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Complex ISNMF: a Phase-Aware Model
for Monaural Audio Source Separation

Paul Magron, Tuomas Virtanen, Senior Member, IEEE

Abstract—This paper introduces a phase-aware probabilistic
model for audio source separation. Classical source models in the
short-time Fourier transform domain use circularly-symmetric
Gaussian or Poisson random variables. This is equivalent to
assuming that the phase of each source is uniformly distributed,
which is not suitable for exploiting the underlying structure of
the phase. Drawing on preliminary works, we introduce here a
Bayesian anisotropic Gaussian source model in which the phase
is no longer uniform. Such a model permits us to favor a phase
value that originates from a signal model through a Markov
chain prior structure. The variance of the latent variables are
structured with nonnegative matrix factorization (NMF). The
resulting model is called complex Itakura-Saito NMF (ISNMF)
since it generalizes the ISNMF model to the case of non-isotropic
variables. It combines the advantages of ISNMF, which uses a
distortion measure adapted to audio and yields a set of estimates
which preserve the overall energy of the mixture, and of complex
NMF, which enables one to account for some phase constraints.
We derive a generalized expectation-maximization algorithm to
estimate the model parameters. Experiments conducted on a
musical source separation task in a semi-informed setting show
that the proposed approach outperforms state-of-the-art phase-
aware separation techniques.

Index Terms—Nonnegative matrix factorization (NMF), com-
plex NMF, anisotropic Gaussian model, Itakura-Saito divergence,
Bayesian inference, phase recovery, audio source separation.

I. INTRODUCTION

THE goal of audio source separation [1] is to extract
underlying sources that add up to form an observable

audio mixture. In this paper, we address the problem of
monaural source separation, which means that the observed
audio signal has been recorded through a single microphone.

To tackle this issue, many techniques act on a time-
frequency (TF) representation of the data, such as the short-
time Fourier transform (STFT), since the structure of audio
signals is more prominent in that domain. In particular,
nonnegative matrix factorization (NMF) [2] techniques have
shown successful for audio source separation [3], [4]. NMF
is a rank-reduction method used for obtaining part-based
decompositions of nonnegative data. The NMF problem is
expressed as follows: given a matrix V of dimensions F × T
with nonnegative entries, find a factorization V ≈WH where
W and H are nonnegative matrices of dimensions F ×K and
K × T respectively. To reduce the dimensionality of the data,
the rank K is generally chosen so that K(F + T ) � FT .
In audio applications V is usually a magnitude or power
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spectrogram, and one can interpret W as a dictionary of
spectral templates and H as a matrix of temporal activations.

Such a factorization is generally obtained by minimizing
a cost function that penalizes the error between V and WH.
Popular choices are the Euclidean distance or Kullback-Leibler
(KL) [2] and Itakura-Saito (IS) divergences [4]. NMF may
often be framed in a probabilistic framework, where the cost
function appears as the negative log-likelihood of the data [4]–
[7], and where the model structures the dispersion parameter of
the underlying probability distribution rather than its observed
realizations. For instance, in additive Gaussian mixtures [8]
where the NMF models the variance of the sources, maxi-
mum likelihood estimation is equivalent to an NMF with IS
divergence (ISNMF) of the power spectrogram [4].

Once the NMF model has been estimated, the complex-
valued STFTs are retrieved by means of a Wiener-like fil-
ter [9]. This soft-masking of the complex-valued mixture’s
STFT assigns the phase of the original mixture to each
extracted source. However, even if this filter yields quite
satisfactory sounding estimates in practice [3], [4], it has been
pointed out [10] that when sources overlap in the TF domain,
it is responsible for residual interference and artifacts in the
separated signals. This is a consequence of assuming that
the phase is uniformly distributed [11], and therefore of not
exploiting its underlying structure.

To alleviate this issue, the complex NMF (CNMF)
model [12] has been proposed. It consists in directly de-
composing the complex-valued mixture’s STFT into a sum
of rank-1 components whose magnitudes are structured by
means of an NMF. This model allows for jointly estimating
the magnitude and the phase of each source. It is estimated by
minimizing the Euclidean distance between the model and the
data, to which can be added some regularization terms, such
as a sparsity penalty [12]. It was later improved by means of
adding a consistency constraint [13], that is, to account for the
redundancy of the STFT which introduces some dependencies
between adjacent TF bins [14], [15].

Alternatively, improved recovery can be achieved by using
phase constraints that originate from a signal model. For
instance, the model of sums of sinusoids [16] leads to explicit
constraints between the phases of adjacent TF bins [17], [18].
Such an approach has been exploited in speech enhance-
ment [19], [20], audio restoration [21] and for a time-stretching
application in the phase vocoder algorithm [22]. It has also
been incorporated into some phase-constrained CNMF models
for audio source separation [23]–[25]. Those developments
have shown promising results in terms of interference re-
jection, though they suffer from two drawbacks. Firstly, the
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CNMF model is estimated by minimizing a Euclidean dis-
tance, which does not properly characterize the properties of
audio (such as its large dynamic range), where alternative
divergences (such as KL or IS) are preferred [26]. Secondly,
the set of estimated sources does not preserve the overall
energy of the mixture, which leads to artifacts in the separated
signals.

Drawing on those observations, we proposed in a prelimi-
nary work [27] to model the sources with anisotropic Gaussian
(AG) variables, i.e., where the phase is no longer uniform.
In such a model, one can promote a phase value which is
obtained by exploiting the sinusoidal model. Estimation in a
minimum mean square error sense results in an anisotropic
Wiener filter, which optimally combines the mixture phase and
the underlying phase model. We further introduced in [28] a
general Bayesian framework in which both magnitudes and
phases were modeled as random variables, and the sinusoidal
model was promoted through a Markov chain prior structure
on the phase location parameter. However, in those preliminary
approaches, the variance parameters were left unconstrained
and therefore either assumed known or estimated beforehand.

