0, a]) = Z a (t) a.s. We also introduce R(t) = C α t 0 Z 1 (s) 1-α dt, where C α = α(α -1)Γ(α), as well as its generalized inverse R -1 (t) = inf {s ≥ 0 : R(s) > t} .

(2.

3)

The coupling between the CSBP and the Beta-coalescent is obtained as a straightforward combination of Lemmas 2.1 and 2.2 in [START_REF] Berestycki | Small-time behavior of beta coalescents[END_REF].

Lemma 2.1 ([2]

). For any t > 0, we have N (t)

(d) = D(R -1 (t)).
Using this result, to compute the small times behaviour of N (t), it is enough to study the asymptotic behaviour of D(r) and R -1 (t) separately. We first provide a straightforward estimate on the asymptotic behaviour of D. Theorem 2.2. For any α ∈ (1, 2), for any > 0, we have

lim r→0 D(r) -((α -1)r) -1 α-1 r -1 2(α-1) - = 0 a.s.
Proof. We note that (D(r), r > 0) is decreasing. Moreover, for any r ≥ 0, D(r) is a Poisson random variable with parameter θ r = ((α-1)r) -1 α-1 , by Lemma 2.2 of [START_REF] Berestycki | Small-time behavior of beta coalescents[END_REF]. Therefore, by a deterministic change of variables, it is enough to observe that for any increasing process (P (t), t ≥ 0) such that P (t) is a Poisson random variable with parameter t, we have lim t→+∞ P (t) -t t

1 2 +
= 0 a.s.

Using the exponential Markov inequality, for any λ > 0 we have

P(P (t) -t > t 1 2 + ) ≤ e -λt 1 2 + E e λ(P (t)-t) = exp t(e λ -1 -λ) -λt 1 2 +
.

Applying this inequality with λ = t -1/2 , there exists C > 0 such that for any t ≥ 1, P(P (t) -t > t

1 2 + ) ≤ C e -t .
With similar computations, we have

P(P (t) -t < -t 1 2 + ) ≤ C e -t .
We apply the Borel-Cantelli lemma, yielding lim sup n→+∞

|P (n)-n| n 1 2 + ≤ 1 a.s.
As P is increasing, we obtain that for any > 0, lim t→+∞

P (t)-t t 1 2 +
= 0 a.s. concluding the proof.

The Lamperti transform

The connexion between CSBP and spectrally positive Lévy processes observed in (2.1) can be strengthen. In [START_REF] Lamperti | Continuous state branching processes[END_REF], Lamperti observed that a CSBP with branching mechanism φ could be constructed as a random time change of a Lévy process with Lévy-Khinchine exponent φ. A proof of this result can be found in [START_REF] Ma | Proof(s) of the Lamperti representation of continuous-state branching processes[END_REF]. More precisely, let (Y (t), t ≥ 0) be a spectrally positive Lévy process starting from a, such that E(e -λY (t) ) = e -aλ+tφ(λ) . We set T = inf{s ≥ 0 : Y (s) ≤ 0} and

U (t) = inf s ≥ 0 : s 0 dr Y (r ∧ T ) > t .
The Lamperti transform states that for Z a CSBP with branching mechanism φ such that Z(0) = a, we have

(Z(t), t ≥ 0) (d) = (Y (U (t)), t ≥ 0) (3.1)
In the rest of the section, we denote by (Y (t), t ≥ 0) a Lévy process with Lévy-Khinchine exponent φ(λ) = λ α such that Y (0) = 1 a.s. We also set Y 0 (t) = Y (t) -1. We write T = inf {s ≥ 0 : Y (s) ≤ 0} and

U (t) = inf s ≥ 0 : s 0 du Y (u ∧ T ) ≥ t .
Using (3.1), the process defined in (2.3) satisfies

R -1 (t), t ≥ 0 (d) = inf s ≥ 0 : C α s 0 Y (U (u)) 1-α du ≥ t , t ≥ 0 . (3.2)
Therefore, up to a slight abuse of notation, we write

R(t) = C α t 0 Y (U (s)) 1-α ds = C α U (t) 0 Y (u) -α du, (3.3)
by change of variable, and again R -1 (t) = inf {s ≥ 0 : R(s) ≥ t}. We first prove a central limit theorem for the asymptotic behaviour of R(t) as t → 0.

Theorem 3.1. We denote by X = 1 0 Y 0 (s)ds. We have

lim t→0 R(t) -C α t t 1+ 1 α = (1 -α)C α X in law.
Proof. For any > 0 and t > 0, we write A t, = {|Y (s) -1| ≤ , s ≤ 2t} the event such that Y stays in an neighbourhood of 1 until time 2t. As observed in [2, Lemma 4.2], there exists C > 0 such that P(A c t, ) ≤ Ct -α . We first prove that lim t→0 U (t) t = 1 and lim t→0 R(t) t = C α a.s. Let < 1/2, observe that on the event A t, , we have T > 2t, therefore for any s ≤ t, we have

U (s) = inf r ≥ 0 : r 0 du Y (u) ≥ s ∈ s 1+ , s 1- .
In particular, letting t → 0 we obtain

1 1 + ≤ lim inf s→0 U (s) s ≤ lim sup s→0 U (s) s ≤ 1 1 - a.s.
Letting → 0, this yields lim t→0 U (s) s = 1 a.s. Similarly, by (3.3) we have 1

