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A novel algorithm is developed to calculate the nonlinear optimal boundary perturbations in threedimensional incompressible flow. An optimal step length in the optimisation loop is calculated without any extra calls of the governing PDEs. This algorithm is further applied to compute the optimal inflow eddies that induce wake oscillations in flow around a turbine blade, which is modelled as an actuator disc. Over the parameters considered, the most energetic inflow perturbation occurs at frequency ω = 1 ∼ 2 and is mainly in the form of an azimuthal Fourier wave with wavenumber 1. The development of the inflow perturbation induces significant oscillations of the wake flow. At 10 turbine radii downstream of the disc, the centre velocity oscillates at a magnitude over half of the free-stream velocity, when the maximum inflow noise is 6% of the free-stream wind speed.

INTRODUCTION

The wake flow of a wind turbine features velocity deficit owing to the energy extraction. As a result a downstream turbine experiences lower-speed wind and generates less power. The oscillation of a wake flow, i.e. wake meandering, induces large-scale unsteadiness and modifies the interaction of aligned turbines. Furthermore, the strong turbulence production within the oscillation wake flow enhances fatigue loading to downstream turbines. Therefore it is of critical importance to predict the development of turbine wake flow and its meandering motion [START_REF] Espa Na | Wind tunnel study of the wake meandering down stream of a modelled wind turbine as an effect of large scale turbulent eddies[END_REF][START_REF] Larsen | Validation of the dynamic wake meander model for loads and power production in the egmond aan zee wind farm[END_REF].

The wake meandering can be induced by intrinsic wake instabilities, e.g. the instability of helical vortices shed from the tip of each turbine blade. These vortices are subject to long-wave, short-wave and mutual inductance instabilities before breaking down to coherent and turbulent structures that can travel up to 30-40 rotor diameters downstream of the turbine [START_REF] Widnall | The stability of a helical vortex filament[END_REF][START_REF] Sørensen | Multiple helical modes of vortex breakdown[END_REF][START_REF] Sherry | The interaction of helical tip and root vortices in a wind turbine wake[END_REF][START_REF] Hattori | Modal stability analysis of a helical vortex tube with axial flow[END_REF]. Periodic signature of the meandering related with vortex shedding has been observed [START_REF] Medici Andp | Measurements on a wind turbine wake: 3d effects and bluff body vortex shedding[END_REF], and vortex meandering resulting from mutual induction of helical vortices followed by downstream large-scale coherent structures has been reported [START_REF] Bhaganagar | Implications of stably stratified atmospheric boundary layer turbulence on the near-wake structure of wind turbines[END_REF]. However, the signature of tip vortices is only significant up to 1-2 rotor diameters downstream of the turbine as revealed in a wind tunnel experiment [START_REF] Chamorro | Effects of thermal stability and incoming boundary-layer flow characteristics on wind-turbine wakes: A wind-tunnel study[END_REF].

Another candidate mechanism of wake meandering is the development of large-scale free-stream eddies. It is assumed that small-scale eddies (i.e. smaller than the rotor diameter), constituting the high-frequency part of the turbulence spectrum, are responsible for diffusive effects in the wake only, whereas the low-frequency part, composed of eddies larger than the rotor diameter, contributes mainly to transport the wake as a whole [START_REF] Espa Na | Wind tunnel study of the wake meandering down stream of a modelled wind turbine as an effect of large scale turbulent eddies[END_REF]. The large-scale perturbations have been found to induce meandering of a vortex flow via non-modal perturbation growth [START_REF] Mao | Transient growth associated with continuous spectra of the Batchelor vortex[END_REF]. In this work, the most energetic inflow perturbations is calculated to investigate the influence of upstream noise to the wake flow development.