In this paper, we introduce a Bayesian AG model that
overcomes the limitations of those approaches. We structure
the variance parameters of the sources by means of an NMF
model, so we can jointly estimate the magnitudes and the
phases in a unified framework. This model, called complex
ISNMF, combines the benefits of both ISNMF and CNMF:

1) It is phase-aware;
2) The set of estimators is conservative, i.e., their sum is

equal to the observed mixture;
3) The estimation is based on the minimization of an IS-

like divergence, which is appropriate for audio [29].
In order to infer the parameters of the model, we derive a
generalized expectation-maximization (EM) algorithm. This
model is applied to a musical source separation task in a semi-
informed setting. It outperforms both the traditional phase-
unaware ISNMF and the phase-constrained CNMF model [25].
This demonstrates the usefulness of such a phase-aware
Bayesian AG model to perform the joint estimation of mag-
nitudes and phases for audio source separation.

The rest of this paper is organized as follows. Section II
introduces the complex ISNMF model. Section III details
the inference procedure. Section IV experimentally validates
the potential of this method. Finally, Section V draws some
concluding remarks.

II. COMPLEX ISNMF

Let X ∈ CF×T be the STFT of a single-channel audio
signal, where F and T are the numbers of frequency channels
and time frames. X is the linear and instantaneous mixture of
J sources Sj ∈ CF×T , such that for all TF bins ft,

xft =

J∑
j=1

sj,ft. (1)

Since all TF bins are treated similarly, we remove the indices
ft when appropriate for more clarity.
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Fig. 1. Density of the VM distribution.

A. Modeling magnitude and phase
Let us consider a complex-valued random variable s = reiφ

whose magnitude and phase are assumed independent and
denoted r and φ. Drawing on [28], we propose to model r
as a Rayleigh random variable R(v), which is the distribution
of the modulus of a circularly-symmetric complex normal
distribution with variance v. Besides, as in [27], we consider
that the phase should be distributed around some favored value
µ and that the relative importance of this value should be
adjusted by means of a concentration parameter κ ∈ [0,+∞[:
the higher κ, the more favored µ.

Several non-uniform periodic distributions exist (such as
the wrapped Gaussian [30] or wrapped Cauchy distributions)
but the von Mises (VM) [31] distribution comes as a natural
candidate [32], [33], since its density is easily expressed by:

p(φ|µ, κ) =
eκ cos(φ−µ)

2πI0(κ)
, (2)

where In is the modified Bessel function of the first kind of
order n [34], µ ∈ [0; 2π[ is a location parameter and κ ∈
[0; +∞[ is a concentration parameter. In particular, if κ = 0,
the VM distribution becomes uniform. Contrarily, if κ→ +∞,
it becomes equivalent to a Dirac delta function centered at µ.
It is illustrated in Fig. 1.

This methodology results in a model called Rayleigh + von
Mises (RVM), in which one can promote some favored phase
values (see Section II-C). Such an approach has been originally
used in [32], [33] for a speech enhancement application in a
speech plus noise model. However, in the present case, since
we consider any number of sources J , the RVM model is no
longer tractable because the density of the mixture does not
admit a closed-form expression. Therefore it is not suitable
for source separation, where we aim to estimate the model
parameters.

Nonetheless, we can compute the moments of s = reiφ

which will be used later in this work. If φ ∼ VM(µ, κ), the
n-th circular moment is, ∀n ∈ Z (cf. [31]):

E(einφ) =
I|n|(κ)

I0(κ)
einµ. (3)

Besides, if magnitude r ∼ R(v), we have:

E(r) =

√
π

4
v and E(r2) = v. (4)
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This lead to the expression of the mean of s:

m = E(reiφ) = E(r)E(eiφ) = λ
√
veiµ, (5)

and its variance γ = E(|s−m|2):

γ = E(|reiφ|2)− |m|2 = (1− λ2)v, (6)

and the relation term c = E((s −m)2), which measures the
joint variability of a variable and its complex conjugate:

c = E(r2)E(ei2φ)−m2 = ρvei2µ, (7)

where
λ =

√
π

2

I1(κ)

I0(κ)
and ρ =

I2(κ)

I0(κ)
− λ2. (8)

This relation term c is not commonly introduced in statistical
models of audio signals in the TF domain because it is
usually assumed to be null [35]. Indeed, most models [4], [9],
[36] assume the second-order circularity (or isotropy) of the
variables, that is, with the same distribution in the complex
plane regardless of the orientation. Since this is equivalent to
assuming that the phase is uniformly distributed, we propose
instead to explicitly consider this relation term as non-zero
in general: it enables us to promote the non-circularity of the
variable, and therefore the non-uniformity of the phase.

B. Anisotropic Gaussian sources

To alleviate the non-tractability issue of the RVM model,
we propose to approximate it by a Gaussian model1 in which
the moments of the variables are the same ones as in the
original RVM model. This approach enables us to keep the
phase dependencies in a model which is fully tractable.

Therefore, we assume that each source sj follows a complex
normal distribution: sj ∼ N (mj ,Γj), where mj = E(sj) ∈ C
is the mean of sj and Γj is its covariance matrix:

Γj =

(
γj cj
c̄j γj

)
, (9)

where γj = E(|sj−mj |2) ∈ R+ and cj = E((sj−mj)
2) ∈ C

are the variance and relation term of sj , and z̄ denotes the
complex conjugate of z. The density of such a distribution is:

p(x|m,Γ) =
1

π
√
|Γ|
e−

1
2 (x−m)HΓ−1(x−m), (10)

where x =
(
x x̄

)T
, and where T and H denote the transpose

and conjugate transpose.
Many previous studies model the sources as circularly-

symmetric (or isotropic) variables [4], [38] (i.e., such that
mj = cj = 0), which is equivalent to assuming that the
phase of each source is uniformly distributed. The keystone
of our approach is that, in order to promote a favored phase
value, the moments are the same ones as in the original RVM
model. Therefore, we use the expressions given by (5), (6)
and (7) to estimate the moments which are then used to
design the Gaussian model, as illustrated in Fig. 2. The main
characteristic of this model is that the relation terms cj are

1This strategy is reminiscent of [37], where the mixture model was a sum
of random variables with phase priors.
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Fig. 2. Design of the AG model. We first model the magnitudes and phases
as Rayleigh and von Mises random variables. The moments in this model are
then used to define the equivalent AG model.
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Fig. 3. 2-D histograms of 10000 samples generated from the RVM model
(left) and AG model (right), with v = 1, µ = π/3 and κ = 50. The
intersection between the dashed lines represents the mean of the samples.

non-zero in general, which conveys the property of anisotropy
of the corresponding Gaussian distribution: this is why we
refer to it as the anisotropic Gaussian (AG) model.