(1 + ) 1+α ≤ lim inf s→0 R(s) C α s ≤ lim sup s→0 R(s) C α s ≤ 1 (1 -) 1+α , yielding lim t→0 R(t) t = C α a.s. We set R(t) = R(t) -C α t, we have R(t) = C α U (t) 0 Y (s) -α - 1 Y (s) ds = C α U (t) 0 (1 + Y 0 (s)) 1-α -1 1 + Y 0 (s) ds.
As a consequence, we have

R(t) = C α (1 -α) U (t) 0 Y 0 (s)ds + ∆(t), (3.4) 
where

∆(t) = C α U (t) 0 (1+Y0(s)) 1-α -1-(1-α)Y0(s)-(1-α)Y0(s) 2 1+Y0(s)
ds. Note that as Y 0 is an α-stable Lévy process, the following scaling property holds for any λ > 0:

(Y 0 (t), t ≥ 0) (d) = λ 1 α Y 0 (t/λ), t ≥ 0 . ( 3.5) 
We first prove that lim t→0

∆(t) t 1+ 1 α = 0 in probability. There exists K α > 0 such that |(1 + x) 1-α -1 -(1 -α)x -(1 -α)x 2 | ≤ K α x 2
for any x ∈ (0, 1). Therefore, on the event A t, , for any s ≤ t, we have

|∆(s)| ≤ U (s) 0 (1 + Y 0 (r)) 1-α -1 -(1 -α)Y 0 (r) -(1 -α)Y 0 (r) 2 Y (r) dr ≤ K α 1 - (1+ )s 0 Y 0 (r) 2 dr.
Using (3.5) with λ = t, for any δ > 0, we have

P(|∆(t)| ≥ δt 1+ 1 α ) ≤ P(A c t, ) + P K α t 1+ 2 α 1 - 1+ 0 Y 0 (r) 2 ≥ δt 1+ 1 α ≤ Ct -α + P K α 1 - 1+ 0 Y 0 (r) 2 ≥ δt -1 α .
Letting t → 0, we have lim t→0 t -1-1 α ∆(t) = 0 in probability. We now study the asymptotic behaviour of t -1-1 α U (t) 0 Y 0 (s)ds. First observe that for any δ, η > 0, we have 

P U (t) t Y 0 (s)ds ≥ ηt 1+ 1 α ≤P (|U (t) -t| ≥ δt) + P (1+δ)t (1-δ)t |Y 0 (s)|ds ≥ ηt 1+ 1 α ≤P U (t) t -1 ≥ δ + P
t -1-1 α Rt = (1 -α)C α X in law.
As a straightforward consequence of Theorem 3.1, we obtain the asymptotic behaviour of R -1 at small times.

Corollary 3.2. We have lim

t→0 R -1 (t)-t Cα t 1+ 1 α = (α-1) C 1+ 1 α α X in law. Proof. Let x ∈ R and t ≥ 0, we observe that P R -1 (t) - t C α > t 1+ 1 α x = P (R(τ x,t ) < t) ,
where we set τ x,t = t Cα + t 1+ 1 α x. Observe that for any fixed x ∈ R, we have

t = C α τ x,t -xC 2+ 1 α α τ 1+ 1 α x,t + o(τ 1+ 1 α x,t ),
as t → 0. Therefore, by Theorem 3.1, we obtain

lim t→0 P R -1 (t) - t C α > t 1+ 1 α x = P (1 -α)C α X < -xC 2+ 1 α α = P (α -1)X C 1+ 1 α α > x .
Using this result, we now compute the asymptotic behaviour of R -1 (t) -1 α-1 , which is used to prove Theorem 1.1.

Lemma 3.3. We denote by D

α = (αΓ(α)) 1 α(α-1) (α-1) 1 α , we have lim t→0 t 1 α(α-1) (α -1)R -1 (t) -1 α-1 -(αΓ(α)/t) 1 α-1 = -D α X in law.
Proof. The proof follows the same lines as Corollary 3.2. For any x ∈ R, for any t > 0 small enough we have

P (α -1)R -1 (t) -1 α-1 -(αΓ(α)/t) 1 α-1 > xt -1 α(α-1)
= P (α -1)R -1 (t) < (αΓ(α)/t)

1 α-1 + xt -1 α(α-1) 1-α = P (α -1)R -1 (t) < t αΓ(α) + (1 -α)x (αΓ(α)) α α-1 t 1+ 1 α + o(t 1+ 1 α ) .
Therefore, using Corollary 3.2, we obtain for any x ∈ R lim t→0 P (α -1)R -1 (t)

-1 α-1 -(αΓ(α)/t) 1 α-1 > xt -1 α(α-1)
= P(D α X < -x), which concludes the proof.

Proof of Theorem 1.1. By Lemma 2.1, the asymptotic behaviours of the number of blocs N (t) and D(R -1 (t)) are the same. Therefore, we only have to prove that lim t→0 t 1 α(α-1) D(R -1 (t)) -(αΓ(α)/t)

1 α-1 = -D α X in law.
Observe that by Corollary 3.2, we have lim t→0 C α R -1 (t)/t = 1 in probability. Moreover, as α ∈ (1, 2), we have 

|Y 0 1 0

 01 (s)|ds ≥ η , using(3.5). As lim t→0 U (t) t = 1 a.s, letting t → 0 then δ → 0, we conclude that lim t→0 U (t) t Y 0 (s)ds = 0 in probability.Finally, using (3.5) again, we have t -1-Y 0 (s)ds = X for any t > 0. As a conclusion, (3.4) yields lim

  t→0

1 α 1 =

 11 (α-1) > 1 2(α-1) , thus lim τ →0 D(τ ) -((α -1)τ ) -1 (t)) -(α -1)R -1 (t) -D α X in law.