In most of the perturbation studies, e.g. stability, nonnormality, sensitivity, to name a few, the linearized Navier-Stokes (NS) equations (and the adjoint) are solved. There are a limited number of nonlinear exceptions, mainly about nonlinear optimal initial conditions in pipe or boundary layer flow [START_REF] Cherubini | Rapid path to transition via nonlinear localized optimal perturbations in a boundary-layer flow[END_REF][START_REF] Monokrousos | Nonequilibrium thermodynamics and the optimal path to turbulence in shear flows[END_REF]. For boundary perturbations, a linear most energetic solution has been calculated in vortex flow and channel flow [START_REF] Mao | Calculation of global optimal initial and boundary perturbations for the linearised incompressible Navier-Stokes equations[END_REF], and a two-dimensional (2D) nonlinear optimal solution to suppress vortex shedding in the cylinder wake flow has been reported [START_REF] Mao | Nonlinear optimal suppression of vortex shedding from a circular cylinder[END_REF].

In this work, a three-dimensional (3D) nonlinear solver to calculate the optimal inflow noise is developed based on a well established linear counterpart [START_REF] Mao | Calculation of global optimal initial and boundary perturbations for the linearised incompressible Navier-Stokes equations[END_REF]. The numerical challenge of such a nonlinear calculation is that the developing history of the flow, which easily exceeds one terabytes, has to be saved for the integration of the adjoint equation. The benefit of this nonlinear calculation is that the dynamics of large-magnitude perturbations can be studied and nonlinear phenomena during perturbation developments, e.g. vortex shedding, transition to turbulence, can be taken into account, which is not possible in the well documented linear perturbation analyses. Besides revealing the mechanisms of wake meandering, the upper limit of the magnitude of meandering induced by free-stream eddies can be estimated.

ALGORITHM

Governing equations

A cylindrical system, with x, r and θ representing the streamwise, radial and azimuthal coordinates, respectively, is adopted to study the flow around a wind turbine. The governing equations are the incompressible NS equations with a volume force term representing the force induced by the wind turbine:

∂ t u + u • ∇u + ∇p -Re -1 ∇ 2 u = f with ∇ • u = 0, (1) 
where u, p and f are velocity, pressure and volume force, respectively. Re is the Reynolds number defined based on the free-stream velocity and the radius of the turbine rotating disc. Re = 1000 is used throughout this work. The variables in (1) can be decomposed as the sum of a steady base term and a perturbation term,

(u, p, f ) = (U, P, F) + (u , p , f ), (2) 
The base terms can be obtained by implementing a uniform free-stream inflow condition and integrating (1) until reaching a steady solution. Substituting (2) into (1) and removing the base components, the governing equations for perturbations are obtained,

∂ t u +U •∇u +u •∇U +u •∇u +∇p -Re -1 ∇ 2 u = f with ∇ • u = 0.
For clarity, these equations are denoted more compactly as

∂ t u -L(U)u -u • ∇u -f = 0, (3) 
where L(U ) is a linearized operator, which depends on the base flow and acts on the perturbations. This operator has been well investigated in stability analyses to calculate the linear unstable eigenmodes or optimal perturbations. The inflow perturbation and initial perturbation can be modelled as the inflow boundary condition and initial condition of (3), respectively. Since the present work focuses on the inflow perturbations, the initial condition of u in (3) is set to zero so as to isolate effects of the inflow noise. The computational domain around the turbine disc, in which the governing equations are solved, is denoted as Ω, the boundary of the domain is represented as ∂Ω, and the inflow boundary is denoted as B. To simplify notation in the following derivations, introduce scalar products

(a, b) = Ω a • b dΩ, a, b = T -1 T 0 Ω a • b dΩdt, [a, b] = B a • b dB, {a, b} = T -1 T 0 ∂Ω a • b d∂Ωdt,
where T is a final time and a, b ∈ Ω × [0,T].

Actuator-disc model

An actuator-disc model with radius R and streamwise thickness ∆x is adopted to represent the wind turbine. Since the disc radius is used to define the Reynolds number, it has unit value. The aerodynamic force acting on the flow by the disc is