The additive property of the Gaussian distribution family
then implies that x ∼ N (mx,Γx) with:

mx =
∑
j

mj , γx =
∑
j

γj , cx =
∑
j

cj , Γx =
∑
j

Γj . (11)

Remark: If κ = 0, then λ = ρ = 0 and consequently
m = c = 0 and γ = v: the RVM and AG models are
then equivalent since they both become isotropic Gaussian.
Contrarily, for important values of κ, the models still remain
quite alike, as illustrated in Fig. 3 for κ = 50.

C. Phase model

The non-uniformity of the phase is taken into account in
the AG model through the location parameter µ. However, in
order to obtain good quality phase estimates, this model can
benefit from incorporating some prior knowledge about the
phase, for instance by accounting for its structure in time or
frequency. We propose to exploit some information about the
phase by exploiting the sinusoidal model, which is widely used
for representing audio signals [19], [23]. Each source in the
time domain is modeled as a sum of sinusoids. Let us assume
that there is at most one sinusoid (whose normalized frequency
is denoted νj,ft) per frequency channel. It can be shown [21]
that the phase µj follows the unwrapping equation:

µj,ft ≈ µj,ft−1 + 2πlνj,ft, (12)
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where l is the hop size of the STFT. As in [28], we propose
to enforce this property by means of a Markov chain prior
structure. We have, for each source:

p(µj) =

F−1∏
f=0

p(µj,f0)

T−1∏
t=1

p(µj,ft|µj,ft−1). (13)

We then propose the following choice, for t > 0:

µj,ft|µj,ft−1 ∼ VM(µj,ft−1 + 2πlνj,ft, τ), (14)

and the initial distribution in each frequency channel p(µj,f0)
is Jeffrey’s non-informative prior. In this way, we enforce
the phase location parameter to approximately follow the
sinusoidal model (12). The parameter τ ∈ R+ adjusts the
relative importance of this prior. Once again, we choose a VM
distribution for modeling the phase location parameter, since
it is a natural candidate for accounting for the periodicity of
this variable. However, unlike previously, we do not need here
to approximate this distribution: since the prior (14) applies
independently to each source, it is straightforward to explicitly
obtain the log-prior:

log(p(µ))
c
= τ

∑
j,f,t

<
(
eiµj,fte−iµj,ft−1−2iπlνj,ft

)
, (15)

where c
= denotes equality up to an additive constant and

< is the real part. The model therefore depends on two
concentration parameters that have a different role: κ quantifies
the non-uniformity of the phase in the AG model (i.e., how
concentrated about a location parameter the phase is), while
τ quantifies how close to the sinusoidal model this location
parameter is.

D. Complex ISNMF

For practical separation applications, it is necessary to
constrain the variance parameters of the sources Vj . We
propose to structure it by means of an NMF model:

Vj = WjHj , (16)

where Wj and Hj are nonnegative-valued matrices of dimen-
sions F×Kj and Kj×T respectively. Therefore, the moments
in the AG model become:

mj,ft = λ
√

[WjHj ]ft e
iµj,ft ,

γj,ft = (1− λ2)[WjHj ]ft, (17)

cj,ft = ρ[WjHj ]ft e
i2µj,ft ,

where [WjHj ]ft denotes the (f, t)-th entry of the matrix
WjHj . In particular, if κ = 0, then mj = cj = 0 and
γj = WjHj : the model becomes equivalent to ISNMF.
Thus, since the proposed model generalizes ISNMF while
allowing us to account for some phase constraint, we call
it complex ISNMF. The whole model is represented as a
Bayesian network in Fig. 4

Fig. 4. Bayesian network corresponding to the complex ISNMF model. Latent
(resp. observed) variables are represented with empty (resp. shaded) ellipses.
The sub-graph contained in each rectangle is repeated according to the index
(k or j) indicated in the bottom-right corner of the rectangle. The vertical
dashed lines mark the limits between successive time frames.

E. Relation to other models

The AG model along with the NMF variance structure
results in a phase-aware extension of ISNMF, as pointed out in
Section II-D. However, other models can be seen as particular
cases of this general framework. Indeed, in Section II-B we
approximated the RVM model with an AG model by equating
their moments. As illustrated in Fig. 2, we chose to equate
all the moments (mean, variance and relation term), but other
approaches are possible.

Firstly, it is possible to set the mean and relation term to
0, in which case the sources follow a circularly-symmetric
Gaussian distribution: sj ∼ N (0, γjI), where I is the identity
matrix. Along with an NMF variance, this results in the
ISNMF model [4]. This is therefore another way of seeing
the proposed AG model as an extension of ISNMF.

Alternatively, one can only preserve the mean information
from the RVM model, and set the covariance matrix to be
diagonal with a constant variance σ: sj ∼ N (mj , σI). This is
the underlying statistical model from CNMF [12]. Therefore,
this AG framework bridges the gap between ISNMF and
CNMF since it generalizes both of them in a unified model.

Finally, other approximations are possible. For instance,
one can only preserve the second-order statistics from the
RVM model and set the mean value at 0 (sj ∼ N (0,Γj)).
Instead, one can set the relation terms at 0 and keep the phase
dependencies only through the mean (sj ∼ N (mj , γjI)). This
leads to alternative versions of Complex ISNMF that simplify
the estimation of the NMF parameters (cf. Section III-C) or the
phase parameters (cf. Section III-D). Those will be discussed
in the corresponding sections. However, in order to keep the
scope of this paper broad enough, we will infer the model in
the general case described in Section II-D.

III. INFERENCE

The model parameters Θ = {{Wj}j , {Hj}j , {µj}j} are
estimated in a maximum a posteriori sense, which consists in
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maximizing the log-posterior distribution:

CMAP(Θ) = log p(X|Θ) + log p(Θ), (18)

where p(X|Θ) is the likelihood of the data and p(Θ) the priors
on the parameters. In this work, we only exploit the Markov
prior information about the phase, therefore log p(Θ) is given
by (15). However, this framework is very general and it could
be possible to further enforce some desirable property such
as harmonicity [39] through priors on the columns of Wj or
temporal continuity [3] through priors on the rows of Hj .

A. EM framework

Since the direct maximization of the criterion (18) is more
involved than in classical isotropic models [4], we propose to
adopt an EM [40] strategy which consists in maximizing a
lower bound of the log-posterior distribution, given by:

QMAP(Θ,Θ(i−1)) = QML(Θ,Θ(i−1)) + log p(Θ), (19)

where i is a step index, Θ(i−1) contains the current set of
estimated parameters (i.e., the parameters estimated at the
previous step i−1) and QML is the conditional expectation of
the complete-data log-likelihood:

QML(Θ,Θ(i−1)) =

∫
p(Z|X; Θ(i−1)) log p(X,Z; Θ)dZ,

(20)
where Z denotes a set of latent (hidden) variables. Due to the
mixing constraint (1), we use, as in [38], [41], a reduced set
of J ′ = J − 1 free variables Z = S = {sft}ft, where we note
sft = [s1,ft, ..., sJ′,ft]

T. Therefore, sJ,ft = xft−
∑J′

j=1 sj,ft.
The EM algorithm consists in alternatively computing the

functional QMAP given the current set of parameters Θ(i−1)

(E-step) and maximizing it with respect to Θ (M-step). This
is proven [40] to increase the value of the criterion (18).
However, when the maximization of QMAP is too involved,
it may be preferable to solely increase its value at the M-step.
This has also been proved [40] to lead to a local maximum
of (18), and the corresponding procedure is called generalized
EM. This is the approach we are adopting hereafter.

B. E-step

Since all {sj,ft}J
′

j=1 are independent Gaussian variables, sft
is a Gaussian vector. It can be shown [35] that S|X follows
a multivariate complex normal distribution N (m′ft,Ξft). The
posterior means of the sources are given by anisotropic Wiener
filtering [27]:

m′j,ft = m
(i−1)
j,ft + Γ

(i−1)
j,ft

(
Γ

(i−1)
x,ft

)−1

(xft −m
(i−1)
x,ft ). (21)

Note that, given the mixing constraint (1), this expression is
also valid for the last source for which j = J . The posterior

covariance matrix Ξft is given by [41]:

Ξft =


Γ

(i−1)
1,ft 0 0

0
. . . 0

0 0 Γ
(i−1)
J′,ft



−


Γ

(i−1)
1,ft

...
Γ

(i−1)
J′,ft

(Γ
(i−1)
x,ft

)−1


Γ

(i−1)
1,ft

...
Γ

(i−1)
J′,ft


T

. (22)

In particular, the diagonal blocks in the posterior covariance
matrix provide the posterior covariance for each source:

Γ′j,ft = Γ
(i−1)
j,ft − Γ

(i−1)
j,ft

(
Γ

(i−1)
x,ft

)−1

Γ
(i−1)
j,ft . (23)

Thanks to (21) and (23), we can compute the posterior mean,
variance and relation term of the sources, respectively, denoted
by m′j , γ

′
j and c′j . The computation of (20) is detailed in the

appendix and results in:

QML(Θ,Θ(i−1))
c
= −

∑
f,t

J∑
j=1

log(
√
|Γj,ft|)

+
1

|Γj,ft|
(
γj,ft(|m′j,ft −mj,ft|2 + γ′j,ft)

)
(24)

− 1

|Γj,ft|
(
<(c̄j,ft((m

′
j,ft −mj,ft)

2 + c′j,ft))
)
,

where |Γj,ft| = γ2
j,f,t − |cj,ft|2 is the determinant of Γj,ft.

C. M-step: NMF parameters

1) NMF functional: Let us first rewrite QML by removing
the terms that do not depend on the NMF parameters. Us-
ing (24) and (17), we have:

QML(Θ|Θ(i−1))
c
= −

J∑
j=1

∑
f,t

log([WjHj ]ft) +
pj,ft

[WjHj ]ft

− qj,ft√
[WjHj ]ft

, (25)

with:

p =
(1− λ2)

(
γ′ + |m′|2

)
− ρ<

(
e−2iµ(c′ +m′2)

)
(1− λ2)2 − ρ2

, (26)

and:
q =

2λ

1− λ2 + ρ
<
(
e−iµm′

)
, (27)

where we removed the indices j, ft for brevity. This highlights
two novel quantities p and q on which QML depends. First,
from the derivation conducted in the appendix we remark that:

pj,ft
[WjHj ]ft

= ES|X;Θ(i−1)

(
sHj,ftΓ

−1
j,ftsj,ft

)
. (28)

In particular, when κ = 0, pj,ft = γ′j,ft + |m′j,ft|2, which is
the posterior power of sj,ft. Therefore, in the general case,
we call the quantity p in (28) the phase-corrected posterior
power of the sources. Note that since Γ is positive-definite, p
is necessarily nonnegative. This quantity is interesting because
it accounts for the phase while being nonnegative: therefore,
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estimating the NMF model from this quantity leads to a phase-
aware decomposition of the data.

On the other hand, the physical meaning of the quantity
q is not fully clear. In particular, it has the same sign as
<
(
e−iµm′

)
, that is, the same sign as cos(µ − ∠m′). Ac-

counting for the mixture’s phase when computing the posterior
mean (21) leads to a deviation of ∠m′ from the location
parameter µ. However, our intuition is that the posterior mean
angle will stay relatively close to the location parameter
µ. If this angle difference remains relatively small (that is,
|µ − ∠m′| < π/2), then its cosine (and consequently q) is
nonnegative. Then, q has the dimension of a magnitude, and
can therefore be seen as a phase-corrected posterior magni-
tude. Even though we were not able to formally demonstrate
that this intuition holds, we observed experimentally that q
was always nonnegative. Therefore, we will assume in what
follows that q is nonnegative, and we leave to future work a
more in-depth analysis of those quantities.

2) Majorize-minimization approach: Since QMAP is equal
to QML up to the log-prior on the phase, which does not
depend on the NMF parameters, the problem then becomes
that of minimizing the following function, for all sources j:

H(Θ) =
∑
f,t

log(
∑
k

wfkhkt)+
pft∑

k wfkhkt
− qft√∑

k wfkhkt
.

(29)
To do so, we propose to adopt a majorize-minimization
approach [42]. The core idea of this strategy is to find an
auxiliary function G which majorizes H:

∀(Θ, Θ̃), H(Θ) ≤ G(Θ, Θ̃), and H(Θ̃) = G(Θ̃, Θ̃). (30)

Given some current parameter Θ̃, minimizing G(Θ, Θ̃) with
respect to Θ provides an update on Θ. This approach guaran-
tees that the cost function H is non-increasing over iterations.