F aer o = - 1 2 C T u 2 d π, (4) 
where C T is the modified thrust coefficient, whose maximum is 4/3 when the turbine works at the Betz limit, and u d is the spatially averaged wind speed inside the disc [START_REF] Calaf | Large eddy simulation study of fully developed wind-turbine array boundary layers[END_REF]. Since the volume of the disc is π∆x, the aerodynamic force per unit volume, denoted as f in (1), is

f = F aer o π∆x s, (5) 
where s is a vector in the streamwise direction with unit value inside the disc and zero elsewhere. u 2 d can be evaluated as

u 2 d = (s • u, s • u) (s, s) . (6) 
Combining ( 4), ( 5) and ( 6), the volume force is

f = k (s • u, s • u) s with k = - 2π 3(s, s) 2 (7) 
if the turbine works at the Betz limit. In the derivation, (s, s) = π∆x is used. Clearly f is non-zero only for its streamwise component inside the disc. Removing the base component, the perturbation force term is obtained,

f = k s[2(s • U, s • u ) + (s • u , s • u )]. (8) 
Note that this term is not linear with respect to the perturbation velocity.

Optimal inflow perturbation

As stated above, the atmospheric eddies upstream of the disc can be modelled as the inflow boundary condition of (3). Since the perturbation varies with respect to both space and time coordinates, it can be decomposed as

u (B,t) = G(t)u B (B), (9) 
where u B (B) is the spatial dependence of the inflow perturbation, while G(t) is a prescribed temporal-dependence function defined as

G(t) = (1 -e -σt 2 )(1 -e -σ (T -t ) 2 )e iωt , ( 10 
)
where σ is a relaxation factor and σ = 100 is adopted throughout this work. It has been tested that a further increase of σ does not change the distribution of optimal perturbations. The first two terms on the right ensures that u (B, 0) = 0 and u (B,T ) = 0, so as to eliminate discontinuity when integrating the governing equations [START_REF] Mao | Calculation of global optimal initial and boundary perturbations for the linearised incompressible Navier-Stokes equations[END_REF]. The last term specifies the frequency of the inflow perturbation as ω, provided that the final time T is large enough.

To evaluate the magnitude of the inflow perturbation, a boundary norm is defined upon the spatial dependence function as

||u B || b = [u B , u B ] 1/2 . ( 11 
)
This norm will be denoted as b-norm in the following.

As have been well used in previous perturbation analyses, the 'optimal' perturbation in this work is referred to as the most energetic one. Therefore the optimal inflow perturbation is the one induces maximum perturbation energy at final time T

E(T ) = (u T ,W u T ). ( 12 
)
where W is a weight function defined on the domain Ω, ranging from 0 to 1. This function is used to isolate the region of interest, e.g. the downstream region of a turbine, and filter the perturbation energy in the region out of concern. If the whole computational domain is taken into account, W has unit value across the domain.

Lagrangian functional

To calculate the optimal inflow perturbation, define a Lagrangian functional 13) where the first term is the final energy to be maximised; the secondary term is a constraint that the perturbation satisfies (3) and u * is an adjoint velocity vector; the last term constrains the b-norm of the inflow perturbation as a prescribed value √ E b and λ is a Lagrangian multiplier. Through integration by parts, the second term can be reformulated as [START_REF] Mao | Nonlinear optimal suppression of vortex shedding from a circular cylinder[END_REF] where p * is the adjoint pressure, u T (or u * T ) is the velocity (or adjoint velocity) at time T, L * is the adjoint operator of L, depending on the base flow and acting on the adjoint variables, and n is the unit outward norm on the boundary ∂Ω. This adjoint operator has been extensively investigated in nonnormality, receptivity, sensitivity and flow control studies.

L = E(T ) -u * , ∂ t u -L(U)u -u • ∇u -f -(λ, ||u B || 2 b -E b ), (
-u * , ∂ t u -L(U )u -u • ∇u -f = -T -1 (u * T , u T ) + u , ∂ t u * + L * (U)u * + u , u • ∇u * + u , s(2s • U + s • u )(u * , k s) + {n, -u(u • u * ) + u p * -u * p + Re -1 (∇u • u * -∇u * • u )},
Setting the first variation of the Lagrangian with respect to u to zero, an adjoint equation is obtained,

∂ t u * + u • ∇u * -∇u • u * -∇p * + Re -1 ∇ 2 u * + 2k s • u(s, u * ) s = 0, with ∇ • u * = 0. ( 15 
)
The adjoint variables, which are used to calculate the optimal perturbations as detailed in the next section, can be obtained by integrating this equation, which requires the full developing history of u. Since u = U + u and U is steady, the perturbation velocity has to be saved at every step when integrating [START_REF] Widnall | The stability of a helical vortex filament[END_REF]. Considering the sign of the viscous term and the time derivative term of this adjoint equation, it should be integrated backwards from t = T to t = 0. The initial condition of the adjoint equation, u * T = 0, can be obtained by setting the first variation of the Lagrangian to u T to zero.