Let us derive the update on Wj . We introduce auxiliary
parameters w̃fk and we denote ṽft =

∑
k w̃fkhkt. In a similar

fashion as in [43]–[45], we decompose the function H into its
convex and concave parts.

Since p is nonnegative, the term in (29) involving p is con-
vex. Therefore it is majorized by using the Jensen inequality:

pft∑
k wfkhkt

≤
∑
k

w̃2
fk

wfk

pfthkt
ṽ2
ft

. (31)

Besides, since we assumed that q is negative, the term in (29)
involving q is concave, so it is majorized by its tangent:

− qft√∑
k wfkhkt

≤
∑
k

wfkhktqft

ṽ
3/2
ft

. (32)

Finally, the first term in (29) is majorized as in [44]:

log(
∑
k

wfkhkt) ≤
∑
k

wfkhkt
ṽft

. (33)

Combining (31), (32) and (33) results into the following
auxiliary function for H:

G(Θ, Θ̃) =
∑
f,k

w̃2
fk

wfk

∑
t

pfthkt
ṽ2
ft

+ wfk
∑
t

hkt(
1

ṽft
+

qft

ṽ
3/2
ft

).

(34)

3) Update rules: Setting the derivative of G with respect
to wfk at zero and solving leads to the following update:

wfk = w̃fk

√√√√√√√√√
∑
t

pfthkt
ṽ2
ft∑

t

hkt

(
1

ṽft
+

qft

ṽ
3/2
ft

) . (35)

We can rewrite this update rule onto matrix form as:

Wj ←Wj �

(
(Pj �V�−2

j )HT
j

(V�−1
j + Qj �V

�−3/2
j )HT

j

)�1/2

, (36)

where �, � and the fraction bar denote element-wise matrix
multiplication, power and division respectively, and where
Pj and Qj are the matrices whose entries are the pj,ft and
qj,ft defined in (26) and (27). By applying exactly the same
methodology, we obtain the update on H:

Hj ← Hj �

(
WT

j (Pj �V�−2
j )

WT
j (V�−1

j + Qj �V
�−3/2
j )

)�1/2

. (37)

4) Relation to other approaches: We remark that if κ = 0,
then λ = ρ = 0: therefore, qj,ft = 0 and pj,ft becomes
the posterior power of sj,ft, as mentioned in Section III-C1.
Then, we recognize in (25) the IS divergence between Pj

and WjHj , as in the EM algorithm for ISNMF [46]. Con-
sequently, the updates rules (36) and (37) are similar to
those obtained in such a scenario [46], up to an additional
power 1/2, which is common when applying the majorize-
minimization methodology for estimating ISNMF [44].

Besides, one can consider an alternative AG model as
described in Section II-E. If one considers that the sources
are centered (sj ∼ N (0,Γj)), then Qj = 0: we recognize
in (25) the IS divergence between the NMF model and the
phase-corrected posterior power. The derivation of the update
rules is then easier than in the general case, since it eliminates
the need for the majorize-minimization method: one can
apply the commonly-used heuristic method described in [2] to
obtain alternative multiplicative update rules. This approach is
described in more details in [47].

D. M-step: phase parameters

Let us now derive the updates on the phase parameters. We
rewrite the functional (24) by removing the terms that do not
depend on the phase parameters, which leads to:

QML(Θ|Θ(i−1))
c
=

J∑
j=1

∑
f,t

<
(
αj,fte

−2iµj,ft + βj,fte
−iµj,ft

)
,

(38)
with:

αj,ft =
ρ

((1− λ2)2 − ρ2)[WjHj ]ft
(c′j,ft +m′2j,ft), (39)

and:

βj,ft =
2λ(1− λ2 − ρ)

((1− λ2)2 − ρ2)
√

[WjHj ]ft
m′j,ft. (40)
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Therefore, adding the log-prior over the phase parameters (15)
leads to maximizing the following functionals:

gj,ft(µj,ft) = <
(
αj,fte

−2iµj,ft + β̃j,fte
−iµj,ft

)
, (41)

with respect to µj,ft, and where:

β̃j,ft = βj,ft + τ
(
eiµj,ft−1+2iπlνj,ft + eiµj,ft+1−2iπlνj,ft+1

)
.

(42)
Let us remove the indexes j, ft in what follows for more
clarity. We then seek to maximize:

g(µ) = <
(
αe−2iµ + β̃e−iµ

)
(43)

= |α| cos(2µ− ∠α) + |β̃| cos(µ− ∠β̃), (44)

which leads to finding the roots of:

g′(µ) = −2|α| sin(2µ− ∠α)− |β̃| sin(µ− ∠β̃). (45)

Unfortunately, it is not straightforward to write the solutions
of this problem in closed-form. Besides, it requires further
operations to determine which root maximizes g, leading to
a quite computationally intensive procedure. Instead, drawing
on [28], since we experimentally observed that |α| << |β|,
we propose to approximate (44) by:

g̃(µ) = <
(
β̃e−iµ

)
= |β̃| cos(µ− ∠β̃), (46)

which is easily maximized by µ = ∠β̃. This update depends
on the values of the phase parameter in frames t−1 and t+1,
so it has to be applied sequentially over time frames (which
is common when using Markov chain priors such as in [39]).

To assess the validity of this update scheme, we applied
both procedures (maximization of the exact functional (44)
and its approximation (46)) on the learning dataset used in
the experimental evaluation (see Section IV-A). The average
relative difference between the phases obtained with those
two approaches was of approximately 10−5. Consequently,
we propose to use the approximate update scheme, since it
yields very similar estimates while being significantly faster
than performing the exact maximization.

Finally, if one consider an alternative AG model with null
relation terms (cf. Section II-E), then α = 0, which eliminates
the need for this simplifying assumption. It also modifies the
values of β, p and q, therefore leading to a different procedure,
which will be investigated in future work.

E. Full procedure

The EM procedure is summarized in Algorithm 1. The
phase location parameters µj are initialized by assigning the
mixture phase to each source. The initialization of the NMF
matrices is discussed in Sections IV-A2 and IV-B.

The frequencies ν are provided as inputs of the algorithm.
We estimate them by means of a quadratic interpolated FFT
(QIFFT) [48] on the log-spectra of the initial variance es-
timates Vj . This estimation is performed locally (at each
time frame) in order to account for slow variations of the
frequencies. The frequency range is then decomposed into
regions of influence [21] to ensure that the phase in a given
channel is unwrapped with the appropriate frequency.

Algorithm 1: EM algorithm for complex ISNMF

1 Inputs: Mixture X ∈ CF×T ,
2 Phase parameters κ and τ ∈ R+,
3 Initial NMF matrices ∀j, Wj ∈ RF×Kj

+ , Hj ∈ RKj×T
+ ,

4 Initial phases ∀j, µj ∈ [0, 2π[F×T ,
5 Normalized frequencies ∀j, νj ∈ R×F×T .
6 Anisotropy parameters:
7 Compute λ and ρ with (8).
8 while stopping criterion not reached do
9 % E-step

10 Update m, γ and c with (17),
11 Update mx, γx and cx with (11),
12 Update m′ with (21),
13 Update γ′ and c′ with (23),
14 % M-step: NMF
15 Update p with (26) and q with (27).
16 ∀j, Update Wj with (36) and Hj with (37),
17 Normalize W and H.
18 % M-step: phase
19 Update β with (40).
20 for t = 1 to T − 2 do
21 ∀(j, f), update β̃j,ft with (42),
22 µj,ft = ∠β̃j,ft.
23 end
24 end
25 Update m, γ and c with (17),
26 Update mx, γx and cx with (11),
27 Update m′ with (21).
28 Outputs: m′ ∈ CJ×F×T .

This algorithm includes a normalization step after updating
Wj and Hj , which eliminates trivial scale indeterminacies
and avoids numerical instabilities. We impose a unitary `2-
norm on each column of Wj and scale Hj accordingly, so
that the cost function is not affected.

Finally, one final E-step is performed after looping in order
to estimate the sources with the most up-to-date parameters.

IV. EXPERIMENTAL EVALUATION

In this section, we experimentally assess the potential of
the proposed complex ISNMF model for a task of monaural
musical source separation. Sound excerpts can be found on
the companion website for this paper [49]. In the spirit of
reproducible research, the code of this experimental study is
available online2.

A. Protocol

1) Dataset: We consider 100 music song excerpts from
the DSD100 database, a semi-professionally mixed set of
music songs used for the SiSEC 2016 campaign [50]. Each
excerpt is 10 seconds long and is made up of J = 4
sources: bass, drum, vocals and other. The database
is split into two subsets of 50 songs: a learning set, on

2https://github.com/magronp/complex-isnmf
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which the meta-parameters of the algorithms are tuned and
the initialization strategies are investigated, and a test set, on
which the separation benchmark is performed. The signals are
sampled at 44100 Hz and the STFT is computed with a 92 ms
long Hann window and 75 % overlap. The resulting STFTs
are therefore matrices of dimensions 2049× 433.

2) Separation scenario: In coding-based informed source
separation [51], we assume some side-information can be
computed from the isolated sources (the encoding stage)
and then used to perform separation (the decoding stage).
A common approach consists of computing a nonnegative
matrix or tensor factorization [52]–[54] on the isolated source
spectrograms and then using the corresponding decomposition
to estimate a Wiener filter at the decoding stage. Here, we
consider a semi-informed scenario, in which the dictionaries
Wj are estimated on the isolated sources and the activation
matrices Hj computed from the mixture. This setting is less
restrictive than a fully-informed setting since we only transmit
the dictionaries instead of both NMF matrices. Note than since
we use a learning dataset for tuning some parameters, this
setting is actually supervised semi-informed, but we refer to
it as semi-informed for brevity.

Dictionaries are learned with 200 iterations of ISNMF ap-
plied to each isolated spectrogram, using multiplicative update
rules [4], random initial matrices and a rank of factorization
Kj = 50, which corresponds to an 8-fold compression ratio.
The dictionaries are then fixed at the separation stage, since
we experimentally observed that it leads to better results than
further updating them on the mixture.

3) Comparison references: As baselines, we test the con-
sistent anisotropic Wiener (CAW) filter [41] which combines
the consistent [38] and anisotropic [27] Wiener filters, and
we also consider the phase-constrained CNMF [23]–[25]. In
order to make the comparison fair, we implemented a version
of CNMF known as CNMF with intra-source additivity [55]:
it consists in modeling the phase φj of each source instead
of the phase of each NMF component, as in the classical
CNMF model [12]. This significantly reduces the number of
parameters of the model, thus it lowers both the memory and
computation time required for the estimation of the model, at
the cost of a moderate drop in terms of separation quality [55].

Source separation quality is measured with the signal-to-
distortion, signal-to-interference, and signal-to-artifact ratios
(SDR, SIR, and SAR) [56] expressed in dB, where only a
rescaling (not a refiltering) of the reference is allowed.

B. Initialization strategy

We briefly investigate here on the best strategy for initial-
izing the complex ISNMF algorithm at the separation stage,
once the dictionaries are learned. A first approach is to provide
a warm start to the algorithm thanks to 50 iterations of ISNMF
computed on the mixture, whose activation matrix is randomly
initialized. Besides, it is necessary to have a first estimate of
the variances in order to compute the frequencies, which are
needed as inputs of Algorithm 1. On top of that initialization,
we run 150 iterations of complex ISNMF. Alternatively, we
run 200 iterations of complex ISNMF on top of a random
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Fig. 5. SDR over iterations for an ISNMF (left) and random (right)
initialization.
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Fig. 6. Influence of the phase parameters κ and τ on the source separation
quality (SDR and SAR are similar). The range is limited to [0, 1] and [0, 5]
for κ and τ respectively for clarity purpose, since the performance decreases
outside of these ranges.

initialization (though we still use the frequencies as computed
before), so the total number of iterations is the same in both
scenarios.

We present the SDR over iterations in Fig. 5 (results are
averaged over the learning set) for κ = τ = 0.5: similar
conclusions can be drawn from other values of the parameters
and from the SIR and SAR. We observe that initializing
complex ISNMF with ISNMF provides better results than a
random initialization. Consequently, in the following exper-
iments, we will retain this ISNMF-initialization strategy in
order to bootstrap the complex ISNMF algorithm, which will
use 100 iterations.