On both the inflow and far-field boundaries, zero Dirichlet and computed Neumann conditions are used for adjoint velocity and pressure respectively; On the outflow, a mixed velocity boundary condition Re -1 ∂ n u * + n • uu * = 0 and a zero Dirichlet pressure condition are implemented [START_REF] Mao | Calculation of global optimal initial and boundary perturbations for the linearised incompressible Navier-Stokes equations[END_REF]; on the inflow boundary, Dirichlet and computed Neumann conditions are used for adjoint velocity and pressure terms respectively. The choice of boundary conditions ensures that the boundary term, the last one in [START_REF] Mao | Nonlinear optimal suppression of vortex shedding from a circular cylinder[END_REF], is zero on all the boundaries except the inflow boundary.

Gradient of the Lagrangian

The variation of L with respect to u B is

δL(δu B ) = [g -2λ u B , δu B ],
where

g = T -1 T 0 (p * n -Re -1 ∇ n u * )G dt.
From the Gâteaux differential given by [START_REF] Guégan | Optimal energy growth and optimal control in swept hiemenz flow[END_REF], the gradient of the Lagrangian with respect to the inflow perturbation term u B is

∆ u B L = g -2λ u B .
Since the second term on the right of the equality does not change the direction of u B , it will be omitted in the following derivations. The first term can be decomposed into two parts, one parallel with u B and the other normal to u B , by projecting g onto u B ,

g = cu B + d g, ( 16 
)
where g satisfies [ g, u B ] = 0; both u B and g are normalised to have b-norm √ E b ; c and d are scale coefficients. When optimizing the boundary perturbation iteratively, in each step, u B is updated from step n to n+1 following the direction g,

u n+1 B = E b [u n B + r g, u n B + r g] (u n B + r g), (17) 
where r a step length. In the linear regime where the update of the perturbation is small enough, there is an optimal value of r, which is the ratio of d and c, as proved in Appendix A. 

CONVERGENCE AND DISCRETISATION

A spectral element method is used to discretize the governing equations, e.g. the NS equations and the adjoint equation [START_REF] George | Spectral/hp Element Methods for Computational Fluid Dynamics[END_REF]. A decomposition of the domain into 4, 730 spectral elements is shown in figure 1(a), while the subdomain around the actuator disc is illustrated in figure 1(b).

The computational domain spans from x = -3 to x = 50 and r = 0 to r = 35 in streamwise and radial directions, respectively. Such a 2D domain is used in the calculation of base flow, while in 3D integrations, a Fourier decomposition is adopted to discretized the azimuthal direction and 16 Fourier modes are computed all over this work. The actuator disc is located at x = 0, with streamwise thickness ∆x = 0.02 and a unit radius. The streamwise vector s used to define the disc model in ( 5) has unit value inside the disc and decays to zero outside the disc, as shown in figure 2(a). The 2D base flow used in calculating the optimal inflow noise is presented in figure 2(b). The deficit of streamwise velocity in the wake is clearly observed.

The weight function W is defined as

W (x) = 1 for x < 10 exp(-(x -10) 2 )
for x ≥ 10 which filters perturbation far downstream of the disc, so as to isolate a 'region of interest' where the resolution is concentrated. A final time T = 15, which is enough for the inflow noise to reach the boundary of the region of interest, is adopted throughout this work.

In each element, a spectral method is used to further decompose the element to a (P + 1) × (P + 1) grid, where P represents a polynomial order and can be used to refine resolution in the convergence test [START_REF] George | Spectral/hp Element Methods for Computational Fluid Dynamics[END_REF]. Dependence of the maximum energy growth E with respect to P is illustrated in table 1. It is seen that E has converged to two significant figures at P = 4. In the following studies P = 4 will be adopted.