C. Phase parameters influence

We run the different methods on the 50 songs that form the
learning set in order to learn the optimal phase parameters.

1) Complex ISNMF: The results presented in Fig 6 show
that for non-null values of the phase parameters, the proposed
approach can outperform a phase-unaware approach (for which
κ = τ = 0) according to the SDR, SIR and SAR. We found
that κ = 0.5 and τ = 5 provides a quite good compromise
between the different indicators.

2) Phase-constrained CNMF: This method depends on a
weight parameter σu which promotes the sinusoidal model
phase constraint. The separation work flow is the same as for
complex ISNMF, except we use here an NMF with Euclidean
distance [2] for both dictionary learning and initialization on
the mixture. Indeed, since CNMF is based on the Euclidean
distance, learning IS-based dictionaries would not be consis-
tent with the distortion metric in CNMF. The value σu = 10−2

appears as the best candidate, since the SDR is slightly reduced
(−0.2 dB) compared to the unconstrained baseline (for which
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TABLE I
SOURCE SEPARATION PERFORMANCE FOR EACH INSTRUMENT (SDR, SIR AND SAR IN DB) AVERAGED OVER THE DSD100 TEST DATASET.

Bass Drums Other Vocals
SDR SIR SAR SDR SIR SAR SDR SIR SAR SDR SIR SAR

Wiener 2.6 7.9 4.4 4.7 17.4 5.1 3.7 12.9 4.4 7.6 18.1 8.1
AW 2.6 8.1 4.3 4.4 18.5 4.7 3.6 13.1 4.2 7.5 18.9 7.9
CAW 2.8 8.1 4.5 4.8 17.6 5.1 3.8 12.9 4.4 7.0 16.7 7.5
CNMF 2.3 6.9 4.5 3.7 12.8 4.4 2.6 10.1 3.7 5.9 15.7 6.5
Complex ISNMF 3.0 10.1 4.1 5.4 15.9 5.9 3.8 12.4 4.6 7.7 18.4 8.2

TABLE II
SOURCE SEPARATION PERFORMANCE AVERAGED OVER INSTRUMENTS:

MEAN PLUS/MINUS STANDARD DEVIATION OVER THE DATASET.

SDR SIR SAR
Wiener 4.7± 1.6 14.1± 2.9 5.5± 1.5
AW 4.5± 1.7 14.6 ± 2.8 5.3± 1.5
CAW 4.6± 2.0 13.8± 2.7 5.4± 2.0
CNMF 3.6± 1.7 11.4± 2.3 4.8± 1.6
Complex ISNMF 5.0 ± 1.7 14.2± 2.8 5.7 ± 1.6

σu = 0), but it allows for more interference reduction (+1.4
dB in SIR). Values of σu greater than 10−2 still increase the
SIR, but at the cost of a significant drop in SDR.

3) Wiener filters: CAW [41] depends on two parameters κ
and δ which respectively promote anisotropy and consistency.
We first estimate the variances with 150 iterations of ISNMF
on the mixture, and then we apply the filter. We propose the
following sets of values:
• For κ = 1 and δ = 0, the SIR is improved by +0.6 dB at

the cost of a slight decrease in SDR (−0.1 dB) compared
to the baseline Wiener filtering (for which κ = δ = 0).
We simply refer to it as AW since the consistency weight
is null in this setting.

• For κ = 0.1 and δ = 10−3, the SIR is very slightly
reduced compared to the baseline (−0.02 dB) while the
SDR is increased by 0.05 dB. We refer to it as CAW.

One may chose other values for the parameters in order to
have the best possible SDR (or SIR/SAR), but the proposed
settings yield an overall compromise which does not exces-
sively favor one indicator over the others.

D. Results of the benchmark

We now consider the 50 songs that form the test set and
run the compared methods. The results for each instrumental
source are presented in Table I, and the results averaged over
instruments are presented in Table II.

We observe that the proposed complex ISNMF approach
yields the best results in terms of SDR and SAR for all
instruments and among all the compared techniques, except
for the bass track in terms of SAR. It also outperforms
the phase-unaware Wiener filtering and the phase-constrained
CNMF in terms of average SIR. This demonstrates the interest
of exploiting some phase information in a probabilistic model
to overcome the limitations of those baseline approaches, as
stressed in the introduction of this paper.

The complex ISNMF estimates contain slightly more inter-
ference than the AW estimates (a 0.4 dB difference in SIR

on average), but less artifacts (a 0.4 dB difference in SAR
on average), which leads to a greater SDR. Therefore, it is
overall preferable to employ this method than our preliminary
approaches [27], [41] to perform a joint estimation of magni-
tude and phase.

Let us note that the metrics do not vary much from one
technique to another. Indeed, the main difference between
them is the phase recovery technique, which has less impact on
the SDR, SIR and SAR than differences in terms of magnitude
estimation strategy.

An informal perceptual evaluation is consistent with those
results (sounds excerpts are available at [49]). In particular,
CNMF introduces smearing artifacts in the separated sources,
and the bass and drum tracks estimated with the Wiener
filters are strongly corrupted by musical noise. In comparison,
the proposed complex ISNMF method yields bass estimates
which contain fewer artifacts and interference, and drums
estimates with neater attacks.

E. Fitting the data

Finally, we investigate on the capability of the AG model to
represent audio data, that is to say, to assess that the mixture
variables xft are well-represented by AG distributions. To do
so, we need to normalize the variables xft so that all TF entries
become identically distributed, which allows us to compute
their histogram, and therefore to compare their empirical and
theoretical densities. Since xft ∼ N (mx,ft,Γx,ft), it can be
shown that:

yft = (xft −mx,ft)
HΓ−1

x,ft(xft −mx,ft) (47)

follows a chi-squared distribution with 2 degrees of free-
dom [35]. Then, once the model is estimated, we compute
the normalized variable Y from the mixture X according
to (47), and all the entries of Y are expected to be identi-
cally chi-squared distributed. Finally, even if there are some
dependencies between the xft because of the NMF and
phase models, they are conditionally independent given the
model parameters, which are estimated beforehand in order
to compute the yft with (47). The resulting variables yft are
then independent and identically distributed, thus it becomes
possible to plot their histogram.