RESULTS AND DISCUSSION

The optimal perturbation energy is illustrated in figure 3. At small perturbation magnitudes, the perturbation dynamics are almost linear, and the ratio of E and E b is approximately constant with respect to E b . As the inflow perturbation becomes larger, the contour lines become sparser, indicating that E/E b reduces owing to the nonlinear interaction of the perturbation with itself. At the smallest inflow perturbation magnitude considered, √ E b = 10 -3.5 , the final energy maximizes at ω = 2 and gradually reduces to ω = 1 as the inflow magnitude increases to √ E b = 10 -1.5 . The distribution of the optimal inflow perturbations is illustrated in figure 4. Clearly at small enough perturbation magnitudes, the optimal solution consists of a single azimuthal wave with wavenumber 1. This is because the base flow is homogenous in the azimuthal direction, and in the linear limit, waves with different azimuthal wavenumbers are decoupled. As the magnitude increases, the distribution becomes more complicated and can be decomposed as more than one azimuthal waves, even though mode 1 is still dominant. The optimal perturbation is concentrated in the streamwise and radial directions while the component in the azimuthal direction is much smaller. It is worth noting that the azimuthal orientation of the optimal perturbation shown in figure 4 is random and rotating the inflow perturbation in the azimuthal direction does not change the results.

The corresponding perturbed flows are illustrated in figure 5. At √ E b = 10 -7 , the wake flow is almost columnar and unperturbed. As the perturbation magnitude increases, a significant wake oscillation is observed and the oscillation moves upstream. Note that owing to the choice of final time, T = 15, perturbations are only evolved until x ≈ 10.

To reveal the meandering of the wake flow, especially the areas with deficit streamwise velocity, the flow field at crosssection x = 8 is presented in figure 6. It is clearly observed that the deficit region is oscillated away from the centre owing to the development of perturbations. This oscillation can be expected to reach the far downstream region, which, however, owing to the limitation of computational resources, is not accounted in the present work.

The oscillation of the streamwise velocity along the turbine axis with respect to time is presented in figure 7. Owing to the relatively large magnitude of inflow perturbations adopted in figure 7(a), √ E c = 10 -3 , the flow oscillates at the inflow frequency ω in close downstream region of the turbine, while in further downstream locations, where the perturbations are sufficiently amplified, the oscillation frequency becomes more complex and the magnitude increases rapidly. At x = 10, the oscillation magnitude reaches over half of the free-stream wind speed. Considering that the inflow perturbation has maximum velocity around 6% of free-stream wind (see figure 4d), the oscillation is amplified in the wake flow by approximately ten fold. These observations indicate that the inflow noise, which can be interpreted as a component of atmospheric turbulence, induces significant meandering motion of the wake flow of a wind turbine.

CONCLUSION

For the first time in perturbation analyses, a 3D nonlinear optimal boundary perturbation is calculated. The numerical algorithm involves solving the decomposed NS equations and the ajdoint. Similarly with existing algorithms to calculate optimal initial perturbations, the full perturbation history has to be saved to solve the adjoint. An optimal step length in the lin- ear sense is obtained without any extra calls of the governing PDEs and therefore significantly reduces the computational cost compared with the line search methods.

The algorithm is applied to flow past a wind turbine modelled as a circular disc, to investigate the wake meandering induced by inflow turbulent eddies. Over the parameters considered, the most energetic inflow perturbation occurs at frequency ω = 1 ∼ 2 and is dominated by an azimuthal Fourier mode with wavenumber 1. The development of the inflow perturbations induces significant oscillation of the wake flow. At 10 turbine radii downstream of the disc, the centre velocity oscillates at a magnitude over half of the free-stream velocity, when the inflow noise reaches 6% of the free-stream wind speed.

Due to the computational cost of this algorithm, a relatively small Reynolds number, Re = 1000, was adopted. However, as in many DNS and stability works, it is assumed that the result of low Reynolds number flow could illustrate the flow physics and shed light on the understanding of large Reynolds number flow. Owing to the optimality of the inflow condition, the development of large-scale atmospheric eddies and the induced wake meandering are clearly revealed. The calculation also contributes to evaluate the upper limit of the 
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 1 Figure 1. Computational grid for (a) the full domain and (b) a subdomain surrounding the disc and the inflow boundary.

Figure 2 .

 2 Figure 2. Contours of the streamwise component of (a) s and (b) the base flow velocity U.

Table 1 .

 1 Convergence of the perturbation energy E with respect to the polynomial order P in the spectral element method at Reynolds number Re = 1000, final time T = 15, perturbation b-norm ||u b || b = √ E b = 10 -3 and frequency ω = 2. These parameters will be used in the following if not otherwise stated.

Figure 3 .

 3 Figure 3. Contours of the logarithm of the perturbation energy, lg(E). The points marked as 'a', 'b', 'c' and 'd' are studied in detail in the following.

Figure 4 .

 4 Figure 4. Streamwise components of the optimal inflow perturbation at ( √ E b ,ω) = (10 -3.5 , 2), (10 -2.5 , 2), (10 -2 , 1.5) and (10 -1.5 , 1) for (a), (b), (c) and (d), respectively, as marked in figure 3. (e) and (f ) Radial and azimuthal components of the optimal inflow velocity at ( √ E b ,ω) = (10 -1.5 , 1).

Figure 5 .

 5 Figure 5. Iso-surfaces of streamwise velocity u = 0.3, 0.5, 0.8 in the optimally perturbed flow at ( √ E b ,ω) = (10 -3.5 , 2), (10 -2.5 , 2), (10 -2 , 1.5) and (10 -1.5 , 1) for (a), (b), (c) and (d), respectively, as marked in figure 3.

Figure 6 .

 6 Figure 6. Contours of the perturbed streamwise velocity at x = 8 and ( √ E b ,ω) = (10 -3.5 , 2), (10 -2.5 , 2), (10 -2 , 1.5) and (10 -1.5 , 1) for (a), (b), (c) and (d), respectively, as marked in figure 3.

Figure 7 .

 7 Figure 7. Oscillations of the streamwise velocity along the axis of the disc at ω = 1 and √ E b = 10 -3 .
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APPENDIX A

Since g and u B in [START_REF] George | Spectral/hp Element Methods for Computational Fluid Dynamics[END_REF] are normal to each other and have the same b-norm √ E b , [START_REF] George | Spectral/hp Element Methods for Computational Fluid Dynamics[END_REF] can be reformulated as

Define a linear operator M, which projects a small enough update of the boundary perturbation to a final perturbation at time T. The updated inflow perturbation in (18) can be projected to a final perturbation

where u T n+1 and u T n denote the final perturbations at optimisation step n + 1 and n, respectively. Since the update of inflow perturbation is assumed to be small, the interaction of the perturbation induced by au n B + b g with itself is a second order function of small variables and is neglected.

The step length r is selected to maximize the perturbation energy

Substitute ( 18) into (20) to reach

where E n is the perturbation energy at step n and can be considered as a fixed value. Therefore the step length should be selected to maximise the right side of (21). Since r is assumed to be small, so is M(au n B + b g). Therefore the last term in (21) is a second order function of a small term and can be neglected.

Since both a and b are functions of r, the optimal value of r can be obtained by differentiating the right side of (21) with respect to r. Through standard algebra, the optimal value of r is

In the linear regime, varying u n B by au n B , from the Gâteaux differential, the change of final perturbation energy is

From the definition of E, there is

Combining ( 23) and ( 24), there is

Substitute 25 and 26 into (22) to reach the optimal step length,

where c and d are calculated from [START_REF] Guégan | Optimal energy growth and optimal control in swept hiemenz flow[END_REF].

In each optimisation loop, r opt is calculated to update the inflow perturbation. If the updated final energy E n+1 does not increase, which indicates that the linear assumption used in deriving the optimal step length is not satisfied, then the step length is reduced until E n+1 > E n . At the equilibrium point of the Lagrangian functional, the gradient g is parallel with u n b . In this condition, from [START_REF] Guégan | Optimal energy growth and optimal control in swept hiemenz flow[END_REF], there is d = 0, corresponding to step length r opt = 0, which indicates that the boundary perturbation converged.