The setting is the same as in the previous experiments, but
we set τ at 0 and we initialize Algorithm 1 with the true
phase values for µj . Indeed, a fitting error can be due to a
mismatch between the model and the observed data, but also
to an estimation error. In this way, we only investigate on the
accuracy of the model to represent the data, not on the phase
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(solid lines) and reference chi-squared density (dashed line).

estimation itself. The complex ISNMF algorithm is run on
one song (similar results are obtained for the other songs) for
several values of κ. The results are presented in Fig. 7.

We observe that small values of κ lead to empirical densities
that approach the theoretical one from above for small values
of x and from below for greater values of x. For greater values
of κ, this trend is inverted. In particular, the value κ = 0.5
leads to a good fit on average, which may explain why this
value leads to the best results in terms of separation quality
(see Section IV-C).

Overall, a better fit can be obtained with non-null values
of κ, which demonstrates the interest of AG distributions over
isotropic variables to represent audio data in the STFT domain.

V. CONCLUSION

In this paper, we introduced complex ISNMF, a probabilistic
model based on the AG distribution. It consists of modeling
the sources with anisotropic random variables, which makes
it possible to enforce some desirable phase properties, while
classical circularly-symmetric variables do not allow one to
favor a phase model. Therefore, it combines the advantages
of ISNMF and CNMF, that is, using a distortion metric well
adapted to audio and phase-awareness. We experimentally
showed that it outperforms those two approaches, and thus
appears as a good candidate for phase-aware audio source sep-
aration in semi-informed settings. This model is also suitable
for supervised applications where some training material is
available, but then it is required to account for the potential
mismatch between training and test materials [57], [58].

An interesting direction for future work is the investigation
of alternative phase-aware probabilistic models, in order to
extend CNMF to other beta-divergences, as first attempted
in [59]. Alternatively, one can exploit the family of multivari-
ate stable distributions [60] with an anisotropic shape matrix
in order to combine phase-awareness and robust magnitude
modeling [61]. Finally, we could incorporate deep neural net-
works in this Bayesian framework for estimating the variances

instead of using an NMF model, as it was done in a multichan-
nel scenario with isotropic Gaussian variables [62]. Indeed,
deep learning methods have shown remarkably good results for
musical source separation [63], but there is still some room for
improvement, notably in terms of phase recovery, since those
methods usually exploit a phase-unaware Wiener-like mask to
estimate the complex-valued sources.

APPENDIX

In this appendix, we detail the E-step of the proposed
algorithm, which consists in computing the functional given
by (20), which we recall hereafter:

QML(Θ,Θ(i−1)) =

∫
p(S|X; Θ(i−1)) log p(X,S; Θ)dS.

The complete data log-likelihood is given by:

log p(X,S; Θ) =
∑
f,t

log p(xft|sft; Θ) +

J′∑
j=1

log p(sj,ft; Θ)

c
= −1

2

∑
f,t

log(|ΓJ,ft|) +Bft +

J′∑
j=1

log(|Γj,ft|) +Aj,ft,

where:

Aj,ft = (sj,ft −mj,ft)
HΓ−1

j,ft(sj,ft −mj,ft),

and

Bft = (xft−mJ,ft−
J′∑
j=1

sj,ft)
HΓ−1

J,ft(xft−mJ,ft−
J′∑
j=1

sj,ft).

Therefore, (20) rewrites:

QML(Θ,Θ(i−1))
c
= −1

2

∑
f,t

J∑
j=1

log(|Γj,ft|)

+
∑
f,t

J′∑
j=1

ES|X;Θ(i−1) (Aj,ft) + ES|X;Θ(i−1) (Bft) . (48)

Firstly, let us compute the expectation ES|X;Θ(i−1) (Aj,ft). We
remove the indices j, ft and the subscript S|X; Θ(i−1) for
clarity. We have, thanks to the trace identity:

E(A) = E
(
(s−m)HΓ−1(s−m)

)
= (m′ −m)HΓ−1(m′ −m) + Tr(Γ−1Γ′).

Besides,
Tr(Γ−1Γ′) =

1

|Γ|
(γγ′ −<(c̄c′)),

then:

E(A) =
2

|Γ|
(
γ(|m′ −m|2 + γ′)−<(c̄((m′ −m)2 + c′))

)
.

Now, let us compute E(B). We use, once again, the trace
identity, which leads to:

E(B) = E

(x−mJ −
J′∑
j=1

sj)
HΓ−1

J (x−mJ −
J′∑
j=1

sj)


= (x−mJ −

J′∑
j=1

m′j)
HΓ−1(x−mJ −

J′∑
j=1

m′j) + Tr(Γ−1
J Γ′J).
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Thanks to the conservative property of the anisotropic Wiener
filtering (21), we have

∑J′

j=1m
′
j = x−m′J , so:

E(B) = (m′J −mJ)HΓ−1
J (m′J −mJ) + Tr(Γ−1

J Γ′J).

Then, E(B) is similar to E(A), but applied to the last source
J . Finally, incorporating the expressions of E(A) and E(B)
into (48) leads to the expression of QML:

QML(Θ,Θ(i−1))
c
= −

∑
f,t

J∑
j=1

log(
√
|Γj,ft|)

+
1

|Γj,ft|
(
γj,ft(|m′j,ft −mj,ft|2 + γ′j,ft)

)
− 1

|Γj,ft|
(
<(c̄j,ft((m

′
j,ft −mj,ft)

2 + c′j,ft))
)
.
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[45] A. Lefèvre, F. Bach, and C. Févotte, “Itakura-Saito nonnegative matrix
factorization with group sparsity,” in Proc. of IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), May 2011,
pp. 21–24.

[46] P. Magron and T. Virtanen, “Expectation-maximization algorithms for
Itakura-Saito nonnegative matrix factorization,” in Proc. of Interspeech,
September 2018, pp. 856–860.

[47] ——, “Towards complex nonnegative matrix factorization with the beta-
divergence,” in Proc. of the International Workshop on Acoustic Signal
Enhancement (iWAENC), September 2018.

[48] M. Abe and J. O. Smith, “Design criteria for simple sinusoidal parameter
estimation based on quadratic interpolation of FFT magnitude peaks,”
in Audio Engineering Society Convention 117, May 2004.

[49] http://www.cs.tut.fi/∼magron/demos/demo CISNMF.html.